blob: dbb7e638b2d063c52e876ec53df090893e2d4d4c [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//
// Implements core class for intelligibility enhancer.
//
// Details of the model and algorithm can be found in the original paper:
// http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788
//
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <numeric>
#include "webrtc/base/checks.h"
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
#include "webrtc/common_audio/window_generator.h"
namespace webrtc {
namespace {
const int kWindowSizeMs = 2;
const int kChunkSizeMs = 10; // Size provided by APM.
const float kClipFreq = 200.0f;
const float kConfigRho = 0.02f; // Default production and interpretation SNR.
const float kKbdAlpha = 1.5f;
const float kLambdaBot = -1.0f; // Extreme values in bisection
const float kLambdaTop = -10e-18f; // search for lamda.
} // namespace
using std::complex;
using std::max;
using std::min;
using VarianceType = intelligibility::VarianceArray::StepType;
IntelligibilityEnhancer::TransformCallback::TransformCallback(
IntelligibilityEnhancer* parent,
IntelligibilityEnhancer::AudioSource source)
: parent_(parent), source_(source) {
}
void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
const complex<float>* const* in_block,
int in_channels,
int frames,
int /* out_channels */,
complex<float>* const* out_block) {
DCHECK_EQ(parent_->freqs_, frames);
for (int i = 0; i < in_channels; ++i) {
parent_->DispatchAudio(source_, in_block[i], out_block[i]);
}
}
IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
int sample_rate_hz,
int channels,
int cv_type,
float cv_alpha,
int cv_win,
int analysis_rate,
int variance_rate,
float gain_limit)
: freqs_(RealFourier::ComplexLength(
RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
window_size_(1 << RealFourier::FftOrder(freqs_)),
chunk_length_(sample_rate_hz * kChunkSizeMs / 1000),
bank_size_(GetBankSize(sample_rate_hz, erb_resolution)),
sample_rate_hz_(sample_rate_hz),
erb_resolution_(erb_resolution),
channels_(channels),
analysis_rate_(analysis_rate),
variance_rate_(variance_rate),
clear_variance_(freqs_,
static_cast<VarianceType>(cv_type),
cv_win,
cv_alpha),
noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f),
filtered_clear_var_(new float[bank_size_]),
filtered_noise_var_(new float[bank_size_]),
filter_bank_(bank_size_),
center_freqs_(new float[bank_size_]),
rho_(new float[bank_size_]),
gains_eq_(new float[bank_size_]),
gain_applier_(freqs_, gain_limit),
temp_out_buffer_(nullptr),
input_audio_(new float* [channels]),
kbd_window_(new float[window_size_]),
render_callback_(this, AudioSource::kRenderStream),
capture_callback_(this, AudioSource::kCaptureStream),
block_count_(0),
analysis_step_(0),
vad_high_(WebRtcVad_Create()),
vad_low_(WebRtcVad_Create()),
vad_tmp_buffer_(new int16_t[chunk_length_]) {
DCHECK_LE(kConfigRho, 1.0f);
CreateErbBank();
WebRtcVad_Init(vad_high_);
WebRtcVad_set_mode(vad_high_, 0); // High likelihood of speech.
WebRtcVad_Init(vad_low_);
WebRtcVad_set_mode(vad_low_, 3); // Low likelihood of speech.
temp_out_buffer_ = static_cast<float**>(
malloc(sizeof(*temp_out_buffer_) * channels_ +
sizeof(**temp_out_buffer_) * chunk_length_ * channels_));
for (int i = 0; i < channels_; ++i) {
temp_out_buffer_[i] =
reinterpret_cast<float*>(temp_out_buffer_ + channels_) +
chunk_length_ * i;
}
// Assumes all rho equal.
for (int i = 0; i < bank_size_; ++i) {
rho_[i] = kConfigRho * kConfigRho;
}
float freqs_khz = kClipFreq / 1000.0f;
int erb_index = static_cast<int>(ceilf(
11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f));
start_freq_ = std::max(1, erb_index * erb_resolution);
WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
kbd_window_.get());
render_mangler_.reset(new LappedTransform(
channels_, channels_, chunk_length_, kbd_window_.get(), window_size_,
window_size_ / 2, &render_callback_));
capture_mangler_.reset(new LappedTransform(
channels_, channels_, chunk_length_, kbd_window_.get(), window_size_,
window_size_ / 2, &capture_callback_));
}
IntelligibilityEnhancer::~IntelligibilityEnhancer() {
WebRtcVad_Free(vad_low_);
WebRtcVad_Free(vad_high_);
free(temp_out_buffer_);
}
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) {
for (int i = 0; i < chunk_length_; ++i) {
vad_tmp_buffer_[i] = (int16_t)audio[0][i];
}
has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_,
vad_tmp_buffer_.get(), chunk_length_) == 1;
// Process and enhance chunk of |audio|
render_mangler_->ProcessChunk(audio, temp_out_buffer_);
for (int i = 0; i < channels_; ++i) {
memcpy(audio[i], temp_out_buffer_[i],
chunk_length_ * sizeof(**temp_out_buffer_));
}
}
void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) {
for (int i = 0; i < chunk_length_; ++i) {
vad_tmp_buffer_[i] = (int16_t)audio[0][i];
}
// TODO(bercic): The VAD was always detecting voice in the noise stream,
// no matter what the aggressiveness, so it was temporarily disabled here.
