blob: 3e9f0f1e1961ef2bef855ec80c794cdf72b9ec43 [file] [log] [blame]
/*
* aidl interface for wpa_hostapd daemon
* Copyright (c) 2004-2018, Jouni Malinen <j@w1.fi>
* Copyright (c) 2004-2018, Roshan Pius <rpius@google.com>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include <iomanip>
#include <sstream>
#include <string>
#include <vector>
#include <net/if.h>
#include <sys/socket.h>
#include <linux/if_bridge.h>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include "hostapd.h"
#include <aidl/android/hardware/wifi/hostapd/ApInfo.h>
#include <aidl/android/hardware/wifi/hostapd/BandMask.h>
#include <aidl/android/hardware/wifi/hostapd/ChannelParams.h>
#include <aidl/android/hardware/wifi/hostapd/ClientInfo.h>
#include <aidl/android/hardware/wifi/hostapd/EncryptionType.h>
#include <aidl/android/hardware/wifi/hostapd/HostapdStatusCode.h>
#include <aidl/android/hardware/wifi/hostapd/IfaceParams.h>
#include <aidl/android/hardware/wifi/hostapd/NetworkParams.h>
#include <aidl/android/hardware/wifi/hostapd/ParamSizeLimits.h>
extern "C"
{
#include "common/wpa_ctrl.h"
#include "drivers/linux_ioctl.h"
}
// The AIDL implementation for hostapd creates a hostapd.conf dynamically for
// each interface. This file can then be used to hook onto the normal config
// file parsing logic in hostapd code. Helps us to avoid duplication of code
// in the AIDL interface.
// TOOD(b/71872409): Add unit tests for this.
namespace {
constexpr char kConfFileNameFmt[] = "/data/vendor/wifi/hostapd/hostapd_%s.conf";
using android::base::RemoveFileIfExists;
using android::base::StringPrintf;
using android::base::WriteStringToFile;
using aidl::android::hardware::wifi::hostapd::BandMask;
using aidl::android::hardware::wifi::hostapd::ChannelBandwidth;
using aidl::android::hardware::wifi::hostapd::ChannelParams;
using aidl::android::hardware::wifi::hostapd::EncryptionType;
using aidl::android::hardware::wifi::hostapd::Generation;
using aidl::android::hardware::wifi::hostapd::HostapdStatusCode;
using aidl::android::hardware::wifi::hostapd::IfaceParams;
using aidl::android::hardware::wifi::hostapd::NetworkParams;
using aidl::android::hardware::wifi::hostapd::ParamSizeLimits;
int band2Ghz = (int)BandMask::BAND_2_GHZ;
int band5Ghz = (int)BandMask::BAND_5_GHZ;
int band6Ghz = (int)BandMask::BAND_6_GHZ;
int band60Ghz = (int)BandMask::BAND_60_GHZ;
#define MAX_PORTS 1024
bool GetInterfacesInBridge(std::string br_name,
std::vector<std::string>* interfaces) {
android::base::unique_fd sock(socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
if (sock.get() < 0) {
wpa_printf(MSG_ERROR, "Failed to create sock (%s) in %s",
strerror(errno), __FUNCTION__);
return false;
}
struct ifreq request;
int i, ifindices[MAX_PORTS];
char if_name[IFNAMSIZ];
unsigned long args[3];
memset(ifindices, 0, MAX_PORTS * sizeof(int));
args[0] = BRCTL_GET_PORT_LIST;
args[1] = (unsigned long) ifindices;
args[2] = MAX_PORTS;
strlcpy(request.ifr_name, br_name.c_str(), IFNAMSIZ);
request.ifr_data = (char *)args;
if (ioctl(sock.get(), SIOCDEVPRIVATE, &request) < 0) {
wpa_printf(MSG_ERROR, "Failed to ioctl SIOCDEVPRIVATE in %s",
__FUNCTION__);
return false;
}
for (i = 0; i < MAX_PORTS; i ++) {
memset(if_name, 0, IFNAMSIZ);
if (ifindices[i] == 0 || !if_indextoname(ifindices[i], if_name)) {
continue;
}
interfaces->push_back(if_name);
}
return true;
}
std::string WriteHostapdConfig(
const std::string& interface_name, const std::string& config)
{
const std::string file_path =
StringPrintf(kConfFileNameFmt, interface_name.c_str());
if (WriteStringToFile(
config, file_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP,
