blob: 86bd8499d63be54f4fd815177564baff86e76389 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_CAMERA_HARDWARE_INTERFACE_H
#define ANDROID_HARDWARE_CAMERA_HARDWARE_INTERFACE_H
#include <binder/IMemory.h>
#include <ui/egl/android_natives.h>
#include <utils/RefBase.h>
#include <surfaceflinger/ISurface.h>
#include <ui/android_native_buffer.h>
#include <ui/GraphicBuffer.h>
#include <camera/Camera.h>
#include <camera/CameraParameters.h>
namespace android {
/**
* The size of image for display.
*/
typedef struct image_rect_struct
{
uint32_t width; /* Image width */
uint32_t height; /* Image height */
} image_rect_type;
typedef void (*notify_callback)(int32_t msgType,
int32_t ext1,
int32_t ext2,
void* user);
typedef void (*data_callback)(int32_t msgType,
const sp<IMemory>& dataPtr,
void* user);
typedef void (*data_callback_timestamp)(nsecs_t timestamp,
int32_t msgType,
const sp<IMemory>& dataPtr,
void* user);
/**
* CameraHardwareInterface.h defines the interface to the
* camera hardware abstraction layer, used for setting and getting
* parameters, live previewing, and taking pictures.
*
* It is a referenced counted interface with RefBase as its base class.
* CameraService calls openCameraHardware() to retrieve a strong pointer to the
* instance of this interface and may be called multiple times. The
* following steps describe a typical sequence:
*
* -# After CameraService calls openCameraHardware(), getParameters() and
* setParameters() are used to initialize the camera instance.
* CameraService calls getPreviewHeap() to establish access to the
* preview heap so it can be registered with SurfaceFlinger for
* efficient display updating while in preview mode.
* -# startPreview() is called. The camera instance then periodically
* sends the message CAMERA_MSG_PREVIEW_FRAME (if enabled) each time
* a new preview frame is available. If data callback code needs to use
* this memory after returning, it must copy the data.
*
* Prior to taking a picture, CameraService calls autofocus(). When auto
* focusing has completed, the camera instance sends a CAMERA_MSG_FOCUS notification,
* which informs the application whether focusing was successful. The camera instance
* only sends this message once and it is up to the application to call autoFocus()
* again if refocusing is desired.
*
* CameraService calls takePicture() to request the camera instance take a
* picture. At this point, if a shutter, postview, raw, and/or compressed callback
* is desired, the corresponding message must be enabled. As with CAMERA_MSG_PREVIEW_FRAME,
* any memory provided in a data callback must be copied if it's needed after returning.
*/
class CameraHardwareInterface : public virtual RefBase {
public:
virtual ~CameraHardwareInterface() { }
/** Set the ANativeWindow to which preview frames are sent */
virtual status_t setPreviewWindow(const sp<ANativeWindow>& buf) = 0;
/** Return the IMemoryHeap for the raw image heap */
virtual sp<IMemoryHeap> getRawHeap() const = 0;
/** Set the notification and data callbacks */
virtual void setCallbacks(notify_callback notify_cb,
data_callback data_cb,
data_callback_timestamp data_cb_timestamp,
void* user) = 0;
/**
* The following three functions all take a msgtype,
* which is a bitmask of the messages defined in
* include/ui/Camera.h
*/
/**
* Enable a message, or set of messages.
*/
virtual void enableMsgType(int32_t msgType) = 0;
/**
* Disable a message, or a set of messages.
*
* Once received a call to disableMsgType(CAMERA_MSG_VIDEO_FRAME), camera hal
* should not rely on its client to call releaseRecordingFrame() to release
* video recording frames sent out by the cameral hal before and after the
* disableMsgType(CAMERA_MSG_VIDEO_FRAME) call. Camera hal clients must not
* modify/access any video recording frame after calling
* disableMsgType(CAMERA_MSG_VIDEO_FRAME).
*/
virtual void disableMsgType(int32_t msgType) = 0;
/**
* Query whether a message, or a set of messages, is enabled.
* Note that this is operates as an AND, if any of the messages
* queried are off, this will return false.
*/
virtual bool msgTypeEnabled(int32_t msgType) = 0;
/**
* Start preview mode.
*/
virtual status_t startPreview() = 0;
/**
* Stop a previously started preview.
*/
virtual void stopPreview() = 0;
/**
* Returns true if preview is enabled.
*/
virtual bool previewEnabled() = 0;
/**
* Retrieve the total number of available buffers from camera hal for passing
* video frame data in a recording session. Must be called again if a new
* recording session is started.
*
* This method should be called after startRecording(), since
* the some camera hal may choose to allocate the video buffers only after
* recording is started.
*
* Some camera hal may not implement this method, and 0 can be returned to
* indicate that this feature is not available.
*
* @return the number of video buffers that camera hal makes available.
* Zero (0) is returned to indicate that camera hal does not support
* this feature.
*/
virtual int32_t getNumberOfVideoBuffers() const { return 0; }
/**
* Retrieve the video buffer corresponding to the given index in a
* recording session. Must be called again if a new recording session
* is started.
