blob: cb07198ed4b8a77458eda64a577fd851652509fb [file] [log] [blame]
#!/usr/bin/python2.6
# xdelta 3 - delta compression tools and library
# Copyright (C) 2003, 2006, 2007, 2008. Joshua P. MacDonald
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# TODO: test 1.5 vs. greedy
import os, sys, math, re, time, types, array, random
import xdelta3
#RCSDIR = '/mnt/polaroid/Polaroid/orbit_linux/home/jmacd/PRCS'
#RCSDIR = '/tmp/PRCS_read_copy'
#SAMPLEDIR = "/tmp/WESNOTH_tmp/diff"
#RCSDIR = 'G:/jmacd/PRCS_copy'
#SAMPLEDIR = "C:/sample_data/Wesnoth/tar"
RCSDIR = '/Users/jmacd/src/ftp.kernel.org'
SAMPLEDIR = '/Users/jmacd/src/xdelta3/linux'
#
MIN_SIZE = 0
TIME_TOO_SHORT = 0.050
SKIP_TRIALS = 2
MIN_TRIALS = 3
MAX_TRIALS = 15
# 10 = fast 1.5 = slow
MIN_STDDEV_PCT = 1.5
# How many results per round
MAX_RESULTS = 500
TEST_ROUNDS = 10
KEEP_P = (0.5)
# For RCS testing, what percent to select
FILE_P = (0.50)
# For run-speed tests
MIN_RUN = 1000 * 1000 * 1
MAX_RUN = 1000 * 1000 * 10
# Testwide defaults
ALL_ARGS = [
'-q' # '-vv'
]
# The first 7 args go to -C
SOFT_CONFIG_CNT = 7
CONFIG_ORDER = [ 'large_look',
'large_step',
'small_look',
'small_chain',
'small_lchain',
'max_lazy',
'long_enough',
# > SOFT_CONFIG_CNT
'nocompress',
'winsize',
'srcwinsize',
'sprevsz',
'iopt',
'djw',
'altcode',
]
CONFIG_ARGMAP = {
'winsize' : '-W',
'srcwinsize' : '-B',
'sprevsz' : '-P',
'iopt' : '-I',
'nocompress' : '-N',
'djw' : '-Sdjw',
'altcode' : '-T',
}
def INPUT_SPEC(rand):
