blob: 11ccc4891b59e58a43688696b58ad29557f09950 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_processing/main/test/unit_test/video_processing_unittest.h"
#include <string>
#include <gflags/gflags.h>
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/system_wrappers/include/tick_util.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/gtest_disable.h"
namespace webrtc {
namespace {
// Define command line flag 'gen_files' (default value: false).
DEFINE_bool(gen_files, false, "Output files for visual inspection.");
} // namespace
static void PreprocessFrameAndVerify(const VideoFrame& source,
int target_width,
int target_height,
VideoProcessingModule* vpm,
VideoFrame** out_frame);
static void CropFrame(const uint8_t* source_data,
int source_width,
int source_height,
int offset_x,
int offset_y,
int cropped_width,
int cropped_height,
VideoFrame* cropped_frame);
// The |source_data| is cropped and scaled to |target_width| x |target_height|,
// and then scaled back to the expected cropped size. |expected_psnr| is used to
// verify basic quality, and is set to be ~0.1/0.05dB lower than actual PSNR
// verified under the same conditions.
static void TestSize(const VideoFrame& source_frame,
const VideoFrame& cropped_source_frame,
int target_width,
int target_height,
double expected_psnr,
VideoProcessingModule* vpm);
static bool CompareFrames(const webrtc::VideoFrame& frame1,
const webrtc::VideoFrame& frame2);
static void WriteProcessedFrameForVisualInspection(const VideoFrame& source,
const VideoFrame& processed);
VideoProcessingModuleTest::VideoProcessingModuleTest()
: vpm_(NULL),
source_file_(NULL),
width_(352),
half_width_((width_ + 1) / 2),
height_(288),
size_y_(width_ * height_),
size_uv_(half_width_ * ((height_ + 1) / 2)),
frame_length_(CalcBufferSize(kI420, width_, height_)) {}
void VideoProcessingModuleTest::SetUp() {
vpm_ = VideoProcessingModule::Create();
ASSERT_TRUE(vpm_ != NULL);
ASSERT_EQ(0, video_frame_.CreateEmptyFrame(width_, height_, width_,
half_width_, half_width_));
// Clear video frame so DrMemory/Valgrind will allow reads of the buffer.
memset(video_frame_.buffer(kYPlane), 0, video_frame_.allocated_size(kYPlane));
memset(video_frame_.buffer(kUPlane), 0, video_frame_.allocated_size(kUPlane));
memset(video_frame_.buffer(kVPlane), 0, video_frame_.allocated_size(kVPlane));
const std::string video_file =
webrtc::test::ResourcePath("foreman_cif", "yuv");
source_file_ = fopen(video_file.c_str(),"rb");
ASSERT_TRUE(source_file_ != NULL) <<
"Cannot read source file: " + video_file + "\n";
}
void VideoProcessingModuleTest::TearDown() {
if (source_file_ != NULL) {
ASSERT_EQ(0, fclose(source_file_));
}
source_file_ = NULL;
if (vpm_ != NULL) {
VideoProcessingModule::Destroy(vpm_);
}
vpm_ = NULL;
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(HandleNullBuffer)) {
// TODO(mikhal/stefan): Do we need this one?
VideoProcessingModule::FrameStats stats;
// Video frame with unallocated buffer.
VideoFrame videoFrame;
EXPECT_EQ(-3, vpm_->GetFrameStats(&stats, videoFrame));
EXPECT_EQ(-1, vpm_->Deflickering(&videoFrame, &stats));
EXPECT_EQ(-3, vpm_->BrightnessDetection(videoFrame, stats));
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(HandleBadStats)) {
VideoProcessingModule::FrameStats stats;
rtc::scoped_ptr<uint8_t[]> video_buffer(new uint8_t[frame_length_]);
ASSERT_EQ(frame_length_, fread(video_buffer.get(), 1, frame_length_,
source_file_));
EXPECT_EQ(0, ConvertToI420(kI420, video_buffer.get(), 0, 0, width_, height_,
0, kVideoRotation_0, &video_frame_));
EXPECT_EQ(-1, vpm_->Deflickering(&video_frame_, &stats));
EXPECT_EQ(-3, vpm_->BrightnessDetection(video_frame_, stats));
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(IdenticalResultsAfterReset)) {
VideoFrame video_frame2;
VideoProcessingModule::FrameStats stats;
// Only testing non-static functions here.
