blob: f5c1b1f0108a910e58ff59b80106e3aaff98fa63 [file] [log] [blame]
/*
**
** Copyright 2010, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "Visualizer"
#include <utils/Log.h>
#include <stdint.h>
#include <sys/types.h>
#include <limits.h>
#include <cutils/bitops.h>
#include <media/Visualizer.h>
#include <audio_utils/fixedfft.h>
#include <utils/Thread.h>
namespace android {
// ---------------------------------------------------------------------------
Visualizer::Visualizer (const String16& opPackageName,
int32_t priority,
effect_callback_t cbf,
void* user,
int sessionId)
: AudioEffect(SL_IID_VISUALIZATION, opPackageName, NULL, priority, cbf, user, sessionId),
mCaptureRate(CAPTURE_RATE_DEF),
mCaptureSize(CAPTURE_SIZE_DEF),
mSampleRate(44100000),
mScalingMode(VISUALIZER_SCALING_MODE_NORMALIZED),
mMeasurementMode(MEASUREMENT_MODE_NONE),
mCaptureCallBack(NULL),
mCaptureCbkUser(NULL)
{
initCaptureSize();
}
Visualizer::~Visualizer()
{
ALOGV("Visualizer::~Visualizer()");
setEnabled(false);
setCaptureCallBack(NULL, NULL, 0, 0, true);
}
status_t Visualizer::setEnabled(bool enabled)
{
Mutex::Autolock _l(mCaptureLock);
sp<CaptureThread> t = mCaptureThread;
if (t != 0) {
if (enabled) {
if (t->exitPending()) {
if (t->requestExitAndWait() == WOULD_BLOCK) {
ALOGE("Visualizer::enable() called from thread");
return INVALID_OPERATION;
}
}
}
t->mLock.lock();
}
status_t status = AudioEffect::setEnabled(enabled);
if (status == NO_ERROR) {
if (t != 0) {
if (enabled) {
t->run("Visualizer");
} else {
t->requestExit();
}
}
}
if (t != 0) {
t->mLock.unlock();
}
return status;
}
status_t Visualizer::setCaptureCallBack(capture_cbk_t cbk, void* user, uint32_t flags,
uint32_t rate, bool force)
{
if (rate > CAPTURE_RATE_MAX) {
return BAD_VALUE;
}
Mutex::Autolock _l(mCaptureLock);
if (force || mEnabled) {
return INVALID_OPERATION;
}
if (mCaptureThread != 0) {
mCaptureLock.unlock();
mCaptureThread->requestExitAndWait();
mCaptureLock.lock();
}
mCaptureThread.clear();
mCaptureCallBack = cbk;
mCaptureCbkUser = user;
mCaptureFlags = flags;
mCaptureRate = rate;
if (cbk != NULL) {
mCaptureThread = new CaptureThread(*this, rate, ((flags & CAPTURE_CALL_JAVA) != 0));
}
ALOGV("setCaptureCallBack() rate: %d thread %p flags 0x%08x",
rate, mCaptureThread.get(), mCaptureFlags);
return NO_ERROR;
}
status_t Visualizer::setCaptureSize(uint32_t size)
{
if (size > VISUALIZER_CAPTURE_SIZE_MAX ||
size < VISUALIZER_CAPTURE_SIZE_MIN ||
popcount(size) != 1) {
return BAD_VALUE;
}
Mutex::Autolock _l(mCaptureLock);
if (mEnabled) {
return INVALID_OPERATION;
}
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
*(int32_t *)p->data = VISUALIZER_PARAM_CAPTURE_SIZE;
*((int32_t *)p->data + 1)= size;
status_t status = setParameter(p);
ALOGV("setCaptureSize size %d status %d p->status %d", size, status, p->status);
if (status == NO_ERROR) {
status = p->status;
if (status == NO_ERROR) {
mCaptureSize = size;
}
}
return status;
}
status_t Visualizer::setScalingMode(uint32_t mode) {
if ((mode != VISUALIZER_SCALING_MODE_NORMALIZED)
