blob: 1965e0e8a0023144be942eb71760fbcb4999cf03 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VisualizerContext.h"
#include <algorithm>
#include <android/binder_status.h>
#include <audio_utils/primitives.h>
#include <math.h>
#include <system/audio.h>
#include <time.h>
#include <Utils.h>
#ifndef BUILD_FLOAT
#error AIDL Visualizer only support float 32bits, make sure add cflags -DBUILD_FLOAT,
#endif
using android::hardware::audio::common::getChannelCount;
namespace aidl::android::hardware::audio::effect {
VisualizerContext::VisualizerContext(int statusDepth, const Parameter::Common& common)
: EffectContext(statusDepth, common) {
}
VisualizerContext::~VisualizerContext() {
std::lock_guard lg(mMutex);
LOG(DEBUG) << __func__;
mState = State::UNINITIALIZED;
}
RetCode VisualizerContext::initParams(const Parameter::Common& common) {
std::lock_guard lg(mMutex);
LOG(DEBUG) << __func__;
if (common.input != common.output) {
LOG(ERROR) << __func__ << " mismatch input: " << common.input.toString()
<< " and output: " << common.output.toString();
return RetCode::ERROR_ILLEGAL_PARAMETER;
}
mState = State::INITIALIZED;
auto channelCount = getChannelCount(common.input.base.channelMask);
#ifdef SUPPORT_MC
if (channelCount < 1 || channelCount > FCC_LIMIT) return RetCode::ERROR_ILLEGAL_PARAMETER;
#else
if (channelCount != FCC_2) return RetCode::ERROR_ILLEGAL_PARAMETER;
#endif
mChannelCount = channelCount;
mCommon = common;
return RetCode::SUCCESS;
}
RetCode VisualizerContext::enable() {
std::lock_guard lg(mMutex);
if (mState != State::INITIALIZED) {
return RetCode::ERROR_EFFECT_LIB_ERROR;
}
mState = State::ACTIVE;
return RetCode::SUCCESS;
}
RetCode VisualizerContext::disable() {
std::lock_guard lg(mMutex);
if (mState != State::ACTIVE) {
return RetCode::ERROR_EFFECT_LIB_ERROR;
}
mState = State::INITIALIZED;
return RetCode::SUCCESS;
}
void VisualizerContext::reset() {
std::lock_guard lg(mMutex);
std::fill_n(mCaptureBuf.begin(), kMaxCaptureBufSize, 0x80);
}
RetCode VisualizerContext::setCaptureSamples(int samples) {
std::lock_guard lg(mMutex);
if (samples < 0 || (unsigned)samples > kMaxCaptureBufSize) {
LOG(ERROR) << __func__ << " captureSamples " << samples << " exceed valid range: 0 - "
<< kMaxCaptureBufSize;
return RetCode::ERROR_ILLEGAL_PARAMETER;
}
mCaptureSamples = samples;
return RetCode::SUCCESS;
}
int VisualizerContext::getCaptureSamples() {
std::lock_guard lg(mMutex);
return mCaptureSamples;
}
RetCode VisualizerContext::setMeasurementMode(Visualizer::MeasurementMode mode) {
std::lock_guard lg(mMutex);
mMeasurementMode = mode;
return RetCode::SUCCESS;
}
Visualizer::MeasurementMode VisualizerContext::getMeasurementMode() {
std::lock_guard lg(mMutex);
return mMeasurementMode;
}
RetCode VisualizerContext::setScalingMode(Visualizer::ScalingMode mode) {
std::lock_guard lg(mMutex);
mScalingMode = mode;
return RetCode::SUCCESS;
}
Visualizer::ScalingMode VisualizerContext::getScalingMode() {
std::lock_guard lg(mMutex);
return mScalingMode;
}
RetCode VisualizerContext::setDownstreamLatency(int latency) {
if (latency < 0 || (unsigned)latency > kMaxLatencyMs) {