*
* It allows a client to retrieve all video buffers that camera hal makes
* available to passing video frame data by calling this method with all
* valid index values. The valid index value ranges from 0 to n, where
* n = getNumberOfVideoBuffers() - 1. With an index outside of the valid
* range, 0 must be returned. This method should be called after
* startRecording().
*
* The video buffers should NOT be modified/released by camera hal
* until stopRecording() is called and all outstanding video buffers
* previously sent out via CAMERA_MSG_VIDEO_FRAME have been released
* via releaseVideoBuffer().
*
* @param index an index to retrieve the corresponding video buffer.
*
* @return the video buffer corresponding to the given index.
*/
virtual sp<IMemory> getVideoBuffer(int32_t index) const { return 0; }
/**
* Request the camera hal to store meta data or real YUV data in
* the video buffers send out via CAMERA_MSG_VIDEO_FRRAME for a
* recording session. If it is not called, the default camera
* hal behavior is to store real YUV data in the video buffers.
*
* This method should be called before startRecording() in order
* to be effective.
*
* If meta data is stored in the video buffers, it is up to the
* receiver of the video buffers to interpret the contents and
* to find the actual frame data with the help of the meta data
* in the buffer. How this is done is outside of the scope of
* this method.
*
* Some camera hal may not support storing meta data in the video
* buffers, but all camera hal should support storing real YUV data
* in the video buffers. If the camera hal does not support storing
* the meta data in the video buffers when it is requested to do
* do, INVALID_OPERATION must be returned. It is very useful for
* the camera hal to pass meta data rather than the actual frame
* data directly to the video encoder, since the amount of the
* uncompressed frame data can be very large if video size is large.
*
* @param enable if true to instruct the camera hal to store
* meta data in the video buffers; false to instruct
* the camera hal to store real YUV data in the video
* buffers.
*
* @return OK on success.
*/
virtual status_t storeMetaDataInBuffers(bool enable) {
return enable? INVALID_OPERATION: OK;
}
/**
* Start record mode. When a record image is available a CAMERA_MSG_VIDEO_FRAME
* message is sent with the corresponding frame. Every record frame must be released
* by a cameral hal client via releaseRecordingFrame() before the client calls
* disableMsgType(CAMERA_MSG_VIDEO_FRAME). After the client calls
* disableMsgType(CAMERA_MSG_VIDEO_FRAME), it is camera hal's responsibility
* to manage the life-cycle of the video recording frames, and the client must
* not modify/access any video recording frames.
*/
virtual status_t startRecording() = 0;
/**
* Stop a previously started recording.
*/
virtual void stopRecording() = 0;
/**
* Returns true if recording is enabled.
*/
virtual bool recordingEnabled() = 0;
/**
* Release a record frame previously returned by CAMERA_MSG_VIDEO_FRAME.
*
* It is camera hal client's responsibility to release video recording
* frames sent out by the camera hal before the camera hal receives
* a call to disableMsgType(CAMERA_MSG_VIDEO_FRAME). After it receives
* the call to disableMsgType(CAMERA_MSG_VIDEO_FRAME), it is camera hal's
* responsibility of managing the life-cycle of the video recording
* frames.
*/
virtual void releaseRecordingFrame(const sp<IMemory>& mem) = 0;
/**
* Start auto focus, the notification callback routine is called
* with CAMERA_MSG_FOCUS once when focusing is complete. autoFocus()
* will be called again if another auto focus is needed.
*/
virtual status_t autoFocus() = 0;
/**
* Cancels auto-focus function. If the auto-focus is still in progress,
* this function will cancel it. Whether the auto-focus is in progress
* or not, this function will return the focus position to the default.
* If the camera does not support auto-focus, this is a no-op.
*/
virtual status_t cancelAutoFocus() = 0;
/**
* Take a picture.
*/
virtual status_t takePicture() = 0;
/**
* Cancel a picture that was started with takePicture. Calling this
* method when no picture is being taken is a no-op.
*/
virtual status_t cancelPicture() = 0;
/**
* Set the camera parameters. This returns BAD_VALUE if any parameter is
* invalid or not supported. */
virtual status_t setParameters(const CameraParameters& params) = 0;
/** Return the camera parameters. */
virtual CameraParameters getParameters() const = 0;
/**
* Send command to camera driver.
*/
virtual status_t sendCommand(int32_t cmd, int32_t arg1, int32_t arg2) = 0;
/**
* Release the hardware resources owned by this object. Note that this is
* *not* done in the destructor.
*/
virtual void release() = 0;
/**
* Dump state of the camera hardware
*/
virtual status_t dump(int fd, const Vector<String16>& args) const = 0;
};
/**
* The functions need to be provided by the camera HAL.
*
* If getNumberOfCameras() returns N, the valid cameraId for getCameraInfo()
* and openCameraHardware() is 0 to N-1.
*/
extern "C" int HAL_getNumberOfCameras();
extern "C" void HAL_getCameraInfo(int cameraId, struct CameraInfo* cameraInfo);
/* HAL should return NULL if it fails to open camera hardware. */
extern "C" sp<CameraHardwareInterface> HAL_openCameraHardware(int cameraId);
}; // namespace android
#endif