blob: bd4a563f632e19f376be46dd6169dec723707f4c [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h"
#include "webrtc/modules/video_coding/codecs/test/packet_manipulator.h"
#include "webrtc/modules/video_coding/codecs/test/videoprocessor.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/frame_reader.h"
#include "webrtc/test/testsupport/frame_writer.h"
#include "webrtc/test/testsupport/gtest_disable.h"
#include "webrtc/test/testsupport/metrics/video_metrics.h"
#include "webrtc/test/testsupport/packet_reader.h"
#include "webrtc/typedefs.h"
namespace webrtc {
// Maximum number of rate updates (i.e., calls to encoder to change bitrate
// and/or frame rate) for the current tests.
const int kMaxNumRateUpdates = 3;
const int kPercTargetvsActualMismatch = 20;
const int kBaseKeyFrameInterval = 3000;
// Codec and network settings.
struct CodecConfigPars {
float packet_loss;
int num_temporal_layers;
int key_frame_interval;
bool error_concealment_on;
bool denoising_on;
bool frame_dropper_on;
bool spatial_resize_on;
};
// Quality metrics.
struct QualityMetrics {
double minimum_avg_psnr;
double minimum_min_psnr;
double minimum_avg_ssim;
double minimum_min_ssim;
};
// The sequence of bitrate and frame rate changes for the encoder, the frame
// number where the changes are made, and the total number of frames for the
// test.
struct RateProfile {
int target_bit_rate[kMaxNumRateUpdates];
int input_frame_rate[kMaxNumRateUpdates];
int frame_index_rate_update[kMaxNumRateUpdates + 1];
int num_frames;
};
// Metrics for the rate control. The rate mismatch metrics are defined as
// percentages.|max_time_hit_target| is defined as number of frames, after a
// rate update is made to the encoder, for the encoder to reach within
// |kPercTargetvsActualMismatch| of new target rate. The metrics are defined for
// each rate update sequence.
struct RateControlMetrics {
int max_num_dropped_frames;
int max_key_frame_size_mismatch;
int max_delta_frame_size_mismatch;
int max_encoding_rate_mismatch;
int max_time_hit_target;
int num_spatial_resizes;
};
// Sequence used is foreman (CIF): may be better to use VGA for resize test.
const int kCIFWidth = 352;
const int kCIFHeight = 288;
const int kNbrFramesShort = 100; // Some tests are run for shorter sequence.
const int kNbrFramesLong = 299;
// Parameters from VP8 wrapper, which control target size of key frames.
const float kInitialBufferSize = 0.5f;
const float kOptimalBufferSize = 0.6f;
const float kScaleKeyFrameSize = 0.5f;
// Integration test for video processor. Encodes+decodes a clip and
// writes it to the output directory. After completion, quality metrics
// (PSNR and SSIM) and rate control metrics are computed to verify that the
// quality and encoder response is acceptable. The rate control tests allow us
// to verify the behavior for changing bitrate, changing frame rate, frame
// dropping/spatial resize, and temporal layers. The limits for the rate
// control metrics are set to be fairly conservative, so failure should only
// happen when some significant regression or breakdown occurs.
class VideoProcessorIntegrationTest: public testing::Test {
protected:
VideoEncoder* encoder_;
VideoDecoder* decoder_;
webrtc::test::FrameReader* frame_reader_;
webrtc::test::FrameWriter* frame_writer_;
webrtc::test::PacketReader packet_reader_;
webrtc::test::PacketManipulator* packet_manipulator_;
webrtc::test::Stats stats_;
webrtc::test::TestConfig config_;
VideoCodec codec_settings_;
webrtc::test::VideoProcessor* processor_;
// Quantities defined/updated for every encoder rate update.