LOG(ERROR) << __func__ << " latency " << latency << " exceed valid range: 0 - "
<< kMaxLatencyMs;
return RetCode::ERROR_ILLEGAL_PARAMETER;
}
std::lock_guard lg(mMutex);
mDownstreamLatency = latency;
return RetCode::SUCCESS;
}
uint32_t VisualizerContext::getDeltaTimeMsFromUpdatedTime_l() {
uint32_t deltaMs = 0;
if (mBufferUpdateTime.tv_sec != 0) {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
time_t secs = ts.tv_sec - mBufferUpdateTime.tv_sec;
long nsec = ts.tv_nsec - mBufferUpdateTime.tv_nsec;
if (nsec < 0) {
--secs;
nsec += 1000000000;
}
deltaMs = secs * 1000 + nsec / 1000000;
}
}
return deltaMs;
}
Visualizer::GetOnlyParameters::Measurement VisualizerContext::getMeasure() {
uint16_t peakU16 = 0;
float sumRmsSquared = 0.0f;
uint8_t nbValidMeasurements = 0;
{
std::lock_guard lg(mMutex);
// reset measurements if last measurement was too long ago (which implies stored
// measurements aren't relevant anymore and shouldn't bias the new one)
const uint32_t delayMs = getDeltaTimeMsFromUpdatedTime_l();
if (delayMs > kDiscardMeasurementsTimeMs) {
LOG(INFO) << __func__ << " Discarding " << delayMs << " ms old measurements";
for (uint32_t i = 0; i < mMeasurementWindowSizeInBuffers; i++) {
mPastMeasurements[i].mIsValid = false;
mPastMeasurements[i].mPeakU16 = 0;
mPastMeasurements[i].mRmsSquared = 0;
}
mMeasurementBufferIdx = 0;
} else {
// only use actual measurements, otherwise the first RMS measure happening before
// MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS have been played will always be artificially
// low
for (uint32_t i = 0; i < mMeasurementWindowSizeInBuffers; i++) {
if (mPastMeasurements[i].mIsValid) {
if (mPastMeasurements[i].mPeakU16 > peakU16) {
peakU16 = mPastMeasurements[i].mPeakU16;
}
sumRmsSquared += mPastMeasurements[i].mRmsSquared;
nbValidMeasurements++;
}
}
}
}
float rms = nbValidMeasurements == 0 ? 0.0f : sqrtf(sumRmsSquared / nbValidMeasurements);
Visualizer::GetOnlyParameters::Measurement measure;
// convert from I16 sample values to mB and write results
measure.rms = (rms < 0.000016f) ? -9600 : (int32_t)(2000 * log10(rms / 32767.0f));
measure.peak = (peakU16 == 0) ? -9600 : (int32_t)(2000 * log10(peakU16 / 32767.0f));
LOG(INFO) << __func__ << " peak " << peakU16 << " (" << measure.peak << "mB), rms " << rms
<< " (" << measure.rms << "mB)";
return measure;
}
std::vector<uint8_t> VisualizerContext::capture() {
std::vector<uint8_t> result;
std::lock_guard lg(mMutex);
RETURN_VALUE_IF(mState != State::ACTIVE, result, "illegalState");
const uint32_t deltaMs = getDeltaTimeMsFromUpdatedTime_l();
// if audio framework has stopped playing audio although the effect is still active we must
// clear the capture buffer to return silence
if ((mLastCaptureIdx == mCaptureIdx) && (mBufferUpdateTime.tv_sec != 0) &&
(deltaMs > kMaxStallTimeMs)) {
LOG(INFO) << __func__ << " capture going to idle";
mBufferUpdateTime.tv_sec = 0;
return result;
}
int32_t latencyMs = mDownstreamLatency;
latencyMs -= deltaMs;
if (latencyMs < 0) {
latencyMs = 0;
}
uint32_t deltaSamples = mCaptureSamples + mCommon.input.base.sampleRate * latencyMs / 1000;
// large sample rate, latency, or capture size, could cause overflow.
