blob: 7789ed69dbd0c10a183333fe599bbfe98ec41d7a [file] [log] [blame]
/*
* hidl interface for wpa_hostapd daemon
* Copyright (c) 2004-2018, Jouni Malinen <j@w1.fi>
* Copyright (c) 2004-2018, Roshan Pius <rpius@google.com>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include <iomanip>
#include <sstream>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include "hostapd.h"
#include "hidl_return_util.h"
extern "C"
{
#include "utils/eloop.h"
}
// The HIDL implementation for hostapd creates a hostapd.conf dynamically for
// each interface. This file can then be used to hook onto the normal config
// file parsing logic in hostapd code. Helps us to avoid duplication of code
// in the HIDL interface.
// TOOD(b/71872409): Add unit tests for this.
namespace {
constexpr char kConfFileNameFmt[] = "/data/vendor/wifi/hostapd/hostapd_%s.conf";
using android::base::RemoveFileIfExists;
using android::base::StringPrintf;
using android::base::WriteStringToFile;
using android::hardware::wifi::hostapd::V1_2::IHostapd;
std::string WriteHostapdConfig(
const std::string& interface_name, const std::string& config)
{
const std::string file_path =
StringPrintf(kConfFileNameFmt, interface_name.c_str());
if (WriteStringToFile(
config, file_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP,
getuid(), getgid())) {
return file_path;
}
// Diagnose failure
int error = errno;
wpa_printf(
MSG_ERROR, "Cannot write hostapd config to %s, error: %s",
file_path.c_str(), strerror(error));
struct stat st;
int result = stat(file_path.c_str(), &st);
if (result == 0) {
wpa_printf(
MSG_ERROR, "hostapd config file uid: %d, gid: %d, mode: %d",
st.st_uid, st.st_gid, st.st_mode);
} else {
wpa_printf(
MSG_ERROR,
"Error calling stat() on hostapd config file: %s",
strerror(errno));
}
return "";
}
/*
* Get the op_class for a channel/band
* The logic here is based on Table E-4 in the 802.11 Specification
*/
int getOpClassForChannel(int channel, int band, bool support11n, bool support11ac) {
// 2GHz Band
if ((band & IHostapd::BandMask::BAND_2_GHZ) != 0) {
if (channel == 14) {
return 82;
}
if (channel >= 1 && channel <= 13) {
if (!support11n) {
//20MHz channel
return 81;
}
if (channel <= 9) {
// HT40 with secondary channel above primary
return 83;
}
// HT40 with secondary channel below primary
return 84;
}
// Error
return 0;
}
// 5GHz Band
if ((band & IHostapd::BandMask::BAND_5_GHZ) != 0) {
if (support11ac) {
switch (channel) {
case 42:
case 58:
case 106:
case 122:
case 138:
case 155:
// 80MHz channel
return 128;
case 50:
case 114:
// 160MHz channel
return 129;
}
}
if (!support11n) {
if (channel >= 36 && channel <= 48) {
return 115;
}
if (channel >= 52 && channel <= 64) {
return 118;
}
if (channel >= 100 && channel <= 144) {
return 121;
}
if (channel >= 149 && channel <= 161) {
return 124;
}
if (channel >= 165 && channel <= 169) {
return 125;
}
} else {
switch (channel) {
case 36:
case 44:
// HT40 with secondary channel above primary
return 116;
case 40:
case 48:
// HT40 with secondary channel below primary
return 117;
case 52:
case 60:
// HT40 with secondary channel above primary
return 119;
case 56:
case 64:
// HT40 with secondary channel below primary
return 120;
case 100:
case 108:
case 116:
case 124:
case 132:
case 140:
// HT40 with secondary channel above primary
return 122;
case 104:
case 112:
case 120:
case 128:
case 136:
case 144:
// HT40 with secondary channel below primary
return 123;
case 149:
case 157:
// HT40 with secondary channel above primary
return 126;
case 153:
case 161:
// HT40 with secondary channel below primary
return 127;
}
}
// Error
return 0;
}
// 6GHz Band
if ((band & IHostapd::BandMask::BAND_6_GHZ) != 0) {
// Channels 1, 5. 9, 13, ...
