blob: da3996b9bdfb0be287e6a1d0b03ab9eb8e9da5d8 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_frame.h"
#include <math.h>
#include <string.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/bind.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/test/fake_texture_frame.h"
namespace webrtc {
bool EqualPlane(const uint8_t* data1,
const uint8_t* data2,
int stride,
int width,
int height);
bool EqualFrames(const VideoFrame& frame1, const VideoFrame& frame2);
int ExpectedSize(int plane_stride, int image_height, PlaneType type);
TEST(TestVideoFrame, InitialValues) {
VideoFrame frame;
EXPECT_TRUE(frame.IsZeroSize());
EXPECT_EQ(kVideoRotation_0, frame.rotation());
}
TEST(TestVideoFrame, CopiesInitialFrameWithoutCrashing) {
VideoFrame frame;
VideoFrame frame2;
frame2.CopyFrame(frame);
}
TEST(TestVideoFrame, WidthHeightValues) {
VideoFrame frame;
const int valid_value = 10;
EXPECT_EQ(0, frame.CreateEmptyFrame(10, 10, 10, 14, 90));
EXPECT_EQ(valid_value, frame.width());
EXPECT_EQ(valid_value, frame.height());
frame.set_timestamp(123u);
EXPECT_EQ(123u, frame.timestamp());
frame.set_ntp_time_ms(456);
EXPECT_EQ(456, frame.ntp_time_ms());
frame.set_render_time_ms(789);
EXPECT_EQ(789, frame.render_time_ms());
}
TEST(TestVideoFrame, SizeAllocation) {
VideoFrame frame;
EXPECT_EQ(0, frame. CreateEmptyFrame(10, 10, 12, 14, 220));
int height = frame.height();
int stride_y = frame.stride(kYPlane);
int stride_u = frame.stride(kUPlane);
int stride_v = frame.stride(kVPlane);
// Verify that allocated size was computed correctly.
EXPECT_EQ(ExpectedSize(stride_y, height, kYPlane),
frame.allocated_size(kYPlane));
EXPECT_EQ(ExpectedSize(stride_u, height, kUPlane),
frame.allocated_size(kUPlane));
EXPECT_EQ(ExpectedSize(stride_v, height, kVPlane),
frame.allocated_size(kVPlane));
}
TEST(TestVideoFrame, CopyFrame) {
uint32_t timestamp = 1;
int64_t ntp_time_ms = 2;
int64_t render_time_ms = 3;
int stride_y = 15;
int stride_u = 10;
int stride_v = 10;
int width = 15;
int height = 15;
// Copy frame.
VideoFrame small_frame;
EXPECT_EQ(0, small_frame.CreateEmptyFrame(width, height,
stride_y, stride_u, stride_v));
small_frame.set_timestamp(timestamp);
small_frame.set_ntp_time_ms(ntp_time_ms);
small_frame.set_render_time_ms(render_time_ms);
const int kSizeY = 400;
const int kSizeU = 100;
const int kSizeV = 100;
const VideoRotation kRotation = kVideoRotation_270;
uint8_t buffer_y[kSizeY];
uint8_t buffer_u[kSizeU];
uint8_t buffer_v[kSizeV];
memset(buffer_y, 16, kSizeY);
memset(buffer_u, 8, kSizeU);
memset(buffer_v, 4, kSizeV);
VideoFrame big_frame;
EXPECT_EQ(0,
big_frame.CreateFrame(buffer_y, buffer_u, buffer_v,
width + 5, height + 5, stride_y + 5,
stride_u, stride_v, kRotation));
// Frame of smaller dimensions.
EXPECT_EQ(0, small_frame.CopyFrame(big_frame));
EXPECT_TRUE(EqualFrames(small_frame, big_frame));
EXPECT_EQ(kRotation, small_frame.rotation());
// Frame of larger dimensions.