getuid(), getgid())) {
return file_path;
}
// Diagnose failure
int error = errno;
wpa_printf(
MSG_ERROR, "Cannot write hostapd config to %s, error: %s",
file_path.c_str(), strerror(error));
struct stat st;
int result = stat(file_path.c_str(), &st);
if (result == 0) {
wpa_printf(
MSG_ERROR, "hostapd config file uid: %d, gid: %d, mode: %d",
st.st_uid, st.st_gid, st.st_mode);
} else {
wpa_printf(
MSG_ERROR,
"Error calling stat() on hostapd config file: %s",
strerror(errno));
}
return "";
}
/*
* Get the op_class for a channel/band
* The logic here is based on Table E-4 in the 802.11 Specification
*/
int getOpClassForChannel(int channel, int band, bool support11n, bool support11ac) {
// 2GHz Band
if ((band & band2Ghz) != 0) {
if (channel == 14) {
return 82;
}
if (channel >= 1 && channel <= 13) {
if (!support11n) {
//20MHz channel
return 81;
}
if (channel <= 9) {
// HT40 with secondary channel above primary
return 83;
}
// HT40 with secondary channel below primary
return 84;
}
// Error
return 0;
}
// 5GHz Band
if ((band & band5Ghz) != 0) {
if (support11ac) {
switch (channel) {
case 42:
case 58:
case 106:
case 122:
case 138:
case 155:
// 80MHz channel
return 128;
case 50:
case 114:
// 160MHz channel
return 129;
}
}
if (!support11n) {
if (channel >= 36 && channel <= 48) {
return 115;
}
if (channel >= 52 && channel <= 64) {
return 118;
}
if (channel >= 100 && channel <= 144) {
return 121;
}
if (channel >= 149 && channel <= 161) {
return 124;
}
if (channel >= 165 && channel <= 169) {
return 125;
}
} else {
switch (channel) {
case 36:
case 44:
// HT40 with secondary channel above primary
return 116;
case 40:
case 48:
// HT40 with secondary channel below primary
return 117;
case 52:
case 60:
// HT40 with secondary channel above primary
return 119;
case 56:
case 64:
// HT40 with secondary channel below primary
return 120;
case 100:
case 108:
case 116:
case 124:
case 132:
case 140:
// HT40 with secondary channel above primary
return 122;
case 104:
case 112:
case 120:
case 128:
case 136:
case 144:
// HT40 with secondary channel below primary
return 123;
case 149:
case 157:
// HT40 with secondary channel above primary
return 126;
case 153:
case 161:
// HT40 with secondary channel below primary
return 127;
}
}
// Error
return 0;
}
// 6GHz Band
if ((band & band6Ghz) != 0) {
// Channels 1, 5. 9, 13, ...
if ((channel & 0x03) == 0x01) {
// 20MHz channel
return 131;
}
// Channels 3, 11, 19, 27, ...
if ((channel & 0x07) == 0x03) {
// 40MHz channel
return 132;
}
// Channels 7, 23, 39, 55, ...
if ((channel & 0x0F) == 0x07) {
// 80MHz channel
return 133;
}
// Channels 15, 47, 69, ...
if ((channel & 0x1F) == 0x0F) {
// 160MHz channel
return 134;
}
if (channel == 2) {
// 20MHz channel
return 136;
}
// Error
return 0;
}
if ((band & band60Ghz) != 0) {
if (1 <= channel && channel <= 8) {
return 180;
} else if (9 <= channel && channel <= 15) {
return 181;
} else if (17 <= channel && channel <= 22) {
return 182;
} else if (25 <= channel && channel <= 29) {
return 183;
}
// Error
return 0;
}
return 0;
}
bool validatePassphrase(int passphrase_len, int min_len, int max_len)
{
if (min_len != -1 && passphrase_len < min_len) return false;
if (max_len != -1 && passphrase_len > max_len) return false;
return true;
}
std::string CreateHostapdConfig(
const IfaceParams& iface_params,
const ChannelParams& channelParams,
const NetworkParams& nw_params,
const std::string br_name,
const std::string owe_transition_ifname)
{
if (nw_params.ssid.size() >
static_cast<uint32_t>(
ParamSizeLimits::SSID_MAX_LEN_IN_BYTES)) {
wpa_printf(
MSG_ERROR, "Invalid SSID size: %zu", nw_params.ssid.size());