&& (mode != VISUALIZER_SCALING_MODE_AS_PLAYED)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mCaptureLock);
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
*(int32_t *)p->data = VISUALIZER_PARAM_SCALING_MODE;
*((int32_t *)p->data + 1)= mode;
status_t status = setParameter(p);
ALOGV("setScalingMode mode %d status %d p->status %d", mode, status, p->status);
if (status == NO_ERROR) {
status = p->status;
if (status == NO_ERROR) {
mScalingMode = mode;
}
}
return status;
}
status_t Visualizer::setMeasurementMode(uint32_t mode) {
if ((mode != MEASUREMENT_MODE_NONE)
//Note: needs to be handled as a mask when more measurement modes are added
&& ((mode & MEASUREMENT_MODE_PEAK_RMS) != mode)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mCaptureLock);
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
*(int32_t *)p->data = VISUALIZER_PARAM_MEASUREMENT_MODE;
*((int32_t *)p->data + 1)= mode;
status_t status = setParameter(p);
ALOGV("setMeasurementMode mode %d status %d p->status %d", mode, status, p->status);
if (status == NO_ERROR) {
status = p->status;
if (status == NO_ERROR) {
mMeasurementMode = mode;
}
}
return status;
}
status_t Visualizer::getIntMeasurements(uint32_t type, uint32_t number, int32_t *measurements) {
if (mMeasurementMode == MEASUREMENT_MODE_NONE) {
ALOGE("Cannot retrieve int measurements, no measurement mode set");
return INVALID_OPERATION;
}
if (!(mMeasurementMode & type)) {
// measurement type has not been set on this Visualizer
ALOGE("Cannot retrieve int measurements, requested measurement mode 0x%x not set(0x%x)",
type, mMeasurementMode);
return INVALID_OPERATION;
}
// only peak+RMS measurement supported
if ((type != MEASUREMENT_MODE_PEAK_RMS)
// for peak+RMS measurement, the results are 2 int32_t values
|| (number != 2)) {
ALOGE("Cannot retrieve int measurements, MEASUREMENT_MODE_PEAK_RMS returns 2 ints, not %d",
number);
return BAD_VALUE;
}
status_t status = NO_ERROR;
if (mEnabled) {
uint32_t replySize = number * sizeof(int32_t);
status = command(VISUALIZER_CMD_MEASURE,
sizeof(uint32_t) /*cmdSize*/,
&type /*cmdData*/,
&replySize, measurements);
ALOGV("getMeasurements() command returned %d", status);
if ((status == NO_ERROR) && (replySize == 0)) {
status = NOT_ENOUGH_DATA;
}
} else {
ALOGV("getMeasurements() disabled");
return INVALID_OPERATION;
}
return status;
}
status_t Visualizer::getWaveForm(uint8_t *waveform)
{
if (waveform == NULL) {
return BAD_VALUE;
}
if (mCaptureSize == 0) {
return NO_INIT;
}
status_t status = NO_ERROR;
if (mEnabled) {
uint32_t replySize = mCaptureSize;
status = command(VISUALIZER_CMD_CAPTURE, 0, NULL, &replySize, waveform);
ALOGV("getWaveForm() command returned %d", status);
if ((status == NO_ERROR) && (replySize == 0)) {
status = NOT_ENOUGH_DATA;
}
} else {
ALOGV("getWaveForm() disabled");
memset(waveform, 0x80, mCaptureSize);
}
return status;
}
status_t Visualizer::getFft(uint8_t *fft)
{
if (fft == NULL) {
return BAD_VALUE;
}
if (mCaptureSize == 0) {
return NO_INIT;
}
status_t status = NO_ERROR;
if (mEnabled) {
uint8_t buf[mCaptureSize];
status = getWaveForm(buf);
if (status == NO_ERROR) {
status = doFft(fft, buf);
