blob: a645e0220e665aa1029b89d7c62a27015bd38455 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <set>
#include <string>
#define LOG_TAG "APM::AudioProfile"
//#define LOG_NDEBUG 0
#include <media/AudioResamplerPublic.h>
#include <utils/Errors.h>
#include "AudioGain.h"
#include "AudioPort.h"
#include "AudioProfile.h"
#include "HwModule.h"
#include "TypeConverter.h"
namespace android {
ChannelsVector ChannelsVector::asInMask() const
{
ChannelsVector inMaskVector;
for (const auto& channel : *this) {
if (audio_channel_mask_out_to_in(channel) != AUDIO_CHANNEL_INVALID) {
inMaskVector.add(audio_channel_mask_out_to_in(channel));
}
}
return inMaskVector;
}
ChannelsVector ChannelsVector::asOutMask() const
{
ChannelsVector outMaskVector;
for (const auto& channel : *this) {
if (audio_channel_mask_in_to_out(channel) != AUDIO_CHANNEL_INVALID) {
outMaskVector.add(audio_channel_mask_in_to_out(channel));
}
}
return outMaskVector;
}
bool operator == (const AudioProfile &left, const AudioProfile &compareTo)
{
return (left.getFormat() == compareTo.getFormat()) &&
(left.getChannels() == compareTo.getChannels()) &&
(left.getSampleRates() == compareTo.getSampleRates());
}
static AudioProfile* createFullDynamicImpl()
{
AudioProfile* dynamicProfile = new AudioProfile(gDynamicFormat,
ChannelsVector(), SampleRateVector());
dynamicProfile->setDynamicFormat(true);
dynamicProfile->setDynamicChannels(true);
dynamicProfile->setDynamicRate(true);
return dynamicProfile;
}
// static
sp<AudioProfile> AudioProfile::createFullDynamic()
{
static sp<AudioProfile> dynamicProfile = createFullDynamicImpl();
return dynamicProfile;
}
AudioProfile::AudioProfile(audio_format_t format,
audio_channel_mask_t channelMasks,
uint32_t samplingRate) :
mName(String8("")),
mFormat(format)
{
mChannelMasks.add(channelMasks);
mSamplingRates.add(samplingRate);
}
AudioProfile::AudioProfile(audio_format_t format,
const ChannelsVector &channelMasks,
const SampleRateVector &samplingRateCollection) :
mName(String8("")),
mFormat(format),
mChannelMasks(channelMasks),
mSamplingRates(samplingRateCollection) {}
void AudioProfile::setChannels(const ChannelsVector &channelMasks)
{
if (mIsDynamicChannels) {
mChannelMasks = channelMasks;
}
}
void AudioProfile::setSampleRates(const SampleRateVector &sampleRates)
{
if (mIsDynamicRate) {
mSamplingRates = sampleRates;
}
}
void AudioProfile::clear()
{
if (mIsDynamicChannels) {
mChannelMasks.clear();
}
if (mIsDynamicRate) {
mSamplingRates.clear();
}
}
status_t AudioProfile::checkExact(uint32_t samplingRate, audio_channel_mask_t channelMask,
audio_format_t format) const
{
if (audio_formats_match(format, mFormat) &&
supportsChannels(channelMask) &&
supportsRate(samplingRate)) {
return NO_ERROR;
}
return BAD_VALUE;
}
status_t AudioProfile::checkCompatibleSamplingRate(uint32_t samplingRate,
uint32_t &updatedSamplingRate) const
{
ALOG_ASSERT(samplingRate > 0);
if (mSamplingRates.isEmpty()) {
updatedSamplingRate = samplingRate;
return NO_ERROR;
}
// Search for the closest supported sampling rate that is above (preferred)
// or below (acceptable) the desired sampling rate, within a permitted ratio.