if ((channel & 0x03) == 0x01) {
// 20MHz channel
return 131;
}
// Channels 3, 11, 19, 27, ...
if ((channel & 0x07) == 0x03) {
// 40MHz channel
return 132;
}
// Channels 7, 23, 39, 55, ...
if ((channel & 0x0F) == 0x07) {
// 80MHz channel
return 133;
}
// Channels 15, 47, 69, ...
if ((channel & 0x1F) == 0x0F) {
// 160MHz channel
return 134;
}
if (channel == 2) {
// 20MHz channel
return 136;
}
// Error
return 0;
}
return 0;
}
bool validatePassphrase(int passphrase_len, int min_len, int max_len)
{
if (min_len != -1 && passphrase_len < min_len) return false;
if (max_len != -1 && passphrase_len > max_len) return false;
return true;
}
std::string CreateHostapdConfig(
const IHostapd::IfaceParams& iface_params,
const IHostapd::NetworkParams& nw_params)
{
if (nw_params.V1_0.ssid.size() >
static_cast<uint32_t>(
IHostapd::ParamSizeLimits::SSID_MAX_LEN_IN_BYTES)) {
wpa_printf(
MSG_ERROR, "Invalid SSID size: %zu", nw_params.V1_0.ssid.size());
return "";
}
// SSID string
std::stringstream ss;
ss << std::hex;
ss << std::setfill('0');
for (uint8_t b : nw_params.V1_0.ssid) {
ss << std::setw(2) << static_cast<unsigned int>(b);
}
const std::string ssid_as_string = ss.str();
// Encryption config string
std::string encryption_config_as_string;
switch (nw_params.encryptionType) {
case IHostapd::EncryptionType::NONE:
// no security params
break;
case IHostapd::EncryptionType::WPA:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=3\n"
"wpa_pairwise=TKIP CCMP\n"
"wpa_passphrase=%s",
nw_params.passphrase.c_str());
break;
case IHostapd::EncryptionType::WPA2:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=CCMP\n"
"wpa_passphrase=%s",
nw_params.passphrase.c_str());
break;
case IHostapd::EncryptionType::WPA3_SAE_TRANSITION:
if (!validatePassphrase(
nw_params.passphrase.size(),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
static_cast<uint32_t>(IHostapd::ParamSizeLimits::
WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=CCMP\n"
"wpa_key_mgmt=WPA-PSK SAE\n"
"ieee80211w=1\n"
"sae_require_mfp=1\n"
"wpa_passphrase=%s\n"
"sae_password=%s",
nw_params.passphrase.c_str(),
nw_params.passphrase.c_str());
break;
case IHostapd::EncryptionType::WPA3_SAE:
if (!validatePassphrase(nw_params.passphrase.size(), 1, -1)) {
return "";
}
encryption_config_as_string = StringPrintf(
"wpa=2\n"
"rsn_pairwise=CCMP\n"
"wpa_key_mgmt=SAE\n"
"ieee80211w=2\n"
"sae_require_mfp=2\n"
"sae_password=%s",
nw_params.passphrase.c_str());
break;
default:
wpa_printf(MSG_ERROR, "Unknown encryption type");
return "";
}
unsigned int band = 0;
band |= iface_params.channelParams.bandMask;
std::string channel_config_as_string;
bool isFirst = true;
if (iface_params.V1_1.V1_0.channelParams.enableAcs) {
std::string freqList_as_string;
for (const auto &range :
iface_params.channelParams.acsChannelFreqRangesMhz) {
if (!isFirst) {
freqList_as_string += ",";
}
isFirst = false;
if (range.start != range.end) {
freqList_as_string +=
StringPrintf("%d-%d", range.start, range.end);
} else {