return {
# Time/space costs:
# -C 1,2,3,4,5,6,7
'large_look' : lambda d: rand.choice([9, 10, 11, 12]),
'large_step' : lambda d: rand.choice([25, 26, 27, 28, 29, 30]),
'small_look' : lambda d: rand.choice([4]),
'small_chain' : lambda d: rand.choice([1]),
'small_lchain' : lambda d: rand.choice([1]),
'max_lazy' : lambda d: rand.choice([4, 5, 6, 7, 8, 9, 10 ]),
# Note: long_enough only refers to small matching and has no effect if
# small_chain == 1.
'long_enough' : lambda d: rand.choice([4]),
# -N
'nocompress' : lambda d: rand.choice(['false']),
# -T
'altcode' : lambda d: rand.choice(['false']),
# -S djw
'djw' : lambda d: rand.choice(['false']),
# Memory costs:
# -W
'winsize' : lambda d: 8 * (1<<20),
# -B
'srcwinsize' : lambda d: 64 * (1<<20),
# -I 0 is unlimited
'iopt' : lambda d: 0,
# -P only powers of two
'sprevsz' : lambda d: rand.choice([x * (1<<16) for x in [4]]),
}
#end
#
TMPDIR = '/tmp/xd3regtest.%d' % os.getpid()
RUNFILE = os.path.join(TMPDIR, 'run')
DFILE = os.path.join(TMPDIR, 'output')
RFILE = os.path.join(TMPDIR, 'recon')
CMPTMP1 = os.path.join(TMPDIR, 'cmptmp1')
CMPTMP2 = os.path.join(TMPDIR, 'cmptmp2')
HEAD_STATE = 0
BAR_STATE = 1
REV_STATE = 2
DATE_STATE = 3
#
IGNORE_FILENAME = re.compile('.*\\.(gif|jpg).*')
# rcs output
RE_TOTREV = re.compile('total revisions: (\\d+)')
RE_BAR = re.compile('----------------------------')
RE_REV = re.compile('revision (.+)')
RE_DATE = re.compile('date: ([^;]+);.*')
# xdelta output
RE_HDRSZ = re.compile('VCDIFF header size: +(\\d+)')
RE_EXTCOMP = re.compile('XDELTA ext comp.*')
def c2str(c):
return ' '.join(['%s' % x for x in c])
#end
def SumList(l):
return reduce(lambda x,y: x+y, l)
#end
# returns (total, mean, stddev, q2 (median),
# (q3-q1)/2 ("semi-interquartile range"), max-min (spread))
class StatList:
def __init__(self,l,desc):
cnt = len(l)
assert(cnt > 1)
l.sort()
self.cnt = cnt
self.l = l
self.total = SumList(l)
self.mean = self.total / float(self.cnt)
self.s = math.sqrt(SumList([(x-self.mean) *
(x - self.mean) for x in l]) /
float(self.cnt-1))
self.q0 = l[0]
self.q1 = l[int(self.cnt/4.0+0.5)]
self.q2 = l[int(self.cnt/2.0+0.5)]
self.q3 = l[min(self.cnt-1,int((3.0*self.cnt)/4.0+0.5))]
self.q4 = l[self.cnt-1]
self.siqr = (self.q3-self.q1)/2.0;
self.spread = (self.q4-self.q0)
if len(l) == 1:
self.str = '%s %s' % (desc, l[0])
else:
self.str = '%s mean %.1f: 25%-ile %d %d %d %d %d' % \
(desc, self.mean, self.q0, self.q1, self.q2, self.q3, self.q4)
#end
#end
def RunCommand(args, ok = [0]):
#print 'run command %s' % (' '.join(args))
p = os.spawnvp(os.P_WAIT, args[0], args)
if p not in ok:
raise CommandError(args, 'exited %d' % p)
#end
#end
def RunCommandIO(args,infn,outfn):
p = os.fork()
if p == 0:
os.dup2(os.open(infn,os.O_RDONLY),0)
os.dup2(os.open(outfn,os.O_CREAT|os.O_TRUNC|os.O_WRONLY),1)
os.execvp(args[0], args)
else:
s = os.waitpid(p,0)
o = os.WEXITSTATUS(s[1])
if not os.WIFEXITED(s[1]) or o != 0:
raise CommandError(args, 'exited %d' % o)
#end
#end
#end
class TimedTest:
def __init__(self, target, source, runnable,
skip_trials = SKIP_TRIALS,
min_trials = MIN_TRIALS,
max_trials = MAX_TRIALS,
min_stddev_pct = MIN_STDDEV_PCT):
self.target = target
self.source = source
self.runnable = runnable
self.skip_trials = skip_trials
self.min_trials = min(min_trials, max_trials)
self.max_trials = max_trials
self.min_stddev_pct = min_stddev_pct
self.encode_time = self.DoTest(DFILE,
lambda x: x.Encode(self.target,
self.source, DFILE))
self.encode_size = runnable.EncodeSize(DFILE)
self.decode_time = self.DoTest(RFILE,
lambda x: x.Decode(DFILE,
self.source, RFILE),
)
runnable.Verify(self.target, RFILE)
#end
def DoTest(self, fname, func):
trials = 0
measured = []
while 1:
try:
os.remove(fname)
except OSError:
pass
start_time = time.time()
start_clock = time.clock()
func(self.runnable)
total_clock = (time.clock() - start_clock)
total_time = (time.time() - start_time)
elap_time = max(total_time, 0.0000001)
elap_clock = max(total_clock, 0.0000001)
trials = trials + 1
# skip some of the first trials
if trials > self.skip_trials:
measured.append((elap_clock, elap_time))
#print 'measurement total: %.1f ms' % (total_time * 1000.0)
# at least so many
if trials < (self.skip_trials + self.min_trials):
#print 'continue: need more trials: %d' % trials
continue
# compute %variance
done = 0
if self.skip_trials + self.min_trials <= 2:
measured = measured + measured;
done = 1
#end
time_stat = StatList([x[1] for x in measured], 'elap time')
sp = float(time_stat.s) / float(time_stat.mean)