// Some quantities defined per temporal layer (at most 3 layers in this test).
int num_frames_per_update_[3];
float sum_frame_size_mismatch_[3];
float sum_encoded_frame_size_[3];
float encoding_bitrate_[3];
float per_frame_bandwidth_[3];
float bit_rate_layer_[3];
float frame_rate_layer_[3];
int num_frames_total_;
float sum_encoded_frame_size_total_;
float encoding_bitrate_total_;
float perc_encoding_rate_mismatch_;
int num_frames_to_hit_target_;
bool encoding_rate_within_target_;
int bit_rate_;
int frame_rate_;
int layer_;
float target_size_key_frame_initial_;
float target_size_key_frame_;
float sum_key_frame_size_mismatch_;
int num_key_frames_;
float start_bitrate_;
// Codec and network settings.
float packet_loss_;
int num_temporal_layers_;
int key_frame_interval_;
bool error_concealment_on_;
bool denoising_on_;
bool frame_dropper_on_;
bool spatial_resize_on_;
VideoProcessorIntegrationTest() {}
virtual ~VideoProcessorIntegrationTest() {}
void SetUpCodecConfig() {
encoder_ = VP8Encoder::Create();
decoder_ = VP8Decoder::Create();
// CIF is currently used for all tests below.
// Setup the TestConfig struct for processing of a clip in CIF resolution.
config_.input_filename =
webrtc::test::ResourcePath("foreman_cif", "yuv");
// Generate an output filename in a safe way.
config_.output_filename = webrtc::test::TempFilename(
webrtc::test::OutputPath(), "videoprocessor_integrationtest");
config_.frame_length_in_bytes = CalcBufferSize(kI420,
kCIFWidth, kCIFHeight);
config_.verbose = false;
// Only allow encoder/decoder to use single core, for predictability.
config_.use_single_core = true;
// Key frame interval and packet loss are set for each test.
config_.keyframe_interval = key_frame_interval_;
config_.networking_config.packet_loss_probability = packet_loss_;
// Get a codec configuration struct and configure it.
VideoCodingModule::Codec(kVideoCodecVP8, &codec_settings_);
config_.codec_settings = &codec_settings_;
config_.codec_settings->startBitrate = start_bitrate_;
config_.codec_settings->width = kCIFWidth;
config_.codec_settings->height = kCIFHeight;
// These features may be set depending on the test.
config_.codec_settings->codecSpecific.VP8.errorConcealmentOn =
error_concealment_on_;
config_.codec_settings->codecSpecific.VP8.denoisingOn =
denoising_on_;
config_.codec_settings->codecSpecific.VP8.numberOfTemporalLayers =
num_temporal_layers_;
config_.codec_settings->codecSpecific.VP8.frameDroppingOn =
frame_dropper_on_;
config_.codec_settings->codecSpecific.VP8.automaticResizeOn =
spatial_resize_on_;
config_.codec_settings->codecSpecific.VP8.keyFrameInterval =
kBaseKeyFrameInterval;
frame_reader_ =
new webrtc::test::FrameReaderImpl(config_.input_filename,
config_.frame_length_in_bytes);
frame_writer_ =
new webrtc::test::FrameWriterImpl(config_.output_filename,
config_.frame_length_in_bytes);
ASSERT_TRUE(frame_reader_->Init());
ASSERT_TRUE(frame_writer_->Init());
packet_manipulator_ = new webrtc::test::PacketManipulatorImpl(
&packet_reader_, config_.networking_config, config_.verbose);
processor_ = new webrtc::test::VideoProcessorImpl(encoder_, decoder_,
frame_reader_,
frame_writer_,
packet_manipulator_,
config_, &stats_);
ASSERT_TRUE(processor_->Init());
}
// Reset quantities after each encoder update, update the target
// per-frame bandwidth.
void ResetRateControlMetrics(int num_frames) {
for (int i = 0; i < num_temporal_layers_; i++) {
num_frames_per_update_[i] = 0;
sum_frame_size_mismatch_[i] = 0.0f;
sum_encoded_frame_size_[i] = 0.0f;
encoding_bitrate_[i] = 0.0f;
// Update layer per-frame-bandwidth.
per_frame_bandwidth_[i] = static_cast<float>(bit_rate_layer_[i]) /
static_cast<float>(frame_rate_layer_[i]);
}
// Set maximum size of key frames, following setting in the VP8 wrapper.
float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * frame_rate_;
// We don't know exact target size of the key frames (except for first one),
// but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is
// set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average
// as reference for mismatch. Note key frames always correspond to base
// layer frame in this test.
target_size_key_frame_ = 0.5 * (3 + max_key_size) * per_frame_bandwidth_[0];
num_frames_total_ = 0;
sum_encoded_frame_size_total_ = 0.0f;
encoding_bitrate_total_ = 0.0f;
perc_encoding_rate_mismatch_ = 0.0f;
num_frames_to_hit_target_ = num_frames;
encoding_rate_within_target_ = false;
sum_key_frame_size_mismatch_ = 0.0;
num_key_frames_ = 0;
}
// For every encoded frame, update the rate control metrics.
void UpdateRateControlMetrics(int frame_num, VideoFrameType frame_type) {
int encoded_frame_size = processor_->EncodedFrameSize();
float encoded_size_kbits = encoded_frame_size * 8.0f / 1000.0f;
// Update layer data.