freqList_as_string += StringPrintf("%d", range.start);
}
}
channel_config_as_string = StringPrintf(
"channel=0\n"
"acs_exclude_dfs=%d\n"
"freqlist=%s",
iface_params.V1_1.V1_0.channelParams.acsShouldExcludeDfs,
freqList_as_string.c_str());
} else {
int op_class = getOpClassForChannel(
iface_params.V1_1.V1_0.channelParams.channel,
band,
iface_params.V1_1.V1_0.hwModeParams.enable80211N,
iface_params.V1_1.V1_0.hwModeParams.enable80211AC);
channel_config_as_string = StringPrintf(
"channel=%d\n"
"op_class=%d",
iface_params.V1_1.V1_0.channelParams.channel, op_class);
}
std::string hw_mode_as_string;
std::string ht_cap_vht_oper_chwidth_as_string;
if ((band & IHostapd::BandMask::BAND_2_GHZ) != 0) {
if (((band & IHostapd::BandMask::BAND_5_GHZ) != 0)
|| ((band & IHostapd::BandMask::BAND_6_GHZ) != 0)) {
hw_mode_as_string = "hw_mode=any";
if (iface_params.V1_1.V1_0.channelParams.enableAcs) {
ht_cap_vht_oper_chwidth_as_string =
"ht_capab=[HT40+]\n"
"vht_oper_chwidth=1";
}
} else {
hw_mode_as_string = "hw_mode=g";
}
} else {
if (((band & IHostapd::BandMask::BAND_5_GHZ) != 0)
|| ((band & IHostapd::BandMask::BAND_6_GHZ) != 0)) {
hw_mode_as_string = "hw_mode=a";
if (iface_params.V1_1.V1_0.channelParams.enableAcs) {
ht_cap_vht_oper_chwidth_as_string =
"ht_capab=[HT40+]\n"
"vht_oper_chwidth=1";
}
} else {
wpa_printf(MSG_ERROR, "Invalid band");
return "";
}
}
std::string he_params_as_string;
#ifdef CONFIG_IEEE80211AX
if (iface_params.hwModeParams.enable80211AX) {
he_params_as_string = StringPrintf(
"ieee80211ax=1\n"
"he_su_beamformer=%d\n"
"he_su_beamformee=%d\n"
"he_mu_beamformer=%d\n"
"he_twt_required=%d\n",
iface_params.hwModeParams.enableHeSingleUserBeamformer ? 1 : 0,
iface_params.hwModeParams.enableHeSingleUserBeamformee ? 1 : 0,
iface_params.hwModeParams.enableHeMultiUserBeamformer ? 1 : 0,
iface_params.hwModeParams.enableHeTargetWakeTime ? 1 : 0);
} else {
he_params_as_string = "ieee80211ax=0";
}
#endif /* CONFIG_IEEE80211AX */
return StringPrintf(
"interface=%s\n"
"driver=nl80211\n"
"ctrl_interface=/data/vendor/wifi/hostapd/ctrl\n"
// ssid2 signals to hostapd that the value is not a literal value
// for use as a SSID. In this case, we're giving it a hex
// std::string and hostapd needs to expect that.
"ssid2=%s\n"
"%s\n"
"ieee80211n=%d\n"
"ieee80211ac=%d\n"
"%s\n"
"%s\n"
"%s\n"
"ignore_broadcast_ssid=%d\n"
"wowlan_triggers=any\n"
"%s\n",
iface_params.V1_1.V1_0.ifaceName.c_str(), ssid_as_string.c_str(),
channel_config_as_string.c_str(),
iface_params.V1_1.V1_0.hwModeParams.enable80211N ? 1 : 0,
iface_params.V1_1.V1_0.hwModeParams.enable80211AC ? 1 : 0,
he_params_as_string.c_str(),
hw_mode_as_string.c_str(), ht_cap_vht_oper_chwidth_as_string.c_str(),
nw_params.V1_0.isHidden ? 1 : 0, encryption_config_as_string.c_str());
}
// hostapd core functions accept "C" style function pointers, so use global
// functions to pass to the hostapd core function and store the corresponding
// std::function methods to be invoked.
//
// NOTE: Using the pattern from the vendor HAL (wifi_legacy_hal.cpp).