# what if MAX_TRIALS is exceeded?
too_many = (trials - self.skip_trials) >= self.max_trials
good = (100.0 * sp) < self.min_stddev_pct
if done or too_many or good:
trials = trials - self.skip_trials
if not done and not good:
#print 'too many trials: %d' % trials
pass
#clock = StatList([x[0] for x in measured], 'elap clock')
return time_stat
#end
#end
#end
#end
def Decimals(start, end):
l = []
step = start
while 1:
r = range(step, step * 10, step)
l = l + r
if step * 10 >= end:
l.append(step * 10)
break
step = step * 10
return l
#end
# This tests the raw speed of 0-byte inputs
def RunSpeedTest():
for L in Decimals(MIN_RUN, MAX_RUN):
SetFileSize(RUNFILE, L)
trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<20)]))
ReportSpeed(L, trx, '1MB ')
trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<19)]))
ReportSpeed(L, trx, '512k')
trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<18)]))
ReportSpeed(L, trx, '256k')
trm = TimedTest(RUNFILE, None, Xdelta3Mod1(RUNFILE))
ReportSpeed(L, trm, 'swig')
trg = TimedTest(RUNFILE, None, GzipRun1())
ReportSpeed(L,trg,'gzip')
#end
#end
def SetFileSize(F,L):
fd = os.open(F, os.O_CREAT | os.O_WRONLY)
os.ftruncate(fd,L)
assert os.fstat(fd).st_size == L
os.close(fd)
#end
def ReportSpeed(L,tr,desc):
print '%s run length %u: size %u: time %.3f ms: decode %.3f ms' % \
(desc, L,
tr.encode_size,
tr.encode_time.mean * 1000.0,
tr.decode_time.mean * 1000.0)
#end
class Xdelta3RunClass:
def __init__(self, extra):
self.extra = extra
#end
def __str__(self):
return ' '.join(self.extra)
#end
def New(self):
return Xdelta3Runner(self.extra)
#end
#end
class Xdelta3Runner:
# Use "forkexec" to get special command-line only features like
# external compression support.
def __init__(self, extra, forkexec=False):
self.forkexec = forkexec
self.extra = extra
#end
def Encode(self, target, source, output):
args = (ALL_ARGS +
self.extra +
['-e'])
if source:
args.append('-s')
args.append(source)
#end
args = args + [target, output]
self.Main(args)
#end
def Decode(self, input, source, output):
args = (ALL_ARGS +
['-d'])
if source:
args.append('-s')
args.append(source)
#end
args = args + [input, output]
self.Main(args)
#end
def Verify(self, target, recon):
if target[-3:] == ".gz":
RunCommandIO(('gzip', '-dc'), target, CMPTMP1)
RunCommandIO(('gzip', '-dc'), recon, CMPTMP2)
RunCommand(('cmp', CMPTMP1, CMPTMP2))
else:
RunCommand(('cmp', target, recon))
#end
def EncodeSize(self, output):
return os.stat(output).st_size
#end
def Main(self, args):
try:
if self.forkexec:
RunCommand(['../xdelta3'] + args)
else:
xdelta3.xd3_main_cmdline(args)
except Exception, e:
raise CommandError(args, "xdelta3.main exception: %s" % e)
#end
#end
#end
class Xdelta3Mod1:
def __init__(self, file):
self.target_data = open(file, 'r').read()
#end
def Encode(self, ignore1, ignore2, ignore3):
r1, encoded = xdelta3.xd3_encode_memory(self.target_data, None, 1000000, 1<<10)
if r1 != 0:
raise CommandError('memory', 'encode failed: %s' % r1)
#end
self.encoded = encoded
#end
def Decode(self, ignore1, ignore2, ignore3):
r2, data1 = xdelta3.xd3_decode_memory(self.encoded, None, len(self.target_data))
if r2 != 0:
raise CommandError('memory', 'decode failed: %s' % r1)
#end
self.decoded = data1