// Update rate mismatch relative to per-frame bandwidth for delta frames.
if (frame_type == kDeltaFrame) {
// TODO(marpan): Should we count dropped (zero size) frames in mismatch?
sum_frame_size_mismatch_[layer_] += fabs(encoded_size_kbits -
per_frame_bandwidth_[layer_]) /
per_frame_bandwidth_[layer_];
} else {
float target_size = (frame_num == 1) ? target_size_key_frame_initial_ :
target_size_key_frame_;
sum_key_frame_size_mismatch_ += fabs(encoded_size_kbits - target_size) /
target_size;
num_key_frames_ += 1;
}
sum_encoded_frame_size_[layer_] += encoded_size_kbits;
// Encoding bitrate per layer: from the start of the update/run to the
// current frame.
encoding_bitrate_[layer_] = sum_encoded_frame_size_[layer_] *
frame_rate_layer_[layer_] /
num_frames_per_update_[layer_];
// Total encoding rate: from the start of the update/run to current frame.
sum_encoded_frame_size_total_ += encoded_size_kbits;
encoding_bitrate_total_ = sum_encoded_frame_size_total_ * frame_rate_ /
num_frames_total_;
perc_encoding_rate_mismatch_ = 100 * fabs(encoding_bitrate_total_ -
bit_rate_) / bit_rate_;
if (perc_encoding_rate_mismatch_ < kPercTargetvsActualMismatch &&
!encoding_rate_within_target_) {
num_frames_to_hit_target_ = num_frames_total_;
encoding_rate_within_target_ = true;
}
}
// Verify expected behavior of rate control and print out data.
void VerifyRateControl(int update_index,
int max_key_frame_size_mismatch,
int max_delta_frame_size_mismatch,
int max_encoding_rate_mismatch,
int max_time_hit_target,
int max_num_dropped_frames,
int num_spatial_resizes) {
int num_dropped_frames = processor_->NumberDroppedFrames();
int num_resize_actions = processor_->NumberSpatialResizes();
printf("For update #: %d,\n "
" Target Bitrate: %d,\n"
" Encoding bitrate: %f,\n"
" Frame rate: %d \n",
update_index, bit_rate_, encoding_bitrate_total_, frame_rate_);
printf(" Number of frames to approach target rate = %d, \n"
" Number of dropped frames = %d, \n"
" Number of spatial resizes = %d, \n",
num_frames_to_hit_target_, num_dropped_frames, num_resize_actions);
EXPECT_LE(perc_encoding_rate_mismatch_, max_encoding_rate_mismatch);
if (num_key_frames_ > 0) {
int perc_key_frame_size_mismatch = 100 * sum_key_frame_size_mismatch_ /
num_key_frames_;
printf(" Number of Key frames: %d \n"
" Key frame rate mismatch: %d \n",
num_key_frames_, perc_key_frame_size_mismatch);
EXPECT_LE(perc_key_frame_size_mismatch, max_key_frame_size_mismatch);
}
printf("\n");
printf("Rates statistics for Layer data \n");
for (int i = 0; i < num_temporal_layers_ ; i++) {
printf("Layer #%d \n", i);
int perc_frame_size_mismatch = 100 * sum_frame_size_mismatch_[i] /
num_frames_per_update_[i];
int perc_encoding_rate_mismatch = 100 * fabs(encoding_bitrate_[i] -
bit_rate_layer_[i]) /
bit_rate_layer_[i];
printf(" Target Layer Bit rate: %f \n"
" Layer frame rate: %f, \n"
" Layer per frame bandwidth: %f, \n"
" Layer Encoding bit rate: %f, \n"
" Layer Percent frame size mismatch: %d, \n"
" Layer Percent encoding rate mismatch = %d, \n"
" Number of frame processed per layer = %d \n",
bit_rate_layer_[i], frame_rate_layer_[i], per_frame_bandwidth_[i],
encoding_bitrate_[i], perc_frame_size_mismatch,
perc_encoding_rate_mismatch, num_frames_per_update_[i]);
EXPECT_LE(perc_frame_size_mismatch, max_delta_frame_size_mismatch);
EXPECT_LE(perc_encoding_rate_mismatch, max_encoding_rate_mismatch);
}
printf("\n");
EXPECT_LE(num_frames_to_hit_target_, max_time_hit_target);
EXPECT_LE(num_dropped_frames, max_num_dropped_frames);
EXPECT_EQ(num_resize_actions, num_spatial_resizes);
}
// Layer index corresponding to frame number, for up to 3 layers.