//
// Callback to be invoked once setup is complete
std::function<void(struct hostapd_data*)> on_setup_complete_internal_callback;
void onAsyncSetupCompleteCb(void* ctx)
{
struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
if (on_setup_complete_internal_callback) {
on_setup_complete_internal_callback(iface_hapd);
// Invalidate this callback since we don't want this firing
// again.
on_setup_complete_internal_callback = nullptr;
}
}
} // namespace
namespace android {
namespace hardware {
namespace wifi {
namespace hostapd {
namespace V1_2 {
namespace implementation {
using hidl_return_util::call;
using namespace android::hardware::wifi::hostapd::V1_0;
Hostapd::Hostapd(struct hapd_interfaces* interfaces) : interfaces_(interfaces)
{}
Return<void> Hostapd::addAccessPoint(
const V1_0::IHostapd::IfaceParams& iface_params,
const V1_0::IHostapd::NetworkParams& nw_params, addAccessPoint_cb _hidl_cb)
{
return call(
this, &Hostapd::addAccessPointInternal, _hidl_cb, iface_params,
nw_params);
}
Return<void> Hostapd::addAccessPoint_1_1(
const V1_1::IHostapd::IfaceParams& iface_params,
const V1_0::IHostapd::NetworkParams& nw_params, addAccessPoint_cb _hidl_cb)
{
return call(
this, &Hostapd::addAccessPointInternal_1_1, _hidl_cb, iface_params,
nw_params);
}
Return<void> Hostapd::addAccessPoint_1_2(
const IfaceParams& iface_params, const NetworkParams& nw_params,
addAccessPoint_1_2_cb _hidl_cb)
{
return call(
this, &Hostapd::addAccessPointInternal_1_2, _hidl_cb, iface_params,
nw_params);
}
Return<void> Hostapd::removeAccessPoint(
const hidl_string& iface_name, removeAccessPoint_cb _hidl_cb)
{
return call(
this, &Hostapd::removeAccessPointInternal, _hidl_cb, iface_name);
}
Return<void> Hostapd::terminate()
{
wpa_printf(MSG_INFO, "Terminating...");
eloop_terminate();
return Void();
}
Return<void> Hostapd::registerCallback(
const sp<V1_1::IHostapdCallback>& callback, registerCallback_cb _hidl_cb)
{
return call(
this, &Hostapd::registerCallbackInternal, _hidl_cb, callback);
}
Return<void> Hostapd::forceClientDisconnect(
const hidl_string& iface_name, const hidl_array<uint8_t, 6>& client_address,
V1_2::Ieee80211ReasonCode reason_code, forceClientDisconnect_cb _hidl_cb)
{
return call(
this, &Hostapd::forceClientDisconnectInternal, _hidl_cb, iface_name,
client_address, reason_code);
}
Return<void> Hostapd::setDebugParams(
DebugLevel level, setDebugParams_cb _hidl_cb)
{
return call(
this, &Hostapd::setDebugParamsInternal, _hidl_cb, level);
}
V1_0::HostapdStatus Hostapd::addAccessPointInternal(
const V1_0::IHostapd::IfaceParams& iface_params,
const V1_0::IHostapd::NetworkParams& nw_params)
{
return {V1_0::HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
V1_0::HostapdStatus Hostapd::addAccessPointInternal_1_1(
const V1_1::IHostapd::IfaceParams& iface_params,
const V1_1::IHostapd::NetworkParams& nw_params)
{
return {V1_0::HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
HostapdStatus Hostapd::addAccessPointInternal_1_2(
const IfaceParams& iface_params, const NetworkParams& nw_params)
{
if (hostapd_get_iface(interfaces_, iface_params.V1_1.V1_0.ifaceName.c_str())) {
wpa_printf(
MSG_ERROR, "Interface %s already present",
iface_params.V1_1.V1_0.ifaceName.c_str());
return {HostapdStatusCode::FAILURE_IFACE_EXISTS, ""};
}
const auto conf_params = CreateHostapdConfig(iface_params, nw_params);
if (conf_params.empty()) {
wpa_printf(MSG_ERROR, "Failed to create config params");
return {HostapdStatusCode::FAILURE_ARGS_INVALID, ""};
}
const auto conf_file_path =
WriteHostapdConfig(iface_params.V1_1.V1_0.ifaceName, conf_params);
if (conf_file_path.empty()) {
wpa_printf(MSG_ERROR, "Failed to write config file");
return {HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
std::string add_iface_param_str = StringPrintf(
"%s config=%s", iface_params.V1_1.V1_0.ifaceName.c_str(),
conf_file_path.c_str());
std::vector<char> add_iface_param_vec(
add_iface_param_str.begin(), add_iface_param_str.end() + 1);
if (hostapd_add_iface(interfaces_, add_iface_param_vec.data()) < 0) {
wpa_printf(
MSG_ERROR, "Adding interface %s failed",
add_iface_param_str.c_str());
return {HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
struct hostapd_data* iface_hapd =
hostapd_get_iface(interfaces_, iface_params.V1_1.V1_0.ifaceName.c_str());
WPA_ASSERT(iface_hapd != nullptr && iface_hapd->iface != nullptr);
// Register the setup complete callbacks
on_setup_complete_internal_callback =
[this](struct hostapd_data* iface_hapd) {
wpa_printf(
MSG_DEBUG, "AP interface setup completed - state %s",
hostapd_state_text(iface_hapd->iface->state));
if (iface_hapd->iface->state == HAPD_IFACE_DISABLED) {
// Invoke the failure callback on all registered
// clients.