return "";
}
// SSID string
std::stringstream ss;
ss << std::hex;
ss << std::setfill('0');
for (uint8_t b : nw_params.ssid) {
ss << std::setw(2) << static_cast<unsigned int>(b);
}
const std::string ssid_as_string = ss.str();
// Encryption config string
uint32_t band = 0;
band |= static_cast<uint32_t>(channelParams.bandMask);
bool is_2Ghz_band_only = band == static_cast<uint32_t>(band2Ghz);
bool is_6Ghz_band_only = band == static_cast<uint32_t>(band6Ghz);
bool is_60Ghz_band_only = band == static_cast<uint32_t>(band60Ghz);
std::string encryption_config_as_string;
switch (nw_params.encryptionType) {
case EncryptionType::NONE:
// no security params
break;
case EncryptionType::WPA:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=3\n"
"wpa_pairwise=%s\n"
"wpa_passphrase=%s",
is_60Ghz_band_only ? "GCMP" : "TKIP CCMP",
nw_params.passphrase.c_str());
break;
case EncryptionType::WPA2:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=%s\n"
#ifdef ENABLE_HOSTAPD_CONFIG_80211W_MFP_OPTIONAL
"ieee80211w=1\n"
#endif
"wpa_passphrase=%s",
is_60Ghz_band_only ? "GCMP" : "CCMP",
nw_params.passphrase.c_str());
break;
case EncryptionType::WPA3_SAE_TRANSITION:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=%s\n"
"wpa_key_mgmt=WPA-PSK SAE\n"
"ieee80211w=1\n"
"sae_require_mfp=1\n"
"wpa_passphrase=%s\n"
"sae_password=%s",
is_60Ghz_band_only ? "GCMP" : "CCMP",
nw_params.passphrase.c_str(),
nw_params.passphrase.c_str());
break;
case EncryptionType::WPA3_SAE:
if (!validatePassphrase(nw_params.passphrase.size(), 1, -1)) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=%s\n"
"wpa_key_mgmt=SAE\n"
"ieee80211w=2\n"
"sae_require_mfp=2\n"
"sae_pwe=%d\n"
"sae_password=%s",
is_60Ghz_band_only ? "GCMP" : "CCMP",
is_6Ghz_band_only ? 1 : 2,
nw_params.passphrase.c_str());
break;
case EncryptionType::WPA3_OWE_TRANSITION:
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=%s\n"
"wpa_key_mgmt=OWE\n"
"ieee80211w=2",
is_60Ghz_band_only ? "GCMP" : "CCMP");
break;
case EncryptionType::WPA3_OWE:
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=%s\n"
"wpa_key_mgmt=OWE\n"
"ieee80211w=2",
is_60Ghz_band_only ? "GCMP" : "CCMP");
break;
default:
wpa_printf(MSG_ERROR, "Unknown encryption type");
return "";
}
std::string channel_config_as_string;
bool isFirst = true;
if (channelParams.enableAcs) {
std::string freqList_as_string;
for (const auto &range :
channelParams.acsChannelFreqRangesMhz) {
if (!isFirst) {
freqList_as_string += ",";
}
isFirst = false;
if (range.startMhz != range.endMhz) {
freqList_as_string +=
StringPrintf("%d-%d", range.startMhz, range.endMhz);
} else {
freqList_as_string += StringPrintf("%d", range.startMhz);
}
}
channel_config_as_string = StringPrintf(
"channel=0\n"
"acs_exclude_dfs=%d\n"
"freqlist=%s",
channelParams.acsShouldExcludeDfs,
freqList_as_string.c_str());
} else {
int op_class = getOpClassForChannel(
channelParams.channel,
band,
iface_params.hwModeParams.enable80211N,
iface_params.hwModeParams.enable80211AC);
channel_config_as_string = StringPrintf(
"channel=%d\n"
"op_class=%d",
channelParams.channel, op_class);
}
std::string hw_mode_as_string;
std::string enable_edmg_as_string;
std::string edmg_channel_as_string;
bool is_60Ghz_used = false;
if (((band & band60Ghz) != 0)) {
hw_mode_as_string = "hw_mode=ad";
if (iface_params.hwModeParams.enableEdmg) {
enable_edmg_as_string = "enable_edmg=1";
edmg_channel_as_string = StringPrintf(
"edmg_channel=%d",
channelParams.channel);
}
is_60Ghz_used = true;
} else if ((band & band2Ghz) != 0) {
if (((band & band5Ghz) != 0)
|| ((band & band6Ghz) != 0)) {
hw_mode_as_string = "hw_mode=any";
} else {
