blob: 7802c429d576dd26b7ad8bde7ee71cd8e95a0dbf [file] [log] [blame]
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define PRINT(...) fprintf(stdout, __VA_ARGS__)
#define DEBUGLOG(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
#define FILE_CHUNK_SIZE 4 << 20
#define MAX_NUM_JOBS 2;
#define stdinmark "/*stdin*\\"
#define stdoutmark "/*stdout*\\"
#define MAX_PATH 256
#define DEFAULT_DISPLAY_LEVEL 1
#define DEFAULT_COMPRESSION_LEVEL 6
#define DEFAULT_ADAPT_PARAM 2
typedef unsigned char BYTE;
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free */
#include <pthread.h> /* pthread functions */
#include <string.h> /* memset */
#include <time.h> /* clock(), CLOCKS_PER_SEC */
#include "zstd.h"
static int g_displayLevel = DEFAULT_DISPLAY_LEVEL;
static unsigned g_compressionLevel = DEFAULT_COMPRESSION_LEVEL;
static unsigned g_displayStats = 0;
static clock_t g_time = 0;
static clock_t g_startTime = 0;
static clock_t const refreshRate = CLOCKS_PER_SEC / 60; /* 60 Hz */
static size_t g_streamedSize = 0;
static unsigned g_useProgressBar = 0;
typedef struct {
void* start;
size_t size;
} buffer_t;
typedef struct {
unsigned waitCompleted;
unsigned waitReady;
unsigned waitWrite;
unsigned readyCounter;
unsigned completedCounter;
unsigned writeCounter;
} stat_t;
typedef struct {
buffer_t src;
buffer_t dst;
unsigned compressionLevel;
unsigned jobID;
size_t compressedSize;
} jobDescription;
typedef struct {
unsigned compressionLevel;
unsigned numActiveThreads;
unsigned numJobs;
unsigned lastJobID;
unsigned nextJobID;
unsigned threadError;
unsigned jobReadyID;
unsigned jobCompletedID;
unsigned jobWriteID;
unsigned allJobsCompleted;
unsigned adaptParam;
pthread_mutex_t jobCompleted_mutex;
pthread_cond_t jobCompleted_cond;
pthread_mutex_t jobReady_mutex;
pthread_cond_t jobReady_cond;
pthread_mutex_t allJobsCompleted_mutex;
pthread_cond_t allJobsCompleted_cond;
pthread_mutex_t jobWrite_mutex;
pthread_cond_t jobWrite_cond;
stat_t stats;
jobDescription* jobs;
FILE* dstFile;
} adaptCCtx;
static void freeCompressionJobs(adaptCCtx* ctx)
{
unsigned u;
for (u=0; u<ctx->numJobs; u++) {
jobDescription job = ctx->jobs[u];
free(job.dst.start);
free(job.src.start);
}
}
static int freeCCtx(adaptCCtx* ctx)
{
{
int const completedMutexError = pthread_mutex_destroy(&ctx->jobCompleted_mutex);
int const completedCondError = pthread_cond_destroy(&ctx->jobCompleted_cond);
int const readyMutexError = pthread_mutex_destroy(&ctx->jobReady_mutex);
int const readyCondError = pthread_cond_destroy(&ctx->jobReady_cond);
int const allJobsMutexError = pthread_mutex_destroy(&ctx->allJobsCompleted_mutex);
int const allJobsCondError = pthread_cond_destroy(&ctx->allJobsCompleted_cond);
int const jobWriteMutexError = pthread_mutex_destroy(&ctx->jobWrite_mutex);
int const jobWriteCondError = pthread_cond_destroy(&ctx->jobWrite_cond);
int const fileCloseError = (ctx->dstFile != NULL && ctx->dstFile != stdout) ? fclose(ctx->dstFile) : 0;
if (ctx->jobs){
freeCompressionJobs(ctx);
free(ctx->jobs);
}
return completedMutexError | completedCondError | readyMutexError | readyCondError | fileCloseError | allJobsMutexError | allJobsCondError | jobWriteMutexError | jobWriteCondError;
}
}
static adaptCCtx* createCCtx(unsigned numJobs, const char* const outFilename)
{
adaptCCtx* ctx = malloc(sizeof(adaptCCtx));
if (ctx == NULL) {
DISPLAY("Error: could not allocate space for context\n");
return NULL;
}
memset(ctx, 0, sizeof(adaptCCtx));