for (const auto& callback : callbacks_) {
callback->onFailure(
iface_hapd->conf->iface);
}
}
};
iface_hapd->setup_complete_cb = onAsyncSetupCompleteCb;
iface_hapd->setup_complete_cb_ctx = iface_hapd;
if (hostapd_enable_iface(iface_hapd->iface) < 0) {
wpa_printf(
MSG_ERROR, "Enabling interface %s failed",
iface_params.V1_1.V1_0.ifaceName.c_str());
return {HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
return {HostapdStatusCode::SUCCESS, ""};
}
V1_0::HostapdStatus Hostapd::removeAccessPointInternal(const std::string& iface_name)
{
std::vector<char> remove_iface_param_vec(
iface_name.begin(), iface_name.end() + 1);
if (hostapd_remove_iface(interfaces_, remove_iface_param_vec.data()) <
0) {
wpa_printf(
MSG_ERROR, "Removing interface %s failed",
iface_name.c_str());
return {V1_0::HostapdStatusCode::FAILURE_UNKNOWN, ""};
}
return {V1_0::HostapdStatusCode::SUCCESS, ""};
}
V1_0::HostapdStatus Hostapd::registerCallbackInternal(
const sp<V1_1::IHostapdCallback>& callback)
{
callbacks_.push_back(callback);
return {V1_0::HostapdStatusCode::SUCCESS, ""};
}
V1_2::HostapdStatus Hostapd::forceClientDisconnectInternal(const std::string& iface_name,
const std::array<uint8_t, 6>& client_address, V1_2::Ieee80211ReasonCode reason_code)
{
struct hostapd_data *hapd = hostapd_get_iface(interfaces_, iface_name.c_str());
struct sta_info *sta;
if (!hapd) {
wpa_printf(MSG_ERROR, "Interface %s doesn't exist", iface_name.c_str());
return {V1_2::HostapdStatusCode::FAILURE_IFACE_UNKNOWN, ""};
}
for (sta = hapd->sta_list; sta; sta = sta->next) {
int res;
res = memcmp(sta->addr, client_address.data(), ETH_ALEN);
if (res == 0) {
wpa_printf(MSG_INFO, "Force client:" MACSTR " disconnect with reason: %d",
MAC2STR(client_address.data()), (uint16_t) reason_code);
ap_sta_disconnect(hapd, sta, sta->addr, (uint16_t) reason_code);
return {V1_2::HostapdStatusCode::SUCCESS, ""};
}
}
return {V1_2::HostapdStatusCode::FAILURE_CLIENT_UNKNOWN, ""};
}
V1_2::HostapdStatus Hostapd::setDebugParamsInternal(DebugLevel level)
{
wpa_debug_level = static_cast<uint32_t>(level);
return {V1_2::HostapdStatusCode::SUCCESS, ""};
}
} // namespace implementation
} // namespace V1_2
} // namespace hostapd
} // namespace wifi
} // namespace hardware
} // namespace android