// The sampling rates are sorted in ascending order.
size_t orderOfDesiredRate = mSamplingRates.orderOf(samplingRate);
// Prefer to down-sample from a higher sampling rate, as we get the desired frequency spectrum.
if (orderOfDesiredRate < mSamplingRates.size()) {
uint32_t candidate = mSamplingRates[orderOfDesiredRate];
if (candidate / AUDIO_RESAMPLER_DOWN_RATIO_MAX <= samplingRate) {
updatedSamplingRate = candidate;
return NO_ERROR;
}
}
// But if we have to up-sample from a lower sampling rate, that's OK.
if (orderOfDesiredRate != 0) {
uint32_t candidate = mSamplingRates[orderOfDesiredRate - 1];
if (candidate * AUDIO_RESAMPLER_UP_RATIO_MAX >= samplingRate) {
updatedSamplingRate = candidate;
return NO_ERROR;
}
}
// leave updatedSamplingRate unmodified
return BAD_VALUE;
}
status_t AudioProfile::checkCompatibleChannelMask(audio_channel_mask_t channelMask,
audio_channel_mask_t &updatedChannelMask,
audio_port_type_t portType,
audio_port_role_t portRole) const
{
if (mChannelMasks.isEmpty()) {
updatedChannelMask = channelMask;
return NO_ERROR;
}
const bool isRecordThread = portType == AUDIO_PORT_TYPE_MIX && portRole == AUDIO_PORT_ROLE_SINK;
const bool isIndex = audio_channel_mask_get_representation(channelMask)
== AUDIO_CHANNEL_REPRESENTATION_INDEX;
int bestMatch = 0;
for (size_t i = 0; i < mChannelMasks.size(); i ++) {
audio_channel_mask_t supported = mChannelMasks[i];
if (supported == channelMask) {
// Exact matches always taken.
updatedChannelMask = channelMask;
return NO_ERROR;
}
// AUDIO_CHANNEL_NONE (value: 0) is used for dynamic channel support
if (isRecordThread && supported != AUDIO_CHANNEL_NONE) {
// Approximate (best) match:
// The match score measures how well the supported channel mask matches the
// desired mask, where increasing-is-better.
//
// TODO: Some tweaks may be needed.
// Should be a static function of the data processing library.
//
// In priority:
// match score = 1000 if legacy channel conversion equivalent (always prefer this)
// OR
// match score += 100 if the channel mask representations match
// match score += number of channels matched.
//
// If there are no matched channels, the mask may still be accepted
// but the playback or record will be silent.
const bool isSupportedIndex = (audio_channel_mask_get_representation(supported)
== AUDIO_CHANNEL_REPRESENTATION_INDEX);
int match;
if (isIndex && isSupportedIndex) {
// index equivalence
match = 100 + __builtin_popcount(
audio_channel_mask_get_bits(channelMask)
& audio_channel_mask_get_bits(supported));
} else if (isIndex && !isSupportedIndex) {
const uint32_t equivalentBits =
(1 << audio_channel_count_from_in_mask(supported)) - 1 ;
match = __builtin_popcount(
audio_channel_mask_get_bits(channelMask) & equivalentBits);
} else if (!isIndex && isSupportedIndex) {
const uint32_t equivalentBits =
(1 << audio_channel_count_from_in_mask(channelMask)) - 1;
match = __builtin_popcount(
equivalentBits & audio_channel_mask_get_bits(supported));
} else {
// positional equivalence
match = 100 + __builtin_popcount(
audio_channel_mask_get_bits(channelMask)
& audio_channel_mask_get_bits(supported));
switch (supported) {
case AUDIO_CHANNEL_IN_FRONT_BACK:
case AUDIO_CHANNEL_IN_STEREO:
if (channelMask == AUDIO_CHANNEL_IN_MONO) {
match = 1000;
}
break;
case AUDIO_CHANNEL_IN_MONO:
if (channelMask == AUDIO_CHANNEL_IN_FRONT_BACK
|| channelMask == AUDIO_CHANNEL_IN_STEREO) {
match = 1000;
}
break;
default:
break;
}
}
if (match > bestMatch) {
bestMatch = match;
updatedChannelMask = supported;
}
}
}
return bestMatch > 0 ? NO_ERROR : BAD_VALUE;
}
void AudioProfile::dump(String8 *dst, int spaces) const
{
dst->appendFormat("%s%s%s\n", mIsDynamicFormat ? "[dynamic format]" : "",
mIsDynamicChannels ? "[dynamic channels]" : "",
mIsDynamicRate ? "[dynamic rates]" : "");