ctx->compressionLevel = g_compressionLevel;
pthread_mutex_init(&ctx->jobCompleted_mutex, NULL); /* TODO: add checks for errors on each mutex */
pthread_cond_init(&ctx->jobCompleted_cond, NULL);
pthread_mutex_init(&ctx->jobReady_mutex, NULL);
pthread_cond_init(&ctx->jobReady_cond, NULL);
pthread_mutex_init(&ctx->allJobsCompleted_mutex, NULL);
pthread_cond_init(&ctx->allJobsCompleted_cond, NULL);
pthread_mutex_init(&ctx->jobWrite_mutex, NULL);
pthread_cond_init(&ctx->jobWrite_cond, NULL);
ctx->numJobs = numJobs;
ctx->jobReadyID = 0;
ctx->jobCompletedID = 0;
ctx->jobWriteID = 0;
ctx->lastJobID = -1; /* intentional underflow */
ctx->jobs = calloc(1, numJobs*sizeof(jobDescription));
ctx->nextJobID = 0;
ctx->threadError = 0;
ctx->allJobsCompleted = 0;
ctx->adaptParam = DEFAULT_ADAPT_PARAM;
if (!ctx->jobs) {
DISPLAY("Error: could not allocate space for jobs during context creation\n");
freeCCtx(ctx);
return NULL;
}
{
unsigned const stdoutUsed = !strcmp(outFilename, stdoutmark);
FILE* dstFile = stdoutUsed ? stdout : fopen(outFilename, "wb");
if (dstFile == NULL) {
DISPLAY("Error: could not open output file\n");
freeCCtx(ctx);
return NULL;
}
ctx->dstFile = dstFile;
}
return ctx;
}
static void waitUntilAllJobsCompleted(adaptCCtx* ctx)
{
pthread_mutex_lock(&ctx->allJobsCompleted_mutex);
while (ctx->allJobsCompleted == 0) {
pthread_cond_wait(&ctx->allJobsCompleted_cond, &ctx->allJobsCompleted_mutex);
}
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex);
}
static unsigned adaptCompressionLevel(adaptCCtx* ctx)
{
unsigned reset = 0;
unsigned const allSlow = ctx->adaptParam < ctx->stats.completedCounter && ctx->adaptParam < ctx->stats.writeCounter && ctx->adaptParam < ctx->stats.readyCounter ? 1 : 0;
unsigned const compressWaiting = ctx->adaptParam < ctx->stats.readyCounter ? 1 : 0;
unsigned const writeWaiting = ctx->adaptParam < ctx->stats.completedCounter ? 1 : 0;
unsigned const createWaiting = ctx->adaptParam < ctx->stats.writeCounter ? 1 : 0;
unsigned const writeSlow = ((compressWaiting && createWaiting) || (createWaiting && !writeWaiting)) ? 1 : 0;
unsigned const compressSlow = ((writeWaiting && createWaiting) || (writeWaiting && !compressWaiting)) ? 1 : 0;
unsigned const createSlow = ((compressWaiting && writeWaiting) || (compressWaiting && !createWaiting)) ? 1 : 0;
// unsigned const writeSlow = ((compressWaiting && createWaiting)) ? 1 : 0;
// unsigned const compressSlow = ((writeWaiting && createWaiting)) ? 1 : 0;
// unsigned const createSlow = ((compressWaiting && writeWaiting)) ? 1 : 0;
DEBUGLOG(2, "ready: %u completed: %u write: %u\n", ctx->stats.readyCounter, ctx->stats.completedCounter, ctx->stats.writeCounter);
if (allSlow) {
reset = 1;
}
else if ((writeSlow || createSlow) && ctx->compressionLevel < (unsigned)ZSTD_maxCLevel()) {
DEBUGLOG(2, "increasing compression level %u\n", ctx->compressionLevel);
ctx->compressionLevel++;
reset = 1;
}
else if (compressSlow && ctx->compressionLevel > 1) {
DEBUGLOG(2, "decreasing compression level %u\n", ctx->compressionLevel);
ctx->compressionLevel--;
reset = 1;
}
if (reset) {
ctx->stats.readyCounter = 0;
ctx->stats.writeCounter = 0;
ctx->stats.completedCounter = 0;
}
return ctx->compressionLevel;
}
static void* compressionThread(void* arg)
{
adaptCCtx* ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
// DEBUGLOG(2, "compressionThread(): waiting on job ready\n");
pthread_mutex_lock(&ctx->jobReady_mutex);
while(currJob + 1 > ctx->jobReadyID) {