}
} else {
memset(fft, 0, mCaptureSize);
}
return status;
}
status_t Visualizer::doFft(uint8_t *fft, uint8_t *waveform)
{
int32_t workspace[mCaptureSize >> 1];
int32_t nonzero = 0;
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
workspace[i >> 1] =
((waveform[i] ^ 0x80) << 24) | ((waveform[i + 1] ^ 0x80) << 8);
nonzero |= workspace[i >> 1];
}
if (nonzero) {
fixed_fft_real(mCaptureSize >> 1, workspace);
}
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
short tmp = workspace[i >> 1] >> 21;
while (tmp > 127 || tmp < -128) tmp >>= 1;
fft[i] = tmp;
tmp = workspace[i >> 1];
tmp >>= 5;
while (tmp > 127 || tmp < -128) tmp >>= 1;
fft[i + 1] = tmp;
}
return NO_ERROR;
}
void Visualizer::periodicCapture()
{
Mutex::Autolock _l(mCaptureLock);
ALOGV("periodicCapture() %p mCaptureCallBack %p mCaptureFlags 0x%08x",
this, mCaptureCallBack, mCaptureFlags);
if (mCaptureCallBack != NULL &&
(mCaptureFlags & (CAPTURE_WAVEFORM|CAPTURE_FFT)) &&
mCaptureSize != 0) {
uint8_t waveform[mCaptureSize];
status_t status = getWaveForm(waveform);
if (status != NO_ERROR) {
return;
}
uint8_t fft[mCaptureSize];
if (mCaptureFlags & CAPTURE_FFT) {
status = doFft(fft, waveform);
}
if (status != NO_ERROR) {
return;
}
uint8_t *wavePtr = NULL;
uint8_t *fftPtr = NULL;
uint32_t waveSize = 0;
uint32_t fftSize = 0;
if (mCaptureFlags & CAPTURE_WAVEFORM) {
wavePtr = waveform;
waveSize = mCaptureSize;
}
if (mCaptureFlags & CAPTURE_FFT) {
fftPtr = fft;
fftSize = mCaptureSize;
}
mCaptureCallBack(mCaptureCbkUser, waveSize, wavePtr, fftSize, fftPtr, mSampleRate);
}
}
uint32_t Visualizer::initCaptureSize()
{
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
*(int32_t *)p->data = VISUALIZER_PARAM_CAPTURE_SIZE;
status_t status = getParameter(p);
if (status == NO_ERROR) {
status = p->status;
}
uint32_t size = 0;
if (status == NO_ERROR) {
size = *((int32_t *)p->data + 1);
}
mCaptureSize = size;
ALOGV("initCaptureSize size %d status %d", mCaptureSize, status);
return size;
}
void Visualizer::controlStatusChanged(bool controlGranted) {
if (controlGranted) {
// this Visualizer instance regained control of the effect, reset the scaling mode
// and capture size as has been cached through it.
ALOGV("controlStatusChanged(true) causes effect parameter reset:");
ALOGV(" scaling mode reset to %d", mScalingMode);
setScalingMode(mScalingMode);
ALOGV(" capture size reset to %d", mCaptureSize);
setCaptureSize(mCaptureSize);
}
AudioEffect::controlStatusChanged(controlGranted);
}
//-------------------------------------------------------------------------
Visualizer::CaptureThread::CaptureThread(Visualizer& receiver, uint32_t captureRate,
bool bCanCallJava)
: Thread(bCanCallJava), mReceiver(receiver)
{
mSleepTimeUs = 1000000000 / captureRate;
ALOGV("CaptureThread cstor %p captureRate %d mSleepTimeUs %d", this, captureRate, mSleepTimeUs);
}
bool Visualizer::CaptureThread::threadLoop()
{
ALOGV("CaptureThread %p enter", this);
while (!exitPending())
{
usleep(mSleepTimeUs);
mReceiver.periodicCapture();
}
ALOGV("CaptureThread %p exiting", this);
return false;
}
} // namespace android