if (mName.length() != 0) {
dst->appendFormat("%*s- name: %s\n", spaces, "", mName.string());
}
std::string formatLiteral;
if (FormatConverter::toString(mFormat, formatLiteral)) {
dst->appendFormat("%*s- format: %s\n", spaces, "", formatLiteral.c_str());
}
if (!mSamplingRates.isEmpty()) {
dst->appendFormat("%*s- sampling rates:", spaces, "");
for (size_t i = 0; i < mSamplingRates.size(); i++) {
dst->appendFormat("%d", mSamplingRates[i]);
dst->append(i == (mSamplingRates.size() - 1) ? "" : ", ");
}
dst->append("\n");
}
if (!mChannelMasks.isEmpty()) {
dst->appendFormat("%*s- channel masks:", spaces, "");
for (size_t i = 0; i < mChannelMasks.size(); i++) {
dst->appendFormat("0x%04x", mChannelMasks[i]);
dst->append(i == (mChannelMasks.size() - 1) ? "" : ", ");
}
dst->append("\n");
}
}
ssize_t AudioProfileVector::add(const sp<AudioProfile> &profile)
{
ssize_t index = Vector::add(profile);
// we sort from worst to best, so that AUDIO_FORMAT_DEFAULT is always the first entry.
// TODO: compareFormats could be a lambda to convert between pointer-to-format to format:
// [](const audio_format_t *format1, const audio_format_t *format2) {
// return compareFormats(*format1, *format2);
// }
sort(compareFormats);
return index;
}
ssize_t AudioProfileVector::addProfileFromHal(const sp<AudioProfile> &profileToAdd)
{
// Check valid profile to add:
if (!profileToAdd->hasValidFormat()) {
return -1;
}
if (!profileToAdd->hasValidChannels() && !profileToAdd->hasValidRates()) {
FormatVector formats;
formats.add(profileToAdd->getFormat());
setFormats(FormatVector(formats));
return 0;
}
if (!profileToAdd->hasValidChannels() && profileToAdd->hasValidRates()) {
setSampleRatesFor(profileToAdd->getSampleRates(), profileToAdd->getFormat());
return 0;
}
if (profileToAdd->hasValidChannels() && !profileToAdd->hasValidRates()) {
setChannelsFor(profileToAdd->getChannels(), profileToAdd->getFormat());
return 0;
}
// Go through the list of profile to avoid duplicates
for (size_t profileIndex = 0; profileIndex < size(); profileIndex++) {
const sp<AudioProfile> &profile = itemAt(profileIndex);
if (profile->isValid() && profile == profileToAdd) {
// Nothing to do
return profileIndex;
}
}
profileToAdd->setDynamicFormat(true); // set the format as dynamic to allow removal
return add(profileToAdd);
}
status_t AudioProfileVector::checkExactProfile(uint32_t samplingRate,
audio_channel_mask_t channelMask,
audio_format_t format) const
{
if (isEmpty()) {
return NO_ERROR;
}
for (const auto& profile : *this) {
if (profile->checkExact(samplingRate, channelMask, format) == NO_ERROR) {
return NO_ERROR;
}
}
return BAD_VALUE;
}
status_t AudioProfileVector::checkCompatibleProfile(uint32_t &samplingRate,
audio_channel_mask_t &channelMask,
audio_format_t &format,
audio_port_type_t portType,
audio_port_role_t portRole) const
{
if (isEmpty()) {
return NO_ERROR;
}
const bool checkInexact = // when port is input and format is linear pcm
portType == AUDIO_PORT_TYPE_MIX && portRole == AUDIO_PORT_ROLE_SINK
&& audio_is_linear_pcm(format);
// iterate from best format to worst format (reverse order)
for (ssize_t i = size() - 1; i >= 0 ; --i) {
const sp<AudioProfile> profile = itemAt(i);
audio_format_t formatToCompare = profile->getFormat();
if (formatToCompare == format ||
(checkInexact
&& formatToCompare != AUDIO_FORMAT_DEFAULT
&& audio_is_linear_pcm(formatToCompare))) {
// Compatible profile has been found, checks if this profile has compatible
// rate and channels as well
audio_channel_mask_t updatedChannels;
uint32_t updatedRate;
if (profile->checkCompatibleChannelMask(channelMask, updatedChannels,
portType, portRole) == NO_ERROR &&
profile->checkCompatibleSamplingRate(samplingRate, updatedRate) == NO_ERROR) {
// for inexact checks we take the first linear pcm format due to sorting.