ctx->stats.waitReady++;
ctx->stats.readyCounter++;
DEBUGLOG(2, "waiting on job ready, nextJob: %u\n", currJob);
pthread_cond_wait(&ctx->jobReady_cond, &ctx->jobReady_mutex);
}
pthread_mutex_unlock(&ctx->jobReady_mutex);
// DEBUGLOG(2, "compressionThread(): continuing after job ready\n");
/* compress the data */
{
unsigned const cLevel = adaptCompressionLevel(ctx);
// unsigned const cLevel = job->compressionLevel;
DEBUGLOG(2, "cLevel used: %u\n", cLevel);
size_t const compressedSize = ZSTD_compress(job->dst.start, job->dst.size, job->src.start, job->src.size, cLevel);
if (ZSTD_isError(compressedSize)) {
ctx->threadError = 1;
DISPLAY("Error: something went wrong during compression: %s\n", ZSTD_getErrorName(compressedSize));
return arg;
}
job->compressedSize = compressedSize;
}
pthread_mutex_lock(&ctx->jobCompleted_mutex);
ctx->jobCompletedID++;
DEBUGLOG(2, "signaling for job %u\n", currJob);
pthread_cond_signal(&ctx->jobCompleted_cond);
pthread_mutex_unlock(&ctx->jobCompleted_mutex);
DEBUGLOG(2, "finished job compression %u\n", currJob);
currJob++;
if (currJob >= ctx->lastJobID || ctx->threadError) {
/* finished compressing all jobs */
DEBUGLOG(2, "all jobs finished compressing\n");
break;
}
}
return arg;
}
static void displayProgress(unsigned jobDoneID, unsigned cLevel, unsigned last)
{
if (!g_useProgressBar) return;
clock_t currTime = clock();
unsigned const refresh = currTime - g_time > refreshRate ? 1 : 0;
double const timeElapsed = (double)((currTime - g_startTime) * 1000 / CLOCKS_PER_SEC);
double const sizeMB = (double)g_streamedSize / (1 << 20);
double const avgCompRate = sizeMB * 1000 / timeElapsed;
if (refresh) {
fprintf(stdout, "\r| %4u jobs completed | Current Compresion Level: %2u | Time Elapsed: %5.0f ms | Data Size: %7.1f MB | Avg Compression Rate: %6.2f MB/s |", jobDoneID, cLevel, timeElapsed, sizeMB, avgCompRate);
if (last) {
fprintf(stdout, "\n");
}
else {
fflush(stdout);
}
}
}
static void* outputThread(void* arg)
{
adaptCCtx* ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
// DEBUGLOG(2, "outputThread(): waiting on job completed\n");
pthread_mutex_lock(&ctx->jobCompleted_mutex);
while (currJob + 1 > ctx->jobCompletedID) {
ctx->stats.waitCompleted++;
ctx->stats.completedCounter++;
DEBUGLOG(2, "waiting on job completed, nextJob: %u\n", currJob);
pthread_cond_wait(&ctx->jobCompleted_cond, &ctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&ctx->jobCompleted_mutex);
// DEBUGLOG(2, "outputThread(): continuing after job completed\n");
{
size_t const compressedSize = job->compressedSize;
if (ZSTD_isError(compressedSize)) {
DISPLAY("Error: an error occurred during compression\n");
return arg;
}
{
size_t const writeSize = fwrite(job->dst.start, 1, compressedSize, ctx->dstFile);
if (writeSize != compressedSize) {
DISPLAY("Error: an error occurred during file write operation\n");
return arg;
}
}
}
DEBUGLOG(2, "finished job write %u\n", currJob);
currJob++;
displayProgress(currJob, ctx->compressionLevel, currJob >= ctx->lastJobID);
DEBUGLOG(2, "locking job write mutex\n");
pthread_mutex_lock(&ctx->jobWrite_mutex);
ctx->jobWriteID++;
pthread_cond_signal(&ctx->jobWrite_cond);
pthread_mutex_unlock(&ctx->jobWrite_mutex);
DEBUGLOG(2, "unlocking job write mutex\n");
DEBUGLOG(2, "checking if done: %u/%u\n", currJob, ctx->lastJobID);
if (currJob >= ctx->lastJobID || ctx->threadError) {
/* finished with all jobs */
DEBUGLOG(2, "all jobs finished writing\n");