void LayerIndexForFrame(int frame_number) {
if (num_temporal_layers_ == 1) {
layer_ = 0;
} else if (num_temporal_layers_ == 2) {
// layer 0: 0 2 4 ...
// layer 1: 1 3
if (frame_number % 2 == 0) {
layer_ = 0;
} else {
layer_ = 1;
}
} else if (num_temporal_layers_ == 3) {
// layer 0: 0 4 8 ...
// layer 1: 2 6
// layer 2: 1 3 5 7
if (frame_number % 4 == 0) {
layer_ = 0;
} else if ((frame_number + 2) % 4 == 0) {
layer_ = 1;
} else if ((frame_number + 1) % 2 == 0) {
layer_ = 2;
}
} else {
assert(false); // Only up to 3 layers.
}
}
// Set the bitrate and frame rate per layer, for up to 3 layers.
void SetLayerRates() {
assert(num_temporal_layers_<= 3);
for (int i = 0; i < num_temporal_layers_; i++) {
float bit_rate_ratio =
kVp8LayerRateAlloction[num_temporal_layers_ - 1][i];
if (i > 0) {
float bit_rate_delta_ratio = kVp8LayerRateAlloction
[num_temporal_layers_ - 1][i] -
kVp8LayerRateAlloction[num_temporal_layers_ - 1][i - 1];
bit_rate_layer_[i] = bit_rate_ * bit_rate_delta_ratio;
} else {
bit_rate_layer_[i] = bit_rate_ * bit_rate_ratio;
}
frame_rate_layer_[i] = frame_rate_ / static_cast<float>(
1 << (num_temporal_layers_ - 1));
}
if (num_temporal_layers_ == 3) {
frame_rate_layer_[2] = frame_rate_ / 2.0f;
}
}
VideoFrameType FrameType(int frame_number) {
if (frame_number == 0 || ((frame_number) % key_frame_interval_ == 0 &&
key_frame_interval_ > 0)) {
return kKeyFrame;
} else {
return kDeltaFrame;
}
}
void TearDown() {
delete processor_;
delete packet_manipulator_;
delete frame_writer_;
delete frame_reader_;
delete decoder_;
delete encoder_;
}
// Processes all frames in the clip and verifies the result.
void ProcessFramesAndVerify(QualityMetrics quality_metrics,
RateProfile rate_profile,
CodecConfigPars process,
RateControlMetrics* rc_metrics) {
// Codec/config settings.
start_bitrate_ = rate_profile.target_bit_rate[0];
packet_loss_ = process.packet_loss;
key_frame_interval_ = process.key_frame_interval;
num_temporal_layers_ = process.num_temporal_layers;
error_concealment_on_ = process.error_concealment_on;
denoising_on_ = process.denoising_on;
frame_dropper_on_ = process.frame_dropper_on;
spatial_resize_on_ = process.spatial_resize_on;
SetUpCodecConfig();
// Update the layers and the codec with the initial rates.
bit_rate_ = rate_profile.target_bit_rate[0];
frame_rate_ = rate_profile.input_frame_rate[0];
SetLayerRates();
// Set the initial target size for key frame.
target_size_key_frame_initial_ = 0.5 * kInitialBufferSize *
bit_rate_layer_[0];
processor_->SetRates(bit_rate_, frame_rate_);
// Process each frame, up to |num_frames|.
int num_frames = rate_profile.num_frames;
int update_index = 0;
ResetRateControlMetrics(
rate_profile.frame_index_rate_update[update_index + 1]);
int frame_number = 0;
VideoFrameType frame_type = kDeltaFrame;
while (processor_->ProcessFrame(frame_number) &&
frame_number < num_frames) {
// Get the layer index for the frame |frame_number|.