#end
def Verify(self, ignore1, ignore2):
if self.target_data != self.decoded:
raise CommandError('memory', 'bad decode')
#end
#end
def EncodeSize(self, ignore1):
return len(self.encoded)
#end
#end
class GzipRun1:
def Encode(self, target, source, output):
assert source == None
RunCommandIO(['gzip', '-cf'], target, output)
#end
def Decode(self, input, source, output):
assert source == None
RunCommandIO(['gzip', '-dcf'], input, output)
#end
def Verify(self, target, recon):
RunCommand(('cmp', target, recon))
#end
def EncodeSize(self, output):
return os.stat(output).st_size
#end
#end
class Xdelta1RunClass:
def __str__(self):
return 'xdelta1'
#end
def New(self):
return Xdelta1Runner()
#end
#end
class Xdelta1Runner:
def Encode(self, target, source, output):
assert source != None
args = ['xdelta1', 'delta', '-q', source, target, output]
RunCommand(args, [0, 1])
#end
def Decode(self, input, source, output):
assert source != None
args = ['xdelta1', 'patch', '-q', input, source, output]
# Note: for dumb historical reasons, xdelta1 returns 1 or 0
RunCommand(args)
#end
def Verify(self, target, recon):
RunCommand(('cmp', target, recon))
#end
def EncodeSize(self, output):
return os.stat(output).st_size
#end
#end
# exceptions
class SkipRcsException:
def __init__(self,reason):
self.reason = reason
#end
#end
class NotEnoughVersions:
def __init__(self):
pass
#end
#end
class CommandError:
def __init__(self,cmd,str):
if type(cmd) is types.TupleType or \
type(cmd) is types.ListType:
cmd = reduce(lambda x,y: '%s %s' % (x,y),cmd)
#end
print 'command was: ',cmd
print 'command failed: ',str
print 'have fun debugging'
#end
#end
class RcsVersion:
def __init__(self,vstr):
self.vstr = vstr
#end
def __cmp__(self,other):
return cmp(self.date, other.date)
#end
def __str__(self):
return str(self.vstr)
#end
#end
class RcsFile:
def __init__(self, fname):
self.fname = fname
self.versions = []
self.state = HEAD_STATE
#end
def SetTotRev(self,s):
self.totrev = int(s)
#end
def Rev(self,s):
self.rev = RcsVersion(s)
if len(self.versions) >= self.totrev:
raise SkipRcsException('too many versions (in log messages)')
#end
self.versions.append(self.rev)
#end
def Date(self,s):
self.rev.date = s
#end
def Match(self, line, state, rx, gp, newstate, f):
if state == self.state:
m = rx.match(line)
if m:
if f:
f(m.group(gp))
#end
self.state = newstate
return 1
#end
#end
return None
#end
def Sum1Rlog(self):
f = os.popen('rlog '+self.fname, "r")
l = f.readline()
while l:
if self.Match(l, HEAD_STATE, RE_TOTREV, 1, BAR_STATE, self.SetTotRev):
pass
elif self.Match(l, BAR_STATE, RE_BAR, 1, REV_STATE, None):
pass
elif self.Match(l, REV_STATE, RE_REV, 1, DATE_STATE, self.Rev):
pass
elif self.Match(l, DATE_STATE, RE_DATE, 1, BAR_STATE, self.Date):
pass
#end
l = f.readline()
#end
c = f.close()
if c != None:
raise c
#end
#end
def Sum1(self):
st = os.stat(self.fname)
self.rcssize = st.st_size
self.Sum1Rlog()
if self.totrev != len(self.versions):
raise SkipRcsException('wrong version count')
#end
self.versions.sort()
#end
def Checkout(self,n):
v = self.versions[n]
out = open(self.Verf(n), "w")
cmd = 'co -ko -p%s %s' % (v.vstr, self.fname)
total = 0
(inf,
stream,
err) = os.popen3(cmd, "r")
inf.close()
buf = stream.read()
while buf:
total = total + len(buf)
out.write(buf)
buf = stream.read()
#end
v.vsize = total
estr = ''
buf = err.read()
while buf:
estr = estr + buf
buf = err.read()
#end
if stream.close():
raise CommandError(cmd, 'checkout failed: %s\n%s\n%s' % (v.vstr, self.fname, estr))
#end
out.close()
err.close()
#end
def Vdate(self,n):
return self.versions[n].date
#end
def Vstr(self,n):
return self.versions[n].vstr
#end
def Verf(self,n):
return os.path.join(TMPDIR, 'input.%d' % n)
#end
def FilePairsByDate(self, runclass):
if self.totrev < 2:
raise NotEnoughVersions()
#end
self.Checkout(0)
ntrials = []
if self.totrev < 2:
return vtrials
#end
for v in range(0,self.totrev-1):
if v > 1:
os.remove(self.Verf(v-1))
#end
self.Checkout(v+1)
if os.stat(self.Verf(v)).st_size < MIN_SIZE or \
os.stat(self.Verf(v+1)).st_size < MIN_SIZE:
continue
#end
result = TimedTest(self.Verf(v+1),
self.Verf(v),
runclass.New())
target_size = os.stat(self.Verf(v+1)).st_size
ntrials.append(result)
#end
os.remove(self.Verf(self.totrev-1))
os.remove(self.Verf(self.totrev-2))
return ntrials
#end
def AppendVersion(self, f, n):
self.Checkout(n)
rf = open(self.Verf(n), "r")
data = rf.read()
f.write(data)
rf.close()
return len(data)
#end
class RcsFinder:
def __init__(self):
self.subdirs = []
self.rcsfiles = []
self.others = []
self.skipped = []
self.biground = 0
#end
def Scan1(self,dir):
dents = os.listdir(dir)
subdirs = []
rcsfiles = []
others = []
for dent in dents:
full = os.path.join(dir, dent)
if os.path.isdir(full):
subdirs.append(full)
elif dent[len(dent)-2:] == ",v":
rcsfiles.append(RcsFile(full))
else:
others.append(full)
#end
#end
self.subdirs = self.subdirs + subdirs
self.rcsfiles = self.rcsfiles + rcsfiles
self.others = self.others + others
return subdirs
#end
def Crawl(self, dir):
subdirs = [dir]
while subdirs:
s1 = self.Scan1(subdirs[0])
subdirs = subdirs[1:] + s1
#end
#end
def Summarize(self):
good = []
for rf in self.rcsfiles:
try:
rf.Sum1()
if rf.totrev < 2:
raise SkipRcsException('too few versions (< 2)')
#end
except SkipRcsException, e:
#print 'skipping file %s: %s' % (rf.fname, e.reason)
self.skipped.append(rf)
else:
good.append(rf)
#end
self.rcsfiles = good
#end
def AllPairsByDate(self, runclass):
results = []
good = []
for rf in self.rcsfiles:
try:
results = results + rf.FilePairsByDate(runclass)
except SkipRcsException:
print 'file %s has compressed versions: skipping' % (rf.fname)
except NotEnoughVersions:
print 'testing %s on %s: not enough versions' % (runclass, rf.fname)
else:
good.append(rf)
#end
self.rcsfiles = good
self.ReportPairs(runclass, results)
return results
#end
def ReportPairs(self, name, results):
encode_time = 0
decode_time = 0
encode_size = 0
for r in results:
encode_time += r.encode_time.mean
decode_time += r.decode_time.mean
encode_size += r.encode_size
#end
print '%s rcs: encode %.2f s: decode %.2f s: size %d' % \
(name, encode_time, decode_time, encode_size)
#end
def MakeBigFiles(self, rand):
f1 = open(TMPDIR + "/big.1", "w")
f2 = open(TMPDIR + "/big.2", "w")
population = []
for file in self.rcsfiles:
if len(file.versions) < 2:
continue
population.append(file)
#end
f1sz = 0
f2sz = 0
fcount = int(len(population) * FILE_P)
assert fcount > 0
for file in rand.sample(population, fcount):