hw_mode_as_string = "hw_mode=g";
}
} else if (((band & band5Ghz) != 0)
|| ((band & band6Ghz) != 0)) {
hw_mode_as_string = "hw_mode=a";
} else {
wpa_printf(MSG_ERROR, "Invalid band");
return "";
}
std::string he_params_as_string;
#ifdef CONFIG_IEEE80211AX
if (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) {
he_params_as_string = StringPrintf(
"ieee80211ax=1\n"
"he_su_beamformer=%d\n"
"he_su_beamformee=%d\n"
"he_mu_beamformer=%d\n"
"he_twt_required=%d\n",
iface_params.hwModeParams.enableHeSingleUserBeamformer ? 1 : 0,
iface_params.hwModeParams.enableHeSingleUserBeamformee ? 1 : 0,
iface_params.hwModeParams.enableHeMultiUserBeamformer ? 1 : 0,
iface_params.hwModeParams.enableHeTargetWakeTime ? 1 : 0);
} else {
he_params_as_string = "ieee80211ax=0";
}
#endif /* CONFIG_IEEE80211AX */
std::string ht_cap_vht_oper_he_oper_chwidth_as_string;
switch (iface_params.hwModeParams.maximumChannelBandwidth) {
case ChannelBandwidth::BANDWIDTH_20:
ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
#ifdef CONFIG_IEEE80211AX
"he_oper_chwidth=0\n"
#endif
"vht_oper_chwidth=0");
break;
case ChannelBandwidth::BANDWIDTH_40:
ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
"ht_capab=[HT40+]\n"
#ifdef CONFIG_IEEE80211AX
"he_oper_chwidth=0\n"
#endif
"vht_oper_chwidth=0");
break;
case ChannelBandwidth::BANDWIDTH_80:
ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
"ht_capab=[HT40+]\n"
#ifdef CONFIG_IEEE80211AX
"he_oper_chwidth=%d\n"
#endif
"vht_oper_chwidth=%d",
#ifdef CONFIG_IEEE80211AX
(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 1 : 0,
#endif
iface_params.hwModeParams.enable80211AC ? 1 : 0);
break;
case ChannelBandwidth::BANDWIDTH_160:
ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
"ht_capab=[HT40+]\n"
#ifdef CONFIG_IEEE80211AX
"he_oper_chwidth=%d\n"
#endif
"vht_oper_chwidth=%d",
#ifdef CONFIG_IEEE80211AX
(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 2 : 0,
#endif
iface_params.hwModeParams.enable80211AC ? 2 : 0);
break;
default:
if (!is_2Ghz_band_only && !is_60Ghz_used
&& iface_params.hwModeParams.enable80211AC) {
ht_cap_vht_oper_he_oper_chwidth_as_string =
"ht_capab=[HT40+]\n"
"vht_oper_chwidth=1\n";
}
#ifdef CONFIG_IEEE80211AX
if (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) {
ht_cap_vht_oper_he_oper_chwidth_as_string += "he_oper_chwidth=1";
}
#endif
break;
}
#ifdef CONFIG_INTERWORKING
std::string access_network_params_as_string;
if (nw_params.isMetered) {
access_network_params_as_string = StringPrintf(
"interworking=1\n"
"access_network_type=2\n"); // CHARGEABLE_PUBLIC_NETWORK
} else {
access_network_params_as_string = StringPrintf(
"interworking=0\n");
}
#endif /* CONFIG_INTERWORKING */
std::string bridge_as_string;
if (!br_name.empty()) {
bridge_as_string = StringPrintf("bridge=%s", br_name.c_str());
}
// vendor_elements string
std::string vendor_elements_as_string;
if (nw_params.vendorElements.size() > 0) {
std::stringstream ss;
ss << std::hex;
ss << std::setfill('0');
for (uint8_t b : nw_params.vendorElements) {
ss << std::setw(2) << static_cast<unsigned int>(b);
}
vendor_elements_as_string = StringPrintf("vendor_elements=%s", ss.str().c_str());
}
std::string owe_transition_ifname_as_string;
if (!owe_transition_ifname.empty()) {
owe_transition_ifname_as_string = StringPrintf(
"owe_transition_ifname=%s", owe_transition_ifname.c_str());
}
return StringPrintf(
"interface=%s\n"
"driver=nl80211\n"
"ctrl_interface=/data/vendor/wifi/hostapd/ctrl\n"
// ssid2 signals to hostapd that the value is not a literal value
// for use as a SSID. In this case, we're giving it a hex
// std::string and hostapd needs to expect that.