rtc::scoped_ptr<uint8_t[]> video_buffer(new uint8_t[frame_length_]);
ASSERT_EQ(frame_length_, fread(video_buffer.get(), 1, frame_length_,
source_file_));
EXPECT_EQ(0, ConvertToI420(kI420, video_buffer.get(), 0, 0, width_, height_,
0, kVideoRotation_0, &video_frame_));
ASSERT_EQ(0, vpm_->GetFrameStats(&stats, video_frame_));
ASSERT_EQ(0, video_frame2.CopyFrame(video_frame_));
ASSERT_EQ(0, vpm_->Deflickering(&video_frame_, &stats));
vpm_->Reset();
// Retrieve frame stats again in case Deflickering() has zeroed them.
ASSERT_EQ(0, vpm_->GetFrameStats(&stats, video_frame2));
ASSERT_EQ(0, vpm_->Deflickering(&video_frame2, &stats));
EXPECT_TRUE(CompareFrames(video_frame_, video_frame2));
ASSERT_EQ(frame_length_, fread(video_buffer.get(), 1, frame_length_,
source_file_));
EXPECT_EQ(0, ConvertToI420(kI420, video_buffer.get(), 0, 0, width_, height_,
0, kVideoRotation_0, &video_frame_));
ASSERT_EQ(0, vpm_->GetFrameStats(&stats, video_frame_));
video_frame2.CopyFrame(video_frame_);
ASSERT_EQ(0, vpm_->BrightnessDetection(video_frame_, stats));
vpm_->Reset();
ASSERT_EQ(0, vpm_->BrightnessDetection(video_frame2, stats));
EXPECT_TRUE(CompareFrames(video_frame_, video_frame2));
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(FrameStats)) {
VideoProcessingModule::FrameStats stats;
rtc::scoped_ptr<uint8_t[]> video_buffer(new uint8_t[frame_length_]);
ASSERT_EQ(frame_length_, fread(video_buffer.get(), 1, frame_length_,
source_file_));
EXPECT_EQ(0, ConvertToI420(kI420, video_buffer.get(), 0, 0, width_, height_,
0, kVideoRotation_0, &video_frame_));
EXPECT_FALSE(vpm_->ValidFrameStats(stats));
EXPECT_EQ(0, vpm_->GetFrameStats(&stats, video_frame_));
EXPECT_TRUE(vpm_->ValidFrameStats(stats));
printf("\nFrameStats\n");
printf("mean: %u\nnum_pixels: %u\nsubSamplWidth: "
"%u\nsumSamplHeight: %u\nsum: %u\n\n",
static_cast<unsigned int>(stats.mean),
static_cast<unsigned int>(stats.num_pixels),
static_cast<unsigned int>(stats.subSamplHeight),
static_cast<unsigned int>(stats.subSamplWidth),
static_cast<unsigned int>(stats.sum));
vpm_->ClearFrameStats(&stats);
EXPECT_FALSE(vpm_->ValidFrameStats(stats));
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(PreprocessorLogic)) {
// Disable temporal sampling (frame dropping).
vpm_->EnableTemporalDecimation(false);
int resolution = 100;
EXPECT_EQ(VPM_OK, vpm_->SetTargetResolution(resolution, resolution, 15));
EXPECT_EQ(VPM_OK, vpm_->SetTargetResolution(resolution, resolution, 30));
// Disable spatial sampling.
vpm_->SetInputFrameResampleMode(kNoRescaling);
EXPECT_EQ(VPM_OK, vpm_->SetTargetResolution(resolution, resolution, 30));
VideoFrame* out_frame = NULL;
// Set rescaling => output frame != NULL.
vpm_->SetInputFrameResampleMode(kFastRescaling);
PreprocessFrameAndVerify(video_frame_, resolution, resolution, vpm_,
&out_frame);
// No rescaling=> output frame = NULL.