EXPECT_EQ(0, small_frame.CreateEmptyFrame(width, height,
stride_y, stride_u, stride_v));
memset(small_frame.buffer(kYPlane), 1, small_frame.allocated_size(kYPlane));
memset(small_frame.buffer(kUPlane), 2, small_frame.allocated_size(kUPlane));
memset(small_frame.buffer(kVPlane), 3, small_frame.allocated_size(kVPlane));
EXPECT_EQ(0, big_frame.CopyFrame(small_frame));
EXPECT_TRUE(EqualFrames(small_frame, big_frame));
}
TEST(TestVideoFrame, ShallowCopy) {
uint32_t timestamp = 1;
int64_t ntp_time_ms = 2;
int64_t render_time_ms = 3;
int stride_y = 15;
int stride_u = 10;
int stride_v = 10;
int width = 15;
int height = 15;
const int kSizeY = 400;
const int kSizeU = 100;
const int kSizeV = 100;
const VideoRotation kRotation = kVideoRotation_270;
uint8_t buffer_y[kSizeY];
uint8_t buffer_u[kSizeU];
uint8_t buffer_v[kSizeV];
memset(buffer_y, 16, kSizeY);
memset(buffer_u, 8, kSizeU);
memset(buffer_v, 4, kSizeV);
VideoFrame frame1;
EXPECT_EQ(0, frame1.CreateFrame(buffer_y, buffer_u, buffer_v, width, height,
stride_y, stride_u, stride_v, kRotation));
frame1.set_timestamp(timestamp);
frame1.set_ntp_time_ms(ntp_time_ms);
frame1.set_render_time_ms(render_time_ms);
VideoFrame frame2;
frame2.ShallowCopy(frame1);
// To be able to access the buffers, we need const pointers to the frames.
const VideoFrame* const_frame1_ptr = &frame1;
const VideoFrame* const_frame2_ptr = &frame2;
EXPECT_TRUE(const_frame1_ptr->buffer(kYPlane) ==
const_frame2_ptr->buffer(kYPlane));
EXPECT_TRUE(const_frame1_ptr->buffer(kUPlane) ==
const_frame2_ptr->buffer(kUPlane));
EXPECT_TRUE(const_frame1_ptr->buffer(kVPlane) ==
const_frame2_ptr->buffer(kVPlane));
EXPECT_EQ(frame2.timestamp(), frame1.timestamp());
EXPECT_EQ(frame2.ntp_time_ms(), frame1.ntp_time_ms());
EXPECT_EQ(frame2.render_time_ms(), frame1.render_time_ms());
EXPECT_EQ(frame2.rotation(), frame1.rotation());
frame2.set_timestamp(timestamp + 1);
frame2.set_ntp_time_ms(ntp_time_ms + 1);
frame2.set_render_time_ms(render_time_ms + 1);
frame2.set_rotation(kVideoRotation_90);
EXPECT_NE(frame2.timestamp(), frame1.timestamp());
EXPECT_NE(frame2.ntp_time_ms(), frame1.ntp_time_ms());
EXPECT_NE(frame2.render_time_ms(), frame1.render_time_ms());
EXPECT_NE(frame2.rotation(), frame1.rotation());
}
TEST(TestVideoFrame, Reset) {
VideoFrame frame;
ASSERT_TRUE(frame.CreateEmptyFrame(5, 5, 5, 5, 5) == 0);
frame.set_ntp_time_ms(1);
frame.set_timestamp(2);
frame.set_render_time_ms(3);
ASSERT_TRUE(frame.video_frame_buffer() != NULL);
frame.Reset();
EXPECT_EQ(0u, frame.ntp_time_ms());
EXPECT_EQ(0u, frame.render_time_ms());
EXPECT_EQ(0u, frame.timestamp());
EXPECT_TRUE(frame.video_frame_buffer() == NULL);
}
TEST(TestVideoFrame, CopyBuffer) {
VideoFrame frame1, frame2;
int width = 15;
int height = 15;
int stride_y = 15;
int stride_uv = 10;
const int kSizeY = 225;
const int kSizeUv = 80;
EXPECT_EQ(0, frame2.CreateEmptyFrame(width, height,
stride_y, stride_uv, stride_uv));
uint8_t buffer_y[kSizeY];
uint8_t buffer_u[kSizeUv];
uint8_t buffer_v[kSizeUv];
memset(buffer_y, 16, kSizeY);
memset(buffer_u, 8, kSizeUv);
memset(buffer_v, 4, kSizeUv);
frame2.CreateFrame(buffer_y, buffer_u, buffer_v,
width, height, stride_y, stride_uv, stride_uv);
// Expect exactly the same pixel data.