LayerIndexForFrame(frame_number);
frame_type = FrameType(frame_number);
// Counter for whole sequence run.
++frame_number;
// Counters for each rate update.
++num_frames_per_update_[layer_];
++num_frames_total_;
UpdateRateControlMetrics(frame_number, frame_type);
// If we hit another/next update, verify stats for current state and
// update layers and codec with new rates.
if (frame_number ==
rate_profile.frame_index_rate_update[update_index + 1]) {
VerifyRateControl(
update_index,
rc_metrics[update_index].max_key_frame_size_mismatch,
rc_metrics[update_index].max_delta_frame_size_mismatch,
rc_metrics[update_index].max_encoding_rate_mismatch,
rc_metrics[update_index].max_time_hit_target,
rc_metrics[update_index].max_num_dropped_frames,
rc_metrics[update_index].num_spatial_resizes);
// Update layer rates and the codec with new rates.
++update_index;
bit_rate_ = rate_profile.target_bit_rate[update_index];
frame_rate_ = rate_profile.input_frame_rate[update_index];
SetLayerRates();
ResetRateControlMetrics(rate_profile.
frame_index_rate_update[update_index + 1]);
processor_->SetRates(bit_rate_, frame_rate_);
}
}
VerifyRateControl(
update_index,
rc_metrics[update_index].max_key_frame_size_mismatch,
rc_metrics[update_index].max_delta_frame_size_mismatch,
rc_metrics[update_index].max_encoding_rate_mismatch,
rc_metrics[update_index].max_time_hit_target,
rc_metrics[update_index].max_num_dropped_frames,
rc_metrics[update_index].num_spatial_resizes);
EXPECT_EQ(num_frames, frame_number);
EXPECT_EQ(num_frames + 1, static_cast<int>(stats_.stats_.size()));
// Release encoder and decoder to make sure they have finished processing:
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Release());
// Close the files before we start using them for SSIM/PSNR calculations.
frame_reader_->Close();
frame_writer_->Close();
// TODO(marpan): should compute these quality metrics per SetRates update.
webrtc::test::QualityMetricsResult psnr_result, ssim_result;
EXPECT_EQ(0, webrtc::test::I420MetricsFromFiles(
config_.input_filename.c_str(),
config_.output_filename.c_str(),
config_.codec_settings->width,
config_.codec_settings->height,
&psnr_result,
&ssim_result));
printf("PSNR avg: %f, min: %f SSIM avg: %f, min: %f\n",
psnr_result.average, psnr_result.min,
ssim_result.average, ssim_result.min);
stats_.PrintSummary();
EXPECT_GT(psnr_result.average, quality_metrics.minimum_avg_psnr);
EXPECT_GT(psnr_result.min, quality_metrics.minimum_min_psnr);
EXPECT_GT(ssim_result.average, quality_metrics.minimum_avg_ssim);
EXPECT_GT(ssim_result.min, quality_metrics.minimum_min_ssim);
if (!remove(config_.output_filename.c_str())) {
fprintf(stderr, "Failed to remove temporary file!");
}
}
};
void SetRateProfilePars(RateProfile* rate_profile,
int update_index,
int bit_rate,
int frame_rate,
int frame_index_rate_update) {
rate_profile->target_bit_rate[update_index] = bit_rate;
rate_profile->input_frame_rate[update_index] = frame_rate;
rate_profile->frame_index_rate_update[update_index] = frame_index_rate_update;
}
void SetCodecParameters(CodecConfigPars* process_settings,
float packet_loss,
int key_frame_interval,
int num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on) {
process_settings->packet_loss = packet_loss;
process_settings->key_frame_interval = key_frame_interval;
process_settings->num_temporal_layers = num_temporal_layers,
process_settings->error_concealment_on = error_concealment_on;
process_settings->denoising_on = denoising_on;
process_settings->frame_dropper_on = frame_dropper_on;
process_settings->spatial_resize_on = spatial_resize_on;
}
void SetQualityMetrics(QualityMetrics* quality_metrics,
double minimum_avg_psnr,
double minimum_min_psnr,
double minimum_avg_ssim,
double minimum_min_ssim) {
quality_metrics->minimum_avg_psnr = minimum_avg_psnr;
quality_metrics->minimum_min_psnr = minimum_min_psnr;
quality_metrics->minimum_avg_ssim = minimum_avg_ssim;
quality_metrics->minimum_min_ssim = minimum_min_ssim;
}
void SetRateControlMetrics(RateControlMetrics* rc_metrics,
int update_index,
int max_num_dropped_frames,
int max_key_frame_size_mismatch,