pthread_mutex_lock(&ctx->allJobsCompleted_mutex);
ctx->allJobsCompleted = 1;
pthread_cond_signal(&ctx->allJobsCompleted_cond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex);
break;
}
}
return arg;
}
static int createCompressionJob(adaptCCtx* ctx, BYTE* data, size_t srcSize)
{
unsigned const nextJob = ctx->nextJobID;
unsigned const nextJobIndex = nextJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[nextJobIndex];
// DEBUGLOG(2, "createCompressionJob(): wait for job write\n");
pthread_mutex_lock(&ctx->jobWrite_mutex);
// DEBUGLOG(2, "Creating new compression job -- nextJob: %u, jobCompletedID: %u, jobWriteID: %u, numJObs: %u\n", nextJob,ctx->jobCompletedID, ctx->jobWriteID, ctx->numJobs);
while (nextJob - ctx->jobWriteID >= ctx->numJobs) {
ctx->stats.waitWrite++;
ctx->stats.writeCounter++;
DEBUGLOG(2, "waiting on job Write, nextJob: %u\n", nextJob);
pthread_cond_wait(&ctx->jobWrite_cond, &ctx->jobWrite_mutex);
}
pthread_mutex_unlock(&ctx->jobWrite_mutex);
// DEBUGLOG(2, "createCompressionJob(): continuing after job write\n");
job->compressionLevel = ctx->compressionLevel;
job->src.start = malloc(srcSize);
job->src.size = srcSize;
job->dst.size = ZSTD_compressBound(srcSize);
job->dst.start = malloc(job->dst.size);
job->jobID = nextJob;
if (!job->src.start || !job->dst.start) {
/* problem occurred, free things then return */
DISPLAY("Error: problem occurred during job creation\n");
free(job->src.start);
free(job->dst.start);
return 1;
}
memcpy(job->src.start, data, srcSize);
pthread_mutex_lock(&ctx->jobReady_mutex);
ctx->jobReadyID++;
pthread_cond_signal(&ctx->jobReady_cond);
pthread_mutex_unlock(&ctx->jobReady_mutex);
DEBUGLOG(2, "finished job creation %u\n", nextJob);
ctx->nextJobID++;
return 0;
}
static void printStats(stat_t stats)
{
DISPLAY("========STATISTICS========\n");
DISPLAY("# times waited on job ready: %u\n", stats.waitReady);
DISPLAY("# times waited on job completed: %u\n", stats.waitCompleted);
DISPLAY("# times waited on job Write: %u\n\n", stats.waitWrite);
}
static int compressFilename(const char* const srcFilename, const char* const dstFilename)
{
BYTE* const src = malloc(FILE_CHUNK_SIZE);
unsigned const stdinUsed = !strcmp(srcFilename, stdinmark);
FILE* const srcFile = stdinUsed ? stdin : fopen(srcFilename, "rb");
const char* const outFilename = (stdinUsed && !dstFilename) ? stdoutmark : dstFilename;
size_t const numJobs = MAX_NUM_JOBS;
int ret = 0;
adaptCCtx* ctx = NULL;
g_time = clock();
g_startTime = clock();
g_streamedSize = 0;
/* checking for errors */
if (!srcFilename || !outFilename || !src || !srcFile) {
DISPLAY("Error: initial variables could not be allocated\n");
ret = 1;
goto cleanup;
}
/* creating context */
ctx = createCCtx(numJobs, outFilename);
if (ctx == NULL) {
ret = 1;
goto cleanup;
}
/* create output thread */
{
pthread_t out;
if (pthread_create(&out, NULL, &outputThread, ctx)) {
DISPLAY("Error: could not create output thread\n");
ret = 1;
goto cleanup;
}
}
/* create compression thread */
{
pthread_t compression;
if (pthread_create(&compression, NULL, &compressionThread, ctx)) {
DISPLAY("Error: could not create compression thread\n");
ret = 1;
goto cleanup;
}
}
/* creating jobs */
for ( ; ; ) {
size_t const readSize = fread(src, 1, FILE_CHUNK_SIZE, srcFile);
if (readSize != FILE_CHUNK_SIZE && !feof(srcFile)) {
DISPLAY("Error: problem occurred during read from src file\n");
ret = 1;
goto cleanup;
}
g_streamedSize += readSize;