// do not offset more than the size of buffer.
if (deltaSamples > kMaxCaptureBufSize) {
android_errorWriteLog(0x534e4554, "31781965");
deltaSamples = kMaxCaptureBufSize;
}
int32_t capturePoint;
//capturePoint = (int32_t)mCaptureIdx - deltaSamples;
__builtin_sub_overflow((int32_t) mCaptureIdx, deltaSamples, &capturePoint);
// a negative capturePoint means we wrap the buffer.
if (capturePoint < 0) {
uint32_t size = -capturePoint;
if (size > mCaptureSamples) {
size = mCaptureSamples;
}
result.insert(result.end(), &mCaptureBuf[kMaxCaptureBufSize + capturePoint],
&mCaptureBuf[kMaxCaptureBufSize + capturePoint + size]);
mCaptureSamples -= size;
capturePoint = 0;
}
result.insert(result.end(), &mCaptureBuf[capturePoint],
&mCaptureBuf[capturePoint + mCaptureSamples]);
mLastCaptureIdx = mCaptureIdx;
return result;
}
IEffect::Status VisualizerContext::process(float* in, float* out, int samples) {
IEffect::Status result = {STATUS_NOT_ENOUGH_DATA, 0, 0};
RETURN_VALUE_IF(in == nullptr || out == nullptr || samples == 0, result, "dataBufferError");
std::lock_guard lg(mMutex);
result.status = STATUS_INVALID_OPERATION;
RETURN_VALUE_IF(mState != State::ACTIVE, result, "stateNotActive");
LOG(DEBUG) << __func__ << " in " << in << " out " << out << " sample " << samples;
// perform measurements if needed
if (mMeasurementMode == Visualizer::MeasurementMode::PEAK_RMS) {
// find the peak and RMS squared for the new buffer
float rmsSqAcc = 0;
float maxSample = 0.f;
for (size_t inIdx = 0; inIdx < (unsigned)samples; ++inIdx) {
maxSample = fmax(maxSample, fabs(in[inIdx]));
rmsSqAcc += in[inIdx] * in[inIdx];
}
maxSample *= 1 << 15; // scale to int16_t, with exactly 1 << 15 representing positive num.
rmsSqAcc *= 1 << 30; // scale to int16_t * 2
mPastMeasurements[mMeasurementBufferIdx] = {
.mPeakU16 = (uint16_t)maxSample,
.mRmsSquared = rmsSqAcc / samples,
.mIsValid = true };
if (++mMeasurementBufferIdx >= mMeasurementWindowSizeInBuffers) {
mMeasurementBufferIdx = 0;
}
}
float fscale; // multiplicative scale
if (mScalingMode == Visualizer::ScalingMode::NORMALIZED) {
// derive capture scaling factor from peak value in current buffer
// this gives more interesting captures for display.
float maxSample = 0.f;
for (size_t inIdx = 0; inIdx < (unsigned)samples; ) {
// we reconstruct the actual summed value to ensure proper normalization
// for multichannel outputs (channels > 2 may often be 0).
float smp = 0.f;
for (int i = 0; i < mChannelCount; ++i) {
smp += in[inIdx++];
}
maxSample = fmax(maxSample, fabs(smp));
}
if (maxSample > 0.f) {
fscale = 0.99f / maxSample;
int exp; // unused
const float significand = frexp(fscale, &exp);
if (significand == 0.5f) {
fscale *= 255.f / 256.f; // avoid returning unaltered PCM signal
}
} else {
// scale doesn't matter, the values are all 0.
fscale = 1.f;
}
} else {
assert(mScalingMode == Visualizer::ScalingMode::AS_PLAYED);
// Note: if channels are uncorrelated, 1/sqrt(N) could be used at the risk of clipping.
fscale = 1.f / mChannelCount; // account for summing all the channels together.
}
uint32_t captIdx;
uint32_t inIdx;
for (inIdx = 0, captIdx = mCaptureIdx; inIdx < (unsigned)samples; captIdx++) {
// wrap
if (captIdx >= kMaxCaptureBufSize) {
captIdx = 0;
}
float smp = 0.f;
for (uint32_t i = 0; i < mChannelCount; ++i) {
smp += in[inIdx++];
}
mCaptureBuf[captIdx] = clamp8_from_float(smp * fscale);
}
// the following two should really be atomic, though it probably doesn't
// matter much for visualization purposes
mCaptureIdx = captIdx;
// update last buffer update time stamp
if (clock_gettime(CLOCK_MONOTONIC, &mBufferUpdateTime) < 0) {
mBufferUpdateTime.tv_sec = 0;
}
// TODO: handle access_mode
memcpy(out, in, samples * sizeof(float));
return {STATUS_OK, samples, samples};
}
} // namespace aidl::android::hardware::audio::effect