"ssid2=%s\n"
"%s\n"
"ieee80211n=%d\n"
"ieee80211ac=%d\n"
"%s\n"
"%s\n"
"%s\n"
"ignore_broadcast_ssid=%d\n"
"wowlan_triggers=any\n"
#ifdef CONFIG_INTERWORKING
"%s\n"
#endif /* CONFIG_INTERWORKING */
"%s\n"
"%s\n"
"%s\n"
"%s\n"
"%s\n"
"%s\n",
iface_params.name.c_str(), ssid_as_string.c_str(),
channel_config_as_string.c_str(),
iface_params.hwModeParams.enable80211N ? 1 : 0,
iface_params.hwModeParams.enable80211AC ? 1 : 0,
he_params_as_string.c_str(),
hw_mode_as_string.c_str(), ht_cap_vht_oper_he_oper_chwidth_as_string.c_str(),
nw_params.isHidden ? 1 : 0,
#ifdef CONFIG_INTERWORKING
access_network_params_as_string.c_str(),
#endif /* CONFIG_INTERWORKING */
encryption_config_as_string.c_str(),
bridge_as_string.c_str(),
owe_transition_ifname_as_string.c_str(),
enable_edmg_as_string.c_str(),
edmg_channel_as_string.c_str(),
vendor_elements_as_string.c_str());
}
Generation getGeneration(hostapd_hw_modes *current_mode)
{
wpa_printf(MSG_DEBUG, "getGeneration hwmode=%d, ht_enabled=%d,"
" vht_enabled=%d, he_supported=%d",
current_mode->mode, current_mode->ht_capab != 0,
current_mode->vht_capab != 0, current_mode->he_capab->he_supported);
switch (current_mode->mode) {
case HOSTAPD_MODE_IEEE80211B:
return Generation::WIFI_STANDARD_LEGACY;
case HOSTAPD_MODE_IEEE80211G:
return current_mode->ht_capab == 0 ?
Generation::WIFI_STANDARD_LEGACY : Generation::WIFI_STANDARD_11N;
case HOSTAPD_MODE_IEEE80211A:
if (current_mode->he_capab->he_supported) {
return Generation::WIFI_STANDARD_11AX;
}
return current_mode->vht_capab == 0 ?
Generation::WIFI_STANDARD_11N : Generation::WIFI_STANDARD_11AC;
case HOSTAPD_MODE_IEEE80211AD:
return Generation::WIFI_STANDARD_11AD;
default:
return Generation::WIFI_STANDARD_UNKNOWN;
}
}
ChannelBandwidth getChannelBandwidth(struct hostapd_config *iconf)
{
wpa_printf(MSG_DEBUG, "getChannelBandwidth %d, isHT=%d, isHT40=%d",
iconf->vht_oper_chwidth, iconf->ieee80211n,
iconf->secondary_channel);
switch (iconf->vht_oper_chwidth) {
case CHANWIDTH_80MHZ:
return ChannelBandwidth::BANDWIDTH_80;
case CHANWIDTH_80P80MHZ:
return ChannelBandwidth::BANDWIDTH_80P80;
break;
case CHANWIDTH_160MHZ:
return ChannelBandwidth::BANDWIDTH_160;
break;
case CHANWIDTH_USE_HT:
if (iconf->ieee80211n) {
return iconf->secondary_channel != 0 ?
ChannelBandwidth::BANDWIDTH_40 : ChannelBandwidth::BANDWIDTH_20;
}
return ChannelBandwidth::BANDWIDTH_20_NOHT;
case CHANWIDTH_2160MHZ:
return ChannelBandwidth::BANDWIDTH_2160;
case CHANWIDTH_4320MHZ:
return ChannelBandwidth::BANDWIDTH_4320;
case CHANWIDTH_6480MHZ:
return ChannelBandwidth::BANDWIDTH_6480;
case CHANWIDTH_8640MHZ:
return ChannelBandwidth::BANDWIDTH_8640;
default:
return ChannelBandwidth::BANDWIDTH_INVALID;
}
}
bool forceStaDisconnection(struct hostapd_data* hapd,
const std::vector<uint8_t>& client_address,
const uint16_t reason_code) {
struct sta_info *sta;
if (client_address.size() != ETH_ALEN) {
return false;
}
for (sta = hapd->sta_list; sta; sta = sta->next) {
int res;
res = memcmp(sta->addr, client_address.data(), ETH_ALEN);
if (res == 0) {
wpa_printf(MSG_INFO, "Force client:" MACSTR " disconnect with reason: %d",
MAC2STR(client_address.data()), reason_code);
ap_sta_disconnect(hapd, sta, sta->addr, reason_code);
return true;
}
}
return false;
}
// hostapd core functions accept "C" style function pointers, so use global
// functions to pass to the hostapd core function and store the corresponding
// std::function methods to be invoked.
//
// NOTE: Using the pattern from the vendor HAL (wifi_legacy_hal.cpp).