m = IGNORE_FILENAME.match(file.fname)
if m != None:
continue
#end
r1, r2 = rand.sample(xrange(0, len(file.versions)), 2)
f1sz += file.AppendVersion(f1, r1)
f2sz += file.AppendVersion(f2, r2)
#m.update('%s,%s,%s ' % (file.fname[len(RCSDIR):],
#file.Vstr(r1), file.Vstr(r2)))
#end
testkey = 'rcs%d' % self.biground
self.biground = self.biground + 1
print '%s; source %u bytes; target %u bytes' % (testkey, f1sz, f2sz)
f1.close()
f2.close()
return (TMPDIR + "/big.1",
TMPDIR + "/big.2",
testkey)
#end
def Generator(self):
return lambda rand: self.MakeBigFiles(rand)
#end
#end
# find a set of RCS files for testing
def GetTestRcsFiles():
rcsf = RcsFinder()
rcsf.Crawl(RCSDIR)
if len(rcsf.rcsfiles) == 0:
raise CommandError('', 'no RCS files')
#end
rcsf.Summarize()
print "rcsfiles: rcsfiles %d; subdirs %d; others %d; skipped %d" % (
len(rcsf.rcsfiles),
len(rcsf.subdirs),
len(rcsf.others),
len(rcsf.skipped))
print StatList([x.rcssize for x in rcsf.rcsfiles], "rcssize").str
print StatList([x.totrev for x in rcsf.rcsfiles], "totrev").str
return rcsf
#end
class SampleDataTest:
def __init__(self, dirs):
dirs_in = dirs
self.pairs = []
while dirs:
d = dirs[0]
dirs = dirs[1:]
l = os.listdir(d)
files = []
for e in l:
p = os.path.join(d, e)
if os.path.isdir(p):
dirs.append(p)
else:
files.append(p)
#end
#end
if len(files) > 1:
files.sort()
for x in xrange(len(files)):
for y in xrange(len(files)):
self.pairs.append((files[x], files[y],
'%s-%s' % (files[x], files[y])))
#end
#end
#end
#end
print "Sample data test using %d file pairs in %s" % (
len(self.pairs), dirs_in)
#end
def Generator(self):
return lambda rand: rand.choice(self.pairs)
#end
#end
# configs are represented as a list of values,
# program takes a list of strings:
def ConfigToArgs(config):
args = [ '-C',
','.join([str(x) for x in config[0:SOFT_CONFIG_CNT]])]
for i in range(SOFT_CONFIG_CNT, len(CONFIG_ORDER)):
key = CONFIG_ARGMAP[CONFIG_ORDER[i]]
val = config[i]
if val == 'true' or val == 'false':
if val == 'true':
args.append('%s' % key)
#end
else:
args.append('%s=%s' % (key, val))
#end
#end
return args
#end
#
class RandomTest:
def __init__(self, tnum, tinput, config, syntuple = None):
self.mytinput = tinput[2]
self.myconfig = config
self.tnum = tnum
if syntuple != None:
self.runtime = syntuple[0]
self.compsize = syntuple[1]
self.decodetime = None
else:
args = ConfigToArgs(config)
result = TimedTest(tinput[1], tinput[0], Xdelta3Runner(args))
self.runtime = result.encode_time.mean
self.compsize = result.encode_size
self.decodetime = result.decode_time.mean
#end
self.score = None
self.time_pos = None
self.size_pos = None
self.score_pos = None
#end
def __str__(self):
decodestr = ' %s' % self.decodetime
return 'time %.6f%s size %d%s << %s >>%s' % (
self.time(), ((self.time_pos != None) and
(" (%s)" % self.time_pos) or ""),
self.size(), ((self.size_pos != None) and
(" (%s)" % self.size_pos) or ""),
c2str(self.config()),
decodestr)
#end
def time(self):
return self.runtime
#end
def size(self):
return self.compsize
#end
def config(self):
return self.myconfig
#end
def score(self):
return self.score
#end
def tinput(self):
return self.mytinput
#end
#end
def PosInAlist(l, e):
for i in range(0, len(l)):
if l[i][1] == e:
return i;