EXPECT_TRUE(EqualPlane(buffer_y, frame2.buffer(kYPlane), stride_y, 15, 15));
EXPECT_TRUE(EqualPlane(buffer_u, frame2.buffer(kUPlane), stride_uv, 8, 8));
EXPECT_TRUE(EqualPlane(buffer_v, frame2.buffer(kVPlane), stride_uv, 8, 8));
// Compare size.
EXPECT_LE(kSizeY, frame2.allocated_size(kYPlane));
EXPECT_LE(kSizeUv, frame2.allocated_size(kUPlane));
EXPECT_LE(kSizeUv, frame2.allocated_size(kVPlane));
}
TEST(TestVideoFrame, ReuseAllocation) {
VideoFrame frame;
frame.CreateEmptyFrame(640, 320, 640, 320, 320);
const uint8_t* y = frame.buffer(kYPlane);
const uint8_t* u = frame.buffer(kUPlane);
const uint8_t* v = frame.buffer(kVPlane);
frame.CreateEmptyFrame(640, 320, 640, 320, 320);
EXPECT_EQ(y, frame.buffer(kYPlane));
EXPECT_EQ(u, frame.buffer(kUPlane));
EXPECT_EQ(v, frame.buffer(kVPlane));
}
TEST(TestVideoFrame, FailToReuseAllocation) {
VideoFrame frame1;
frame1.CreateEmptyFrame(640, 320, 640, 320, 320);
const uint8_t* y = frame1.buffer(kYPlane);
const uint8_t* u = frame1.buffer(kUPlane);
const uint8_t* v = frame1.buffer(kVPlane);
// Make a shallow copy of |frame1|.
VideoFrame frame2(frame1.video_frame_buffer(), 0, 0, kVideoRotation_0);
frame1.CreateEmptyFrame(640, 320, 640, 320, 320);
EXPECT_NE(y, frame1.buffer(kYPlane));
EXPECT_NE(u, frame1.buffer(kUPlane));
EXPECT_NE(v, frame1.buffer(kVPlane));
}
TEST(TestVideoFrame, TextureInitialValues) {
test::FakeNativeHandle* handle = new test::FakeNativeHandle();
VideoFrame frame = test::CreateFakeNativeHandleFrame(
handle, 640, 480, 100, 10, webrtc::kVideoRotation_0);
EXPECT_EQ(640, frame.width());
EXPECT_EQ(480, frame.height());
EXPECT_EQ(100u, frame.timestamp());
EXPECT_EQ(10, frame.render_time_ms());
EXPECT_EQ(handle, frame.native_handle());
frame.set_timestamp(200);
EXPECT_EQ(200u, frame.timestamp());
frame.set_render_time_ms(20);
EXPECT_EQ(20, frame.render_time_ms());
}
bool EqualPlane(const uint8_t* data1,
const uint8_t* data2,
int stride,
int width,
int height) {
for (int y = 0; y < height; ++y) {
if (memcmp(data1, data2, width) != 0)
return false;
data1 += stride;
data2 += stride;
}
return true;
}
bool EqualFrames(const VideoFrame& frame1, const VideoFrame& frame2) {
if ((frame1.width() != frame2.width()) ||
(frame1.height() != frame2.height()) ||
(frame1.stride(kYPlane) != frame2.stride(kYPlane)) ||
(frame1.stride(kUPlane) != frame2.stride(kUPlane)) ||
(frame1.stride(kVPlane) != frame2.stride(kVPlane)) ||
(frame1.timestamp() != frame2.timestamp()) ||
(frame1.ntp_time_ms() != frame2.ntp_time_ms()) ||
(frame1.render_time_ms() != frame2.render_time_ms())) {
return false;
}
const int half_width = (frame1.width() + 1) / 2;
const int half_height = (frame1.height() + 1) / 2;
return EqualPlane(frame1.buffer(kYPlane), frame2.buffer(kYPlane),
frame1.stride(kYPlane), frame1.width(), frame1.height()) &&
EqualPlane(frame1.buffer(kUPlane), frame2.buffer(kUPlane),
frame1.stride(kUPlane), half_width, half_height) &&
EqualPlane(frame1.buffer(kVPlane), frame2.buffer(kVPlane),
frame1.stride(kVPlane), half_width, half_height);
}
int ExpectedSize(int plane_stride, int image_height, PlaneType type) {
if (type == kYPlane) {
return (plane_stride * image_height);
} else {
int half_height = (image_height + 1) / 2;
return (plane_stride * half_height);
}
}
} // namespace webrtc