int max_delta_frame_size_mismatch,
int max_encoding_rate_mismatch,
int max_time_hit_target,
int num_spatial_resizes) {
rc_metrics[update_index].max_num_dropped_frames = max_num_dropped_frames;
rc_metrics[update_index].max_key_frame_size_mismatch =
max_key_frame_size_mismatch;
rc_metrics[update_index].max_delta_frame_size_mismatch =
max_delta_frame_size_mismatch;
rc_metrics[update_index].max_encoding_rate_mismatch =
max_encoding_rate_mismatch;
rc_metrics[update_index].max_time_hit_target = max_time_hit_target;
rc_metrics[update_index].num_spatial_resizes = num_spatial_resizes;
}
// Run with no packet loss and fixed bitrate. Quality should be very high.
// One key frame (first frame only) in sequence. Setting |key_frame_interval|
// to -1 below means no periodic key frames in test.
TEST_F(VideoProcessorIntegrationTest, ProcessZeroPacketLoss) {
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 500, 30, 0);
rate_profile.frame_index_rate_update[1] = kNbrFramesShort + 1;
rate_profile.num_frames = kNbrFramesShort;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.0f, -1, 1, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 34.95, 33.0, 0.90, 0.89);
// Metrics for rate control.
RateControlMetrics rc_metrics[1];
SetRateControlMetrics(rc_metrics, 0, 0, 40, 20, 10, 15, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// Run with 5% packet loss and fixed bitrate. Quality should be a bit lower.
// One key frame (first frame only) in sequence.
TEST_F(VideoProcessorIntegrationTest, Process5PercentPacketLoss) {
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 500, 30, 0);
rate_profile.frame_index_rate_update[1] = kNbrFramesShort + 1;
rate_profile.num_frames = kNbrFramesShort;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.05f, -1, 1, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 20.0, 16.0, 0.60, 0.40);
// Metrics for rate control.
RateControlMetrics rc_metrics[1];
SetRateControlMetrics(rc_metrics, 0, 0, 40, 20, 10, 15, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// Run with 10% packet loss and fixed bitrate. Quality should be even lower.
// One key frame (first frame only) in sequence.
TEST_F(VideoProcessorIntegrationTest, Process10PercentPacketLoss) {
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 500, 30, 0);
rate_profile.frame_index_rate_update[1] = kNbrFramesShort + 1;
rate_profile.num_frames = kNbrFramesShort;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.1f, -1, 1, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 19.0, 16.0, 0.50, 0.35);
// Metrics for rate control.
RateControlMetrics rc_metrics[1];
SetRateControlMetrics(rc_metrics, 0, 0, 40, 20, 10, 15, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// The tests below are currently disabled for Android. For ARM, the encoder
// uses |cpu_speed| = 12, as opposed to default |cpu_speed| <= 6 for x86,
// which leads to significantly different quality. The quality and rate control
// settings in the tests below are defined for encoder speed setting
// |cpu_speed| <= ~6. A number of settings would need to be significantly
// modified for the |cpu_speed| = 12 case. For now, keep the tests below
// disabled on Android. Some quality parameter in the above test has been
// adjusted to also pass for |cpu_speed| <= 12.
// Run with no packet loss, with varying bitrate (3 rate updates):
// low to high to medium. Check that quality and encoder response to the new
// target rate/per-frame bandwidth (for each rate update) is within limits.
// One key frame (first frame only) in sequence.
TEST_F(VideoProcessorIntegrationTest,
DISABLED_ON_ANDROID(ProcessNoLossChangeBitRate)) {
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 200, 30, 0);
SetRateProfilePars(&rate_profile, 1, 800, 30, 100);
SetRateProfilePars(&rate_profile, 2, 500, 30, 200);
rate_profile.frame_index_rate_update[3] = kNbrFramesLong + 1;
rate_profile.num_frames = kNbrFramesLong;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.0f, -1, 1, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 34.0, 32.0, 0.85, 0.80);
// Metrics for rate control.