vpm_->SetInputFrameResampleMode(kNoRescaling);
EXPECT_EQ(VPM_OK, vpm_->PreprocessFrame(video_frame_, &out_frame));
EXPECT_TRUE(out_frame == NULL);
}
TEST_F(VideoProcessingModuleTest, DISABLED_ON_IOS(Resampler)) {
enum { NumRuns = 1 };
int64_t min_runtime = 0;
int64_t total_runtime = 0;
rewind(source_file_);
ASSERT_TRUE(source_file_ != NULL) <<
"Cannot read input file \n";
// CA not needed here
vpm_->EnableContentAnalysis(false);
// no temporal decimation
vpm_->EnableTemporalDecimation(false);
// Reading test frame
rtc::scoped_ptr<uint8_t[]> video_buffer(new uint8_t[frame_length_]);
ASSERT_EQ(frame_length_, fread(video_buffer.get(), 1, frame_length_,
source_file_));
// Using ConvertToI420 to add stride to the image.
EXPECT_EQ(0, ConvertToI420(kI420, video_buffer.get(), 0, 0, width_, height_,
0, kVideoRotation_0, &video_frame_));
// Cropped source frame that will contain the expected visible region.
VideoFrame cropped_source_frame;
cropped_source_frame.CopyFrame(video_frame_);
for (uint32_t run_idx = 0; run_idx < NumRuns; run_idx++) {
// Initiate test timer.
const TickTime time_start = TickTime::Now();
// Init the sourceFrame with a timestamp.
video_frame_.set_render_time_ms(time_start.MillisecondTimestamp());
video_frame_.set_timestamp(time_start.MillisecondTimestamp() * 90);
// Test scaling to different sizes: source is of |width|/|height| = 352/288.
// Pure scaling:
TestSize(video_frame_, video_frame_, width_ / 4, height_ / 4, 25.2, vpm_);
TestSize(video_frame_, video_frame_, width_ / 2, height_ / 2, 28.1, vpm_);
// No resampling:
TestSize(video_frame_, video_frame_, width_, height_, -1, vpm_);
TestSize(video_frame_, video_frame_, 2 * width_, 2 * height_, 32.2, vpm_);
// Scaling and cropping. The cropped source frame is the largest center
// aligned region that can be used from the source while preserving aspect
// ratio.
CropFrame(video_buffer.get(), width_, height_, 0, 56, 352, 176,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 100, 50, 24.0, vpm_);
CropFrame(video_buffer.get(), width_, height_, 0, 30, 352, 225,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 400, 256, 31.3, vpm_);
CropFrame(video_buffer.get(), width_, height_, 68, 0, 216, 288,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 480, 640, 32.15, vpm_);
CropFrame(video_buffer.get(), width_, height_, 0, 12, 352, 264,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 960, 720, 32.2, vpm_);
CropFrame(video_buffer.get(), width_, height_, 0, 44, 352, 198,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 1280, 720, 32.15, vpm_);
// Upsampling to odd size.
CropFrame(video_buffer.get(), width_, height_, 0, 26, 352, 233,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 501, 333, 32.05, vpm_);
// Downsample to odd size.
CropFrame(video_buffer.get(), width_, height_, 0, 34, 352, 219,
&cropped_source_frame);
TestSize(video_frame_, cropped_source_frame, 281, 175, 29.3, vpm_);
// Stop timer.
const int64_t runtime = (TickTime::Now() - time_start).Microseconds();
if (runtime < min_runtime || run_idx == 0) {
min_runtime = runtime;
}
total_runtime += runtime;
}
printf("\nAverage run time = %d us / frame\n",
static_cast<int>(total_runtime));
printf("Min run time = %d us / frame\n\n",
static_cast<int>(min_runtime));
}
void PreprocessFrameAndVerify(const VideoFrame& source,
int target_width,
int target_height,
VideoProcessingModule* vpm,
VideoFrame** out_frame) {
ASSERT_EQ(VPM_OK, vpm->SetTargetResolution(target_width, target_height, 30));
ASSERT_EQ(VPM_OK, vpm->PreprocessFrame(source, out_frame));
// If no resizing is needed, expect NULL.
if (target_width == source.width() && target_height == source.height()) {
EXPECT_EQ(NULL, *out_frame);
return;
}
// Verify the resampled frame.