//
// Callback to be invoked once setup is complete
std::function<void(struct hostapd_data*)> on_setup_complete_internal_callback;
void onAsyncSetupCompleteCb(void* ctx)
{
struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
if (on_setup_complete_internal_callback) {
on_setup_complete_internal_callback(iface_hapd);
// Invalidate this callback since we don't want this firing
// again in single AP mode.
if (strlen(iface_hapd->conf->bridge) > 0) {
on_setup_complete_internal_callback = nullptr;
}
}
}
// Callback to be invoked on hotspot client connection/disconnection
std::function<void(struct hostapd_data*, const u8 *mac_addr, int authorized,
const u8 *p2p_dev_addr)> on_sta_authorized_internal_callback;
void onAsyncStaAuthorizedCb(void* ctx, const u8 *mac_addr, int authorized,
const u8 *p2p_dev_addr)
{
struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
if (on_sta_authorized_internal_callback) {
on_sta_authorized_internal_callback(iface_hapd, mac_addr,
authorized, p2p_dev_addr);
}
}
std::function<void(struct hostapd_data*, int level,
enum wpa_msg_type type, const char *txt,
size_t len)> on_wpa_msg_internal_callback;
void onAsyncWpaEventCb(void *ctx, int level,
enum wpa_msg_type type, const char *txt,
size_t len)
{
struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
if (on_wpa_msg_internal_callback) {
on_wpa_msg_internal_callback(iface_hapd, level,
type, txt, len);
}
}
inline ndk::ScopedAStatus createStatus(HostapdStatusCode status_code) {
return ndk::ScopedAStatus::fromServiceSpecificError(
static_cast<int32_t>(status_code));
}
inline ndk::ScopedAStatus createStatusWithMsg(
HostapdStatusCode status_code, std::string msg)
{
return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
static_cast<int32_t>(status_code), msg.c_str());
}
// Method called by death_notifier_ on client death.
void onDeath(void* cookie) {
wpa_printf(MSG_ERROR, "Client died. Terminating...");
eloop_terminate();
}
} // namespace
namespace aidl {
namespace android {
namespace hardware {
namespace wifi {
namespace hostapd {
Hostapd::Hostapd(struct hapd_interfaces* interfaces)
: interfaces_(interfaces)
{
death_notifier_ = AIBinder_DeathRecipient_new(onDeath);
}
::ndk::ScopedAStatus Hostapd::addAccessPoint(
const IfaceParams& iface_params, const NetworkParams& nw_params)
{
return addAccessPointInternal(iface_params, nw_params);
}
::ndk::ScopedAStatus Hostapd::removeAccessPoint(const std::string& iface_name)
{
return removeAccessPointInternal(iface_name);
}
::ndk::ScopedAStatus Hostapd::terminate()
{
wpa_printf(MSG_INFO, "Terminating...");
// Clear the callback to avoid IPCThreadState shutdown during the
// callback event.
callbacks_.clear();
eloop_terminate();
return ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus Hostapd::registerCallback(
const std::shared_ptr<IHostapdCallback>& callback)
{
return registerCallbackInternal(callback);
}
::ndk::ScopedAStatus Hostapd::forceClientDisconnect(
const std::string& iface_name, const std::vector<uint8_t>& client_address,
Ieee80211ReasonCode reason_code)
{
return forceClientDisconnectInternal(iface_name, client_address, reason_code);
}
::ndk::ScopedAStatus Hostapd::setDebugParams(DebugLevel level)
{
return setDebugParamsInternal(level);
}
::ndk::ScopedAStatus Hostapd::addAccessPointInternal(
const IfaceParams& iface_params,
const NetworkParams& nw_params)
{
int channelParamsSize = iface_params.channelParams.size();
if (channelParamsSize == 1) {
// Single AP
wpa_printf(MSG_INFO, "AddSingleAccessPoint, iface=%s",
iface_params.name.c_str());
return addSingleAccessPoint(iface_params, iface_params.channelParams[0],
nw_params, "", "");
} else if (channelParamsSize == 2) {
// Concurrent APs
wpa_printf(MSG_INFO, "AddDualAccessPoint, iface=%s",
iface_params.name.c_str());
return addConcurrentAccessPoints(iface_params, nw_params);
}
return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
}
std::vector<uint8_t> generateRandomOweSsid()
{
u8 random[8] = {0};
os_get_random(random, 8);