#end
#end
return -1
#end
# Generates a set of num_results test configurations, given the list of
# retest-configs.
def RandomTestConfigs(rand, input_configs, num_results):
outputs = input_configs[:]
have_set = dict([(c,c) for c in input_configs])
# Compute a random configuration
def RandomConfig():
config = []
cmap = {}
for key in CONFIG_ORDER:
val = cmap[key] = (INPUT_SPEC(rand)[key])(cmap)
config.append(val)
#end
return tuple(config)
#end
while len(outputs) < num_results:
newc = None
for i in xrange(100):
c = RandomConfig()
if have_set.has_key(c):
continue
#end
have_set[c] = c
newc = c
break
if newc is None:
print 'stopped looking for configs at %d' % len(outputs)
break
#end
outputs.append(c)
#end
outputs.sort()
return outputs
#end
def RunOptimizationLoop(rand, generator, rounds):
configs = []
for rnum in xrange(rounds):
configs = RandomTestConfigs(rand, configs, MAX_RESULTS)
tinput = generator(rand)
tests = []
for x in xrange(len(configs)):
t = RandomTest(x, tinput, configs[x])
print 'Round %d test %d: %s' % (rnum, x, t)
tests.append(t)
#end
results = ScoreTests(tests)
for r in results:
c = r.config()
if not test_all_config_results.has_key(c):
test_all_config_results[c] = [r]
else:
test_all_config_results[c].append(r)
#end
#end
#GraphResults('expt%d' % rnum, results)
#GraphSummary('sum%d' % rnum, results)
# re-test some fraction
configs = [r.config() for r in results[0:int(MAX_RESULTS * KEEP_P)]]
#end
#end
# TODO: cleanup
test_all_config_results = {}
def ScoreTests(results):
scored = []
timed = []
sized = []
t_min = float(min([test.time() for test in results]))
#t_max = float(max([test.time() for test in results]))
s_min = float(min([test.size() for test in results]))
#s_max = float(max([test.size() for test in results]))
for test in results:
# Hyperbolic function. Smaller scores still better
red = 0.999 # minimum factors for each dimension are 1/1000
test.score = ((test.size() - s_min * red) *
(test.time() - t_min * red))
scored.append((test.score, test))
timed.append((test.time(), test))
sized.append((test.size(), test))
#end
scored.sort()
timed.sort()
sized.sort()
best_by_size = []
best_by_time = []
pos = 0
for (score, test) in scored:
pos += 1
test.score_pos = pos
#end
scored = [x[1] for x in scored]
for test in scored:
test.size_pos = PosInAlist(sized, test)
test.time_pos = PosInAlist(timed, test)
#end
for test in scored:
c = test.config()
s = 0.0
print 'H-Score: %0.9f %s' % (test.score, test)
#end
return scored
#end
def GraphResults(desc, results):
f = open("data-%s.csv" % desc, "w")
for r in results:
f.write("%0.9f\t%d\t# %s\n" % (r.time(), r.size(), r))
#end
f.close()
os.system("./plot.sh data-%s.csv plot-%s.jpg" % (desc, desc))
#end
def GraphSummary(desc, results_ignore):
test_population = 0
config_ordered = []
# drops duplicate test/config pairs (TODO: don't retest them)
for config, cresults in test_all_config_results.items():
input_config_map = {}
uniq = []
for test in cresults:
assert test.config() == config
test_population += 1
key = test.tinput()
if not input_config_map.has_key(key):
input_config_map[key] = {}
#end
if input_config_map[key].has_key(config):
print 'skipping repeat test %s vs. %s' % (input_config_map[key][config], test)
continue
#end
input_config_map[key][config] = test
uniq.append(test)
#end
config_ordered.append(uniq)
#end