RateControlMetrics rc_metrics[3];
SetRateControlMetrics(rc_metrics, 0, 0, 45, 20, 10, 15, 0);
SetRateControlMetrics(rc_metrics, 1, 0, 0, 25, 20, 10, 0);
SetRateControlMetrics(rc_metrics, 2, 0, 0, 25, 15, 10, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// Run with no packet loss, with an update (decrease) in frame rate.
// Lower frame rate means higher per-frame-bandwidth, so easier to encode.
// At the bitrate in this test, this means better rate control after the
// update(s) to lower frame rate. So expect less frame drops, and max values
// for the rate control metrics can be lower. One key frame (first frame only).
// Note: quality after update should be higher but we currently compute quality
// metrics avergaed over whole sequence run.
TEST_F(VideoProcessorIntegrationTest,
DISABLED_ON_ANDROID(ProcessNoLossChangeFrameRateFrameDrop)) {
config_.networking_config.packet_loss_probability = 0;
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 80, 24, 0);
SetRateProfilePars(&rate_profile, 1, 80, 15, 100);
SetRateProfilePars(&rate_profile, 2, 80, 10, 200);
rate_profile.frame_index_rate_update[3] = kNbrFramesLong + 1;
rate_profile.num_frames = kNbrFramesLong;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.0f, -1, 1, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 31.0, 22.0, 0.80, 0.65);
// Metrics for rate control.
RateControlMetrics rc_metrics[3];
SetRateControlMetrics(rc_metrics, 0, 40, 20, 75, 15, 60, 0);
SetRateControlMetrics(rc_metrics, 1, 10, 0, 25, 10, 35, 0);
SetRateControlMetrics(rc_metrics, 2, 0, 0, 20, 10, 15, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// Run with no packet loss, at low bitrate. During this time we should've
// resized once.
TEST_F(VideoProcessorIntegrationTest,
DISABLED_ON_ANDROID(ProcessNoLossSpatialResizeFrameDrop)) {
config_.networking_config.packet_loss_probability = 0;
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 50, 30, 0);
rate_profile.frame_index_rate_update[1] = kNbrFramesLong + 1;
rate_profile.num_frames = kNbrFramesLong;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(
&process_settings, 0.0f, kNbrFramesLong, 1, false, true, true, true);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 25.0, 15.0, 0.70, 0.40);
// Metrics for rate control.
RateControlMetrics rc_metrics[1];
SetRateControlMetrics(rc_metrics, 0, 160, 60, 120, 20, 70, 1);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
// Run with no packet loss, with 3 temporal layers, with a rate update in the
// middle of the sequence. The max values for the frame size mismatch and
// encoding rate mismatch are applied to each layer.
// No dropped frames in this test, and internal spatial resizer is off.
// One key frame (first frame only) in sequence, so no spatial resizing.
TEST_F(VideoProcessorIntegrationTest,
DISABLED_ON_ANDROID(ProcessNoLossTemporalLayers)) {
config_.networking_config.packet_loss_probability = 0;
// Bitrate and frame rate profile.
RateProfile rate_profile;
SetRateProfilePars(&rate_profile, 0, 200, 30, 0);
SetRateProfilePars(&rate_profile, 1, 400, 30, 150);
rate_profile.frame_index_rate_update[2] = kNbrFramesLong + 1;
rate_profile.num_frames = kNbrFramesLong;
// Codec/network settings.
CodecConfigPars process_settings;
SetCodecParameters(&process_settings, 0.0f, -1, 3, false, true, true, false);
// Metrics for expected quality.
QualityMetrics quality_metrics;
SetQualityMetrics(&quality_metrics, 32.5, 30.0, 0.85, 0.80);
// Metrics for rate control.
RateControlMetrics rc_metrics[2];
SetRateControlMetrics(rc_metrics, 0, 0, 20, 30, 10, 10, 0);
SetRateControlMetrics(rc_metrics, 1, 0, 0, 30, 15, 10, 0);
ProcessFramesAndVerify(quality_metrics,
rate_profile,
process_settings,
rc_metrics);
}
} // namespace webrtc