std::string ssid = StringPrintf("Owe-%s", random);
wpa_printf(MSG_INFO, "Generated OWE SSID: %s", ssid.c_str());
std::vector<uint8_t> vssid(ssid.begin(), ssid.end());
return vssid;
}
::ndk::ScopedAStatus Hostapd::addConcurrentAccessPoints(
const IfaceParams& iface_params, const NetworkParams& nw_params)
{
int channelParamsListSize = iface_params.channelParams.size();
// Get available interfaces in bridge
std::vector<std::string> managed_interfaces;
std::string br_name = StringPrintf(
"%s", iface_params.name.c_str());
if (!GetInterfacesInBridge(br_name, &managed_interfaces)) {
return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
"Get interfaces in bridge failed.");
}
if (managed_interfaces.size() < channelParamsListSize) {
return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
"Available interfaces less than requested bands");
}
// start BSS on specified bands
for (std::size_t i = 0; i < channelParamsListSize; i ++) {
IfaceParams iface_params_new = iface_params;
NetworkParams nw_params_new = nw_params;
iface_params_new.name = managed_interfaces[i];
std::string owe_transition_ifname = "";
if (nw_params.encryptionType == EncryptionType::WPA3_OWE_TRANSITION) {
if (i == 0 && i+1 < channelParamsListSize) {
owe_transition_ifname = managed_interfaces[i+1];
nw_params_new.encryptionType = EncryptionType::NONE;
} else {
owe_transition_ifname = managed_interfaces[0];
nw_params_new.isHidden = true;
nw_params_new.ssid = generateRandomOweSsid();
}
}
ndk::ScopedAStatus status = addSingleAccessPoint(
iface_params_new, iface_params.channelParams[i], nw_params_new,
br_name, owe_transition_ifname);
if (!status.isOk()) {
wpa_printf(MSG_ERROR, "Failed to addAccessPoint %s",
managed_interfaces[i].c_str());
return status;
}
}
// Save bridge interface info
br_interfaces_[br_name] = managed_interfaces;
return ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus Hostapd::addSingleAccessPoint(
const IfaceParams& iface_params,
const ChannelParams& channelParams,
const NetworkParams& nw_params,
const std::string br_name,
const std::string owe_transition_ifname)
{
if (hostapd_get_iface(interfaces_, iface_params.name.c_str())) {
wpa_printf(
MSG_ERROR, "Interface %s already present",
iface_params.name.c_str());
return createStatus(HostapdStatusCode::FAILURE_IFACE_EXISTS);
}
const auto conf_params = CreateHostapdConfig(iface_params, channelParams, nw_params,
br_name, owe_transition_ifname);
if (conf_params.empty()) {
wpa_printf(MSG_ERROR, "Failed to create config params");
return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
}
const auto conf_file_path =
WriteHostapdConfig(iface_params.name, conf_params);
if (conf_file_path.empty()) {
wpa_printf(MSG_ERROR, "Failed to write config file");
return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
}
std::string add_iface_param_str = StringPrintf(
"%s config=%s", iface_params.name.c_str(),
conf_file_path.c_str());
std::vector<char> add_iface_param_vec(
add_iface_param_str.begin(), add_iface_param_str.end() + 1);
if (hostapd_add_iface(interfaces_, add_iface_param_vec.data()) < 0) {
wpa_printf(
MSG_ERROR, "Adding interface %s failed",
add_iface_param_str.c_str());
return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
}
struct hostapd_data* iface_hapd =
hostapd_get_iface(interfaces_, iface_params.name.c_str());
WPA_ASSERT(iface_hapd != nullptr && iface_hapd->iface != nullptr);
// Register the setup complete callbacks
on_setup_complete_internal_callback =
[this](struct hostapd_data* iface_hapd) {
wpa_printf(
MSG_INFO, "AP interface setup completed - state %s",
hostapd_state_text(iface_hapd->iface->state));
if (iface_hapd->iface->state == HAPD_IFACE_DISABLED) {
// Invoke the failure callback on all registered
// clients.
for (const auto& callback : callbacks_) {
callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ?
iface_hapd->conf->bridge : iface_hapd->conf->iface,
iface_hapd->conf->iface);
}
}
};
// Register for new client connect/disconnect indication.