format = formatToCompare;
channelMask = updatedChannels;
samplingRate = updatedRate;
return NO_ERROR;
}
}
}
return BAD_VALUE;
}
void AudioProfileVector::clearProfiles()
{
for (size_t i = size(); i != 0; ) {
sp<AudioProfile> profile = itemAt(--i);
if (profile->isDynamicFormat() && profile->hasValidFormat()) {
removeAt(i);
continue;
}
profile->clear();
}
}
// Returns an intersection between two possibly unsorted vectors and the contents of 'order'.
// The result is ordered according to 'order'.
template<typename T, typename Order>
std::vector<typename T::value_type> intersectFilterAndOrder(
const T& input1, const T& input2, const Order& order)
{
std::set<typename T::value_type> set1{input1.begin(), input1.end()};
std::set<typename T::value_type> set2{input2.begin(), input2.end()};
std::set<typename T::value_type> common;
std::set_intersection(set1.begin(), set1.end(), set2.begin(), set2.end(),
std::inserter(common, common.begin()));
std::vector<typename T::value_type> result;
for (const auto& e : order) {
if (common.find(e) != common.end()) result.push_back(e);
}
return result;
}
// Intersect two possibly unsorted vectors, return common elements according to 'comp' ordering.
// 'comp' is a comparator function.
template<typename T, typename Compare>
std::vector<typename T::value_type> intersectAndOrder(
const T& input1, const T& input2, Compare comp)
{
std::set<typename T::value_type, Compare> set1{input1.begin(), input1.end(), comp};
std::set<typename T::value_type, Compare> set2{input2.begin(), input2.end(), comp};
std::vector<typename T::value_type> result;
std::set_intersection(set1.begin(), set1.end(), set2.begin(), set2.end(),
std::back_inserter(result), comp);
return result;
}
status_t AudioProfileVector::findBestMatchingOutputConfig(const AudioProfileVector& outputProfiles,
const std::vector<audio_format_t>& preferredFormats,
const std::vector<audio_channel_mask_t>& preferredOutputChannels,
bool preferHigherSamplingRates,
audio_config_base *bestOutputConfig) const
{
auto formats = intersectFilterAndOrder(getSupportedFormats(),
outputProfiles.getSupportedFormats(), preferredFormats);
// Pick the best compatible profile.
for (const auto& f : formats) {
sp<AudioProfile> inputProfile = getFirstValidProfileFor(f);
sp<AudioProfile> outputProfile = outputProfiles.getFirstValidProfileFor(f);
if (inputProfile == nullptr || outputProfile == nullptr) {
continue;
}
auto channels = intersectFilterAndOrder(inputProfile->getChannels().asOutMask(),
outputProfile->getChannels(), preferredOutputChannels);
if (channels.empty()) {
continue;
}
auto sampleRates = preferHigherSamplingRates ?