#if 0
if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(),
chunk_length_) == 1) {
printf("capture HAS speech\n");
return;
}
printf("capture NO speech\n");
#endif
capture_mangler_->ProcessChunk(audio, temp_out_buffer_);
}
void IntelligibilityEnhancer::DispatchAudio(
IntelligibilityEnhancer::AudioSource source,
const complex<float>* in_block,
complex<float>* out_block) {
switch (source) {
case kRenderStream:
ProcessClearBlock(in_block, out_block);
break;
case kCaptureStream:
ProcessNoiseBlock(in_block, out_block);
break;
}
}
void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
complex<float>* out_block) {
if (block_count_ < 2) {
memset(out_block, 0, freqs_ * sizeof(*out_block));
++block_count_;
return;
}
// For now, always assumes enhancement is necessary.
// TODO(ekmeyerson): Change to only enhance if necessary,
// based on experiments with different cutoffs.
if (has_voice_low_ || true) {
clear_variance_.Step(in_block, false);
const float power_target = std::accumulate(
clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.0f);
if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
AnalyzeClearBlock(power_target);
++analysis_step_;
if (analysis_step_ == variance_rate_) {
analysis_step_ = 0;
clear_variance_.Clear();
noise_variance_.Clear();
}
}
++block_count_;
}
/* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */
gain_applier_.Apply(in_block, out_block);
}
void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
const float power_top =
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
const float power_bot =
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
if (power_target >= power_bot && power_target <= power_top) {
SolveForLambda(power_target, power_bot, power_top);
UpdateErbGains();
} // Else experiencing variance underflow, so do nothing.
}
void IntelligibilityEnhancer::SolveForLambda(float power_target,
float power_bot,
float power_top) {
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
const int kMaxIters = 100; // for these, based on experiments.
const float reciprocal_power_target = 1.f / power_target;
float lambda_bot = kLambdaBot;
float lambda_top = kLambdaTop;
float power_ratio = 2.0f; // Ratio of achieved power to target power.
int iters = 0;
while (std::fabs(power_ratio - 1.0f) > kConvergeThresh &&
iters <= kMaxIters) {
const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
const float power =
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
if (power < power_target) {
lambda_bot = lambda;
} else {
lambda_top = lambda;
}
power_ratio = std::fabs(power * reciprocal_power_target);
++iters;
}
}
void IntelligibilityEnhancer::UpdateErbGains() {
// (ERB gain) = filterbank' * (freq gain)
float* gains = gain_applier_.target();
for (int i = 0; i < freqs_; ++i) {
gains[i] = 0.0f;
for (int j = 0; j < bank_size_; ++j) {
gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]);
}
}
}
void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block,
complex<float>* /*out_block*/) {
noise_variance_.Step(in_block);
}
int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) {
float freq_limit = sample_rate / 2000.0f;
int erb_scale = ceilf(
11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f);
return erb_scale * erb_resolution;
}
void IntelligibilityEnhancer::CreateErbBank() {
int lf = 1, rf = 4;
for (int i = 0; i < bank_size_; ++i) {
float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
center_freqs_[i] -= 14678.49f;
}
float last_center_freq = center_freqs_[bank_size_ - 1];
for (int i = 0; i < bank_size_; ++i) {
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
}
for (int i = 0; i < bank_size_; ++i) {
filter_bank_[i].resize(freqs_);
}
for (int i = 1; i <= bank_size_; ++i) {
int lll, ll, rr, rrr;
lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
ll =
round(center_freqs_[max(1, i) - 1] * freqs_ / (0.5f * sample_rate_hz_));
lll = min(freqs_, max(lll, 1)) - 1;
ll = min(freqs_, max(ll, 1)) - 1;
rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
rrr = min(freqs_, max(rrr, 1)) - 1;
rr = min(freqs_, max(rr, 1)) - 1;
float step, element;
step = 1.0f / (ll - lll);
element = 0.0f;
for (int j = lll; j <= ll; ++j) {
filter_bank_[i - 1][j] = element;
element += step;
}
step = 1.0f / (rrr - rr);
element = 1.0f;
for (int j = rr; j <= rrr; ++j) {
filter_bank_[i - 1][j] = element;
element -= step;
}
for (int j = ll; j <= rr; ++j) {
filter_bank_[i - 1][j] = 1.0f;
}
}
float sum;
for (int i = 0; i < freqs_; ++i) {
sum = 0.0f;
for (int j = 0; j < bank_size_; ++j) {
sum += filter_bank_[j][i];
}
for (int j = 0; j < bank_size_; ++j) {
filter_bank_[j][i] /= sum;
}
}
}
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
int start_freq,
float* sols) {
bool quadratic = (kConfigRho < 1.0f);
const float* var_x0 = filtered_clear_var_.get();
const float* var_n0 = filtered_noise_var_.get();
for (int n = 0; n < start_freq; ++n) {
sols[n] = 1.0f;
}
// Analytic solution for optimal gains. See paper for derivation.
for (int n = start_freq - 1; n < bank_size_; ++n) {
float alpha0, beta0, gamma0;
gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
lambda * var_x0[n] * var_n0[n] * var_n0[n];
beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
if (quadratic) {
alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
sols[n] =
(-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0);
} else {
sols[n] = -gamma0 / beta0;
}
sols[n] = fmax(0, sols[n]);
}
}
void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
DCHECK_GT(freqs_, 0);
for (int i = 0; i < bank_size_; ++i) {
result[i] = DotProduct(&filter_bank_[i][0], var, freqs_);
}
}
float IntelligibilityEnhancer::DotProduct(const float* a,
const float* b,
int length) {
float ret = 0.0f;
for (int i = 0; i < length; ++i) {
ret = fmaf(a[i], b[i], ret);
}
return ret;
}
} // namespace webrtc