on_sta_authorized_internal_callback =
[this](struct hostapd_data* iface_hapd, const u8 *mac_addr,
int authorized, const u8 *p2p_dev_addr) {
wpa_printf(MSG_DEBUG, "notify client " MACSTR " %s",
MAC2STR(mac_addr),
(authorized) ? "Connected" : "Disconnected");
ClientInfo info;
info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
iface_hapd->conf->bridge : iface_hapd->conf->iface;
info.apIfaceInstance = iface_hapd->conf->iface;
info.clientAddress.assign(mac_addr, mac_addr + ETH_ALEN);
info.isConnected = authorized;
for (const auto &callback : callbacks_) {
callback->onConnectedClientsChanged(info);
}
};
// Register for wpa_event which used to get channel switch event
on_wpa_msg_internal_callback =
[this](struct hostapd_data* iface_hapd, int level,
enum wpa_msg_type type, const char *txt,
size_t len) {
wpa_printf(MSG_DEBUG, "Receive wpa msg : %s", txt);
if (os_strncmp(txt, AP_EVENT_ENABLED,
strlen(AP_EVENT_ENABLED)) == 0 ||
os_strncmp(txt, WPA_EVENT_CHANNEL_SWITCH,
strlen(WPA_EVENT_CHANNEL_SWITCH)) == 0) {
ApInfo info;
info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
iface_hapd->conf->bridge : iface_hapd->conf->iface,
info.apIfaceInstance = iface_hapd->conf->iface;
info.freqMhz = iface_hapd->iface->freq;
info.channelBandwidth = getChannelBandwidth(iface_hapd->iconf);
info.generation = getGeneration(iface_hapd->iface->current_mode);
info.apIfaceInstanceMacAddress.assign(iface_hapd->own_addr,
iface_hapd->own_addr + ETH_ALEN);
for (const auto &callback : callbacks_) {
callback->onApInstanceInfoChanged(info);
}
} else if (os_strncmp(txt, AP_EVENT_DISABLED, strlen(AP_EVENT_DISABLED)) == 0
|| os_strncmp(txt, INTERFACE_DISABLED, strlen(INTERFACE_DISABLED)) == 0)
{
// Invoke the failure callback on all registered clients.
for (const auto& callback : callbacks_) {
callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ?
iface_hapd->conf->bridge : iface_hapd->conf->iface,
iface_hapd->conf->iface);
}
}
};
// Setup callback
iface_hapd->setup_complete_cb = onAsyncSetupCompleteCb;
iface_hapd->setup_complete_cb_ctx = iface_hapd;
iface_hapd->sta_authorized_cb = onAsyncStaAuthorizedCb;
iface_hapd->sta_authorized_cb_ctx = iface_hapd;
wpa_msg_register_cb(onAsyncWpaEventCb);
if (hostapd_enable_iface(iface_hapd->iface) < 0) {
wpa_printf(
MSG_ERROR, "Enabling interface %s failed",
iface_params.name.c_str());
return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
}
return ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus Hostapd::removeAccessPointInternal(const std::string& iface_name)
{
// interfaces to be removed
std::vector<std::string> interfaces;
bool is_error = false;
const auto it = br_interfaces_.find(iface_name);
if (it != br_interfaces_.end()) {
// In case bridge, remove managed interfaces
interfaces = it->second;
br_interfaces_.erase(iface_name);
} else {
// else remove current interface
interfaces.push_back(iface_name);
}
for (auto& iface : interfaces) {
std::vector<char> remove_iface_param_vec(
iface.begin(), iface.end() + 1);
if (hostapd_remove_iface(interfaces_, remove_iface_param_vec.data()) < 0) {
wpa_printf(MSG_INFO, "Remove interface %s failed", iface.c_str());
is_error = true;
}
}
if (is_error) {
return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
}
return ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus Hostapd::registerCallbackInternal(
const std::shared_ptr<IHostapdCallback>& callback)
{
binder_status_t status = AIBinder_linkToDeath(callback->asBinder().get(),
death_notifier_, this /* cookie */);
if (status != STATUS_OK) {
wpa_printf(
MSG_ERROR,
"Error registering for death notification for "
"hostapd callback object");
return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
}
callbacks_.push_back(callback);
return ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus Hostapd::forceClientDisconnectInternal(const std::string& iface_name,
const std::vector<uint8_t>& client_address, Ieee80211ReasonCode reason_code)
{
struct hostapd_data *hapd = hostapd_get_iface(interfaces_, iface_name.c_str());
bool result;
if (!hapd) {
for (auto const& iface : br_interfaces_) {
if (iface.first == iface_name) {
for (auto const& instance : iface.second) {
hapd = hostapd_get_iface(interfaces_, instance.c_str());
if (hapd) {
result = forceStaDisconnection(hapd, client_address,
(uint16_t) reason_code);
if (result) break;
}
}
}
}
} else {
result = forceStaDisconnection(hapd, client_address, (uint16_t) reason_code);
}
if (!hapd) {
wpa_printf(MSG_ERROR, "Interface %s doesn't exist", iface_name.c_str());
return createStatus(HostapdStatusCode::FAILURE_IFACE_UNKNOWN);
}
if (result) {
return ndk::ScopedAStatus::ok();
}
return createStatus(HostapdStatusCode::FAILURE_CLIENT_UNKNOWN);
}
::ndk::ScopedAStatus Hostapd::setDebugParamsInternal(DebugLevel level)
{
wpa_debug_level = static_cast<uint32_t>(level);
return ndk::ScopedAStatus::ok();
}
} // namespace hostapd
} // namespace wifi
} // namespace hardware
} // namespace android
} // namespace aidl