intersectAndOrder(inputProfile->getSampleRates(), outputProfile->getSampleRates(),
std::greater<typename SampleRateVector::value_type>()) :
intersectAndOrder(inputProfile->getSampleRates(), outputProfile->getSampleRates(),
std::less<typename SampleRateVector::value_type>());
if (sampleRates.empty()) {
continue;
}
ALOGD("%s() found channel mask %#x and sample rate %d for format %#x.",
__func__, *channels.begin(), *sampleRates.begin(), f);
bestOutputConfig->format = f;
bestOutputConfig->sample_rate = *sampleRates.begin();
bestOutputConfig->channel_mask = *channels.begin();
return NO_ERROR;
}
return BAD_VALUE;
}
sp<AudioProfile> AudioProfileVector::getFirstValidProfile() const
{
for (size_t i = 0; i < size(); i++) {
if (itemAt(i)->isValid()) {
return itemAt(i);
}
}
return 0;
}
sp<AudioProfile> AudioProfileVector::getFirstValidProfileFor(audio_format_t format) const
{
for (size_t i = 0; i < size(); i++) {
if (itemAt(i)->isValid() && itemAt(i)->getFormat() == format) {
return itemAt(i);
}
}
return 0;
}
FormatVector AudioProfileVector::getSupportedFormats() const
{
FormatVector supportedFormats;
for (size_t i = 0; i < size(); i++) {
if (itemAt(i)->hasValidFormat()) {
supportedFormats.add(itemAt(i)->getFormat());
}
}
return supportedFormats;
}
bool AudioProfileVector::hasDynamicChannelsFor(audio_format_t format) const
{
for (size_t i = 0; i < size(); i++) {
sp<AudioProfile> profile = itemAt(i);
if (profile->getFormat() == format && profile->isDynamicChannels()) {
return true;
}
}
return false;
}
bool AudioProfileVector::hasDynamicProfile() const
{
for (size_t i = 0; i < size(); i++) {
if (itemAt(i)->isDynamic()) {
return true;
}
}
return false;
}
bool AudioProfileVector::hasDynamicRateFor(audio_format_t format) const
{
for (size_t i = 0; i < size(); i++) {
sp<AudioProfile> profile = itemAt(i);
if (profile->getFormat() == format && profile->isDynamicRate()) {
return true;
}
}
return false;
}
void AudioProfileVector::setFormats(const FormatVector &formats)
{
// Only allow to change the format of dynamic profile
sp<AudioProfile> dynamicFormatProfile = getProfileFor(gDynamicFormat);
if (dynamicFormatProfile == 0) {
return;
}
for (size_t i = 0; i < formats.size(); i++) {
sp<AudioProfile> profile = new AudioProfile(formats[i],
dynamicFormatProfile->getChannels(),
dynamicFormatProfile->getSampleRates());
profile->setDynamicFormat(true);
profile->setDynamicChannels(dynamicFormatProfile->isDynamicChannels());
profile->setDynamicRate(dynamicFormatProfile->isDynamicRate());
add(profile);
}
}
void AudioProfileVector::dump(String8 *dst, int spaces) const
{
dst->appendFormat("%*s- Profiles:\n", spaces, "");
for (size_t i = 0; i < size(); i++) {
dst->appendFormat("%*sProfile %zu:", spaces + 4, "", i);
itemAt(i)->dump(dst, spaces + 8);
}
}
sp<AudioProfile> AudioProfileVector::getProfileFor(audio_format_t format) const
{
for (size_t i = 0; i < size(); i++) {
if (itemAt(i)->getFormat() == format) {
return itemAt(i);
}
}
return 0;
}
void AudioProfileVector::setSampleRatesFor(
const SampleRateVector &sampleRates, audio_format_t format)
{
for (size_t i = 0; i < size(); i++) {
sp<AudioProfile> profile = itemAt(i);
if (profile->getFormat() == format && profile->isDynamicRate()) {
if (profile->hasValidRates()) {
// Need to create a new profile with same format
sp<AudioProfile> profileToAdd = new AudioProfile(format, profile->getChannels(),
sampleRates);
profileToAdd->setDynamicFormat(true); // need to set to allow cleaning
add(profileToAdd);
} else {
profile->setSampleRates(sampleRates);
}
return;
}
}
}
void AudioProfileVector::setChannelsFor(const ChannelsVector &channelMasks, audio_format_t format)
{
for (size_t i = 0; i < size(); i++) {
sp<AudioProfile> profile = itemAt(i);
if (profile->getFormat() == format && profile->isDynamicChannels()) {
if (profile->hasValidChannels()) {
// Need to create a new profile with same format
sp<AudioProfile> profileToAdd = new AudioProfile(format, channelMasks,
profile->getSampleRates());
profileToAdd->setDynamicFormat(true); // need to set to allow cleaning
add(profileToAdd);
} else {
profile->setChannels(channelMasks);
}
return;
}
}
}
// static
int AudioProfileVector::compareFormats(const sp<AudioProfile> *profile1,
const sp<AudioProfile> *profile2)
{
return AudioPort::compareFormats((*profile1)->getFormat(), (*profile2)->getFormat());
}
} // namespace android