/* reading was fine, now create the compression job */
{
int const error = createCompressionJob(ctx, src, readSize);
if (error != 0) {
ret = error;
goto cleanup;
}
}
if (feof(srcFile)) {
DEBUGLOG(2, "THE STREAM OF DATA ENDED %u\n", ctx->nextJobID);
ctx->lastJobID = ctx->nextJobID;
break;
}
}
cleanup:
waitUntilAllJobsCompleted(ctx);
if (g_displayStats) printStats(ctx->stats);
/* file compression completed */
ret |= (srcFile != NULL) ? fclose(srcFile) : 0;
ret |= (ctx != NULL) ? freeCCtx(ctx) : 0;
free(src);
return ret;
}
static int compressFilenames(const char** filenameTable, unsigned numFiles, unsigned forceStdout)
{
int ret = 0;
unsigned fileNum;
char outFile[MAX_PATH];
for (fileNum=0; fileNum<numFiles; fileNum++) {
const char* filename = filenameTable[fileNum];
if (snprintf(outFile, MAX_PATH, "%s.zst", filename) + 1 > MAX_PATH) {
DISPLAY("Error: output filename is too long\n");
return 1;
}
if (!forceStdout) {
ret |= compressFilename(filename, outFile);
}
else {
ret |= compressFilename(filename, stdoutmark);
}
}
return ret;
}
/*! readU32FromChar() :
@return : unsigned integer value read from input in `char` format
allows and interprets K, KB, KiB, M, MB and MiB suffix.
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : function result can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
if ((**stringPtr=='K') || (**stringPtr=='M')) {
result <<= 10;
if (**stringPtr=='M') result <<= 10;
(*stringPtr)++ ;
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static void help()
{
PRINT("Usage:\n");
PRINT(" ./multi [options] [file(s)]\n");
PRINT("\n");
PRINT("Options:\n");
PRINT(" -oFILE : specify the output file name\n");
PRINT(" -v : display debug information\n");
PRINT(" -i# : provide initial compression level\n");
PRINT(" -s : display information stats\n");
PRINT(" -h : display help/information\n");
}
/* return 0 if successful, else return error */
int main(int argCount, const char* argv[])
{
const char* outFilename = NULL;
const char** filenameTable = (const char**)malloc(argCount*sizeof(const char*));
unsigned filenameIdx = 0;
filenameTable[0] = stdinmark;
unsigned forceStdout = 0;
int ret = 0;
int argNum;
if (filenameTable == NULL) {
DISPLAY("Error: could not allocate sapce for filename table.\n");
return 1;
}
for (argNum=1; argNum<argCount; argNum++) {
const char* argument = argv[argNum];
/* output filename designated with "-o" */
if (argument[0]=='-' && strlen(argument) > 1) {
switch (argument[1]) {
case 'o':
argument += 2;
outFilename = argument;
break;
case 'v':
g_displayLevel++;
break;
case 'i':
argument += 2;
g_compressionLevel = readU32FromChar(&argument);
DEBUGLOG(2, "g_compressionLevel: %u\n", g_compressionLevel);
break;
case 's':
g_displayStats = 1;
break;
case 'h':
help();
goto _main_exit;
case 'p':
g_useProgressBar = 1;
break;
case 'c':
forceStdout = 1;
break;
default:
DISPLAY("Error: invalid argument provided\n");
ret = 1;
goto _main_exit;
}
continue;
}
/* regular files to be compressed */
filenameTable[filenameIdx++] = argument;
}
/* error checking with number of files */
if (filenameIdx > 1 && (outFilename != NULL && strcmp(outFilename, stdoutmark))) {
DISPLAY("Error: multiple input files provided, cannot use specified output file\n");
ret = 1;
goto _main_exit;
}
/* compress files */
if (filenameIdx <= 1) {
ret |= compressFilename(filenameTable[0], outFilename);
}
else {
ret |= compressFilenames(filenameTable, filenameIdx, forceStdout);
}
_main_exit:
free(filenameTable);
return ret;
}