blob: f123abbb7b746b09042a24187b730ee5ea22571d [file] [log] [blame]
/*
* Copyright 2007 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.client.j2me;
import com.google.zxing.BlackPointEstimationMethod;
import com.google.zxing.MonochromeBitmapSource;
import com.google.zxing.ReaderException;
import com.google.zxing.common.BitArray;
import com.google.zxing.common.BlackPointEstimator;
import javax.microedition.lcdui.Image;
/**
* <p>An implementation based on Java ME's {@link Image} representation.</p>
*
* @author Sean Owen (srowen@google.com), Daniel Switkin (dswitkin@google.com)
*/
public final class LCDUIImageMonochromeBitmapSource implements MonochromeBitmapSource {
private final int[] rgbPixels;
private final int width;
private final int height;
private int blackPoint;
private BlackPointEstimationMethod lastMethod;
private int lastArgument;
private static final int LUMINANCE_BITS = 5;
private static final int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS;
private static final int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS;
public LCDUIImageMonochromeBitmapSource(Image image) {
width = image.getWidth();
height = image.getHeight();
rgbPixels = new int[width * height];
image.getRGB(rgbPixels, 0, width, 0, 0, width, height);
blackPoint = 0x7F;
lastMethod = null;
lastArgument = 0;
}
public boolean isBlack(int x, int y) {
return computeRGBLuminance(rgbPixels[x + y * width]) < blackPoint;
}
public BitArray getBlackRow(int y, BitArray row, int startX, int getWidth) {
if (row == null || row.getSize() < getWidth) {
row = new BitArray(getWidth);
} else {
row.clear();
}
// If the current decoder calculated the blackPoint based on one row, assume we're trying to
// decode a 1D barcode, and apply some sharpening.
// TODO: We may want to add a fifth parameter to request the amount of shapening to be done.
if (lastMethod.equals(BlackPointEstimationMethod.ROW_SAMPLING)) {
int offset = y * width + startX;
int left = computeRGBLuminance(rgbPixels[offset]);
offset++;
int center = computeRGBLuminance(rgbPixels[offset]);
for (int i = 1; i < getWidth - 1; i++, offset++) {
int right = computeRGBLuminance(rgbPixels[offset + 1]);
// Simple -1 4 -1 box filter with a weight of 2
int luminance = ((center << 2) - left - right) >> 1;
if (luminance < blackPoint) {
row.set(i);
}
left = center;
center = right;
}
} else {
for (int i = 0, offset = y * width + startX; i < getWidth; i++, offset++) {
if (computeRGBLuminance(rgbPixels[offset]) < blackPoint) {
row.set(i);
}
}
}
return row;
}
public int getHeight() {
return height;
}
public int getWidth() {
return width;
}
public void estimateBlackPoint(BlackPointEstimationMethod method, int argument) throws ReaderException {
if (!method.equals(lastMethod) || argument != lastArgument) {
int[] histogram = new int[LUMINANCE_BUCKETS];
if (method.equals(BlackPointEstimationMethod.TWO_D_SAMPLING)) {
int minDimension = width < height ? width : height;
for (int n = 0, offset = 0; n < minDimension; n++, offset += width + 1) {
histogram[computeRGBLuminance(rgbPixels[offset]) >> LUMINANCE_SHIFT]++;
}
} else if (method.equals(BlackPointEstimationMethod.ROW_SAMPLING)) {
if (argument < 0 || argument >= height) {
throw new IllegalArgumentException("Row is not within the image: " + argument);
}
int offset = argument * width;
for (int x = 0; x < width; x++) {
histogram[computeRGBLuminance(rgbPixels[offset + x]) >> LUMINANCE_SHIFT]++;
}
} else {
throw new IllegalArgumentException("Unknown method: " + method);
}
blackPoint = BlackPointEstimator.estimate(histogram) << LUMINANCE_SHIFT;
lastMethod = method;
lastArgument = argument;
}
}
public BlackPointEstimationMethod getLastEstimationMethod() {
return lastMethod;
}
public MonochromeBitmapSource rotateCounterClockwise() {
throw new IllegalStateException("Rotate not supported");
}
public boolean isRotateSupported() {
return false;
}
/**
* An optimized approximation of a more proper conversion from RGB to luminance which
* only uses shifts. See BufferedImageMonochromeBitmapSource for an original version.
*/
private static int computeRGBLuminance(int pixel) {
// Instead of multiplying by 306, 601, 117, we multiply by 256, 512, 256, so that
// the multiplies can be implemented as shifts.
//
// Really, it's:
//
// return ((((pixel >> 16) & 0xFF) << 8) +
// (((pixel >> 8) & 0xFF) << 9) +
// (( pixel & 0xFF) << 8)) >> 10;
//
// That is, we're replacing the coefficients in the original with powers of two,
// which can be implemented as shifts, even though changing the coefficients slightly
// corrupts the conversion. Not significant for our purposes.
//
// But we can get even cleverer and eliminate a few shifts:
return (((pixel & 0x00FF0000) >> 16) +
((pixel & 0x0000FF00) >> 7) +
( pixel & 0x000000FF )) >> 2;
}
}