EXPECT_TRUE(*out_frame != NULL);
EXPECT_EQ(source.render_time_ms(), (*out_frame)->render_time_ms());
EXPECT_EQ(source.timestamp(), (*out_frame)->timestamp());
EXPECT_EQ(target_width, (*out_frame)->width());
EXPECT_EQ(target_height, (*out_frame)->height());
}
void CropFrame(const uint8_t* source_data,
int source_width,
int source_height,
int offset_x,
int offset_y,
int cropped_width,
int cropped_height,
VideoFrame* cropped_frame) {
cropped_frame->CreateEmptyFrame(cropped_width, cropped_height, cropped_width,
(cropped_width + 1) / 2,
(cropped_width + 1) / 2);
EXPECT_EQ(0,
ConvertToI420(kI420, source_data, offset_x, offset_y, source_width,
source_height, 0, kVideoRotation_0, cropped_frame));
}
void TestSize(const VideoFrame& source_frame,
const VideoFrame& cropped_source_frame,
int target_width,
int target_height,
double expected_psnr,
VideoProcessingModule* vpm) {
// Resample source_frame to out_frame.
VideoFrame* out_frame = NULL;
vpm->SetInputFrameResampleMode(kBox);
PreprocessFrameAndVerify(source_frame, target_width, target_height, vpm,
&out_frame);
if (out_frame == NULL)
return;
WriteProcessedFrameForVisualInspection(source_frame, *out_frame);
// Scale |resampled_source_frame| back to the source scale.
VideoFrame resampled_source_frame;
resampled_source_frame.CopyFrame(*out_frame);
PreprocessFrameAndVerify(resampled_source_frame, cropped_source_frame.width(),
cropped_source_frame.height(), vpm, &out_frame);
WriteProcessedFrameForVisualInspection(resampled_source_frame, *out_frame);
// Compute PSNR against the cropped source frame and check expectation.
double psnr = I420PSNR(&cropped_source_frame, out_frame);
EXPECT_GT(psnr, expected_psnr);
printf("PSNR: %f. PSNR is between source of size %d %d, and a modified "
"source which is scaled down/up to: %d %d, and back to source size \n",
psnr, source_frame.width(), source_frame.height(),
target_width, target_height);
}
bool CompareFrames(const webrtc::VideoFrame& frame1,
const webrtc::VideoFrame& frame2) {
for (int plane = 0; plane < webrtc::kNumOfPlanes; plane ++) {
webrtc::PlaneType plane_type = static_cast<webrtc::PlaneType>(plane);
int allocated_size1 = frame1.allocated_size(plane_type);
int allocated_size2 = frame2.allocated_size(plane_type);
if (allocated_size1 != allocated_size2)
return false;
const uint8_t* plane_buffer1 = frame1.buffer(plane_type);
const uint8_t* plane_buffer2 = frame2.buffer(plane_type);
if (memcmp(plane_buffer1, plane_buffer2, allocated_size1))
return false;
}
return true;
}
void WriteProcessedFrameForVisualInspection(const VideoFrame& source,
const VideoFrame& processed) {
// Skip if writing to files is not enabled.
if (!FLAGS_gen_files)
return;
// Write the processed frame to file for visual inspection.
std::ostringstream filename;
filename << webrtc::test::OutputPath() << "Resampler_from_" << source.width()
<< "x" << source.height() << "_to_" << processed.width() << "x"
<< processed.height() << "_30Hz_P420.yuv";
std::cout << "Watch " << filename.str() << " and verify that it is okay."
<< std::endl;
FILE* stand_alone_file = fopen(filename.str().c_str(), "wb");
if (PrintVideoFrame(processed, stand_alone_file) < 0)
std::cerr << "Failed to write: " << filename.str() << std::endl;
if (stand_alone_file)
fclose(stand_alone_file);
}
} // namespace webrtc