# sort configs descending by number of tests
config_ordered.sort(lambda x, y: len(y) - len(x))
print 'population %d: %d configs %d results' % \
(test_population,
len(config_ordered),
len(config_ordered[0]))
if config_ordered[0] == 1:
return
#end
# a map from test-key to test-list w/ various configs
input_set = {}
osize = len(config_ordered)
for i in xrange(len(config_ordered)):
config = config_ordered[i][0].config()
config_tests = config_ordered[i]
#print '%s has %d tested inputs' % (config, len(config_tests))
if len(input_set) == 0:
input_set = dict([(t.tinput(), [t]) for t in config_tests])
continue
#end
# a map from test-key to test-list w/ various configs
update_set = {}
for r in config_tests:
t = r.tinput()
if input_set.has_key(t):
update_set[t] = input_set[t] + [r]
else:
#print 'config %s does not have test %s' % (config, t)
pass
#end
#end
if len(update_set) <= 1:
break
#end
input_set = update_set
# continue if there are more w/ the same number of inputs
if i < (len(config_ordered) - 1) and \
len(config_ordered[i + 1]) == len(config_tests):
continue
#end
# synthesize results for multi-test inputs
config_num = None
# map of config to sum(various test-keys)
smap = {}
for (key, tests) in input_set.items():
if config_num == None:
# config_num should be the same in all elements
config_num = len(tests)
smap = dict([(r.config(),
(r.time(),
r.size()))
for r in tests])
else:
# compuate the per-config sum of time/size
assert config_num == len(tests)
smap = dict([(r.config(),
(smap[r.config()][0] + r.time(),
smap[r.config()][1] + r.size()))
for r in tests])
#end
#end
if config_num == 1:
continue
#end
if len(input_set) == osize:
break
#end
summary = '%s-%d' % (desc, len(input_set))
osize = len(input_set)
print 'generate %s w/ %d configs' % (summary, config_num)
syn = [RandomTest(0, (None, None, summary), config,
syntuple = (smap[config][0], smap[config][1]))
for config in smap.keys()]
syn = ScoreTests(syn)
#print 'smap is %s' % (smap,)
#print 'syn is %s' % (' and '.join([str(x) for x in syn]))
#GraphResults(summary, syn)
#end
#end
def RunRegressionTest(pairs, rounds):
for args in [
[],
['-S=djw'],
['-B=412907520'],
['-B 412907520', ],
]:
print "Args %s" % (args)
for (file1, file2, testkey) in pairs:
ttest = TimedTest(file1, file2, Xdelta3Runner(args, forkexec=True),
skip_trials = 0,
min_trials = 1,
max_trials = 1)
print "Source %s\nTarget %s\nEncode %s\nDecode %s\nSize %s\n\n" % (
file1, file2,
ttest.encode_time.str,
ttest.decode_time.str,
ttest.encode_size)
#end
#end
if __name__ == "__main__":
try:
RunCommand(['rm', '-rf', TMPDIR])
os.mkdir(TMPDIR)
#rcsf = GetTestRcsFiles()
#generator = rcsf.Generator()
sample = SampleDataTest([SAMPLEDIR])
generator = sample.Generator()
rand = random.Random(135135135135135)
RunRegressionTest(sample.pairs, TEST_ROUNDS)
#RunSpeedTest()
# the idea below is to add the default configurations and
# xdelta1 to the optimization loop:
#x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-1', '-3', '-6']))
#x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-9']))
#x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-9', '-S', 'djw']))
#x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-1', '-S', 'djw']))
#x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-9', '-T']))
#x1r = rcsf.AllPairsByDate(Xdelta1RunClass())
except CommandError:
pass
else:
RunCommand(['rm', '-rf', TMPDIR])
pass
#end
#end