blob: 61a12ef3e185a002775099bd51850292a12c9482 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes unit tests the QmResolution class
* In particular, for the selection of spatial and/or temporal down-sampling.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/video_coding/qm_select.h"
namespace webrtc {
// Representative values of content metrics for: low/high/medium(default) state,
// based on parameters settings in qm_select_data.h.
const float kSpatialLow = 0.01f;
const float kSpatialMedium = 0.03f;
const float kSpatialHigh = 0.1f;
const float kTemporalLow = 0.01f;
const float kTemporalMedium = 0.06f;
const float kTemporalHigh = 0.1f;
class QmSelectTest : public ::testing::Test {
protected:
QmSelectTest()
: qm_resolution_(new VCMQmResolution()),
content_metrics_(new VideoContentMetrics()),
qm_scale_(NULL) {
}
VCMQmResolution* qm_resolution_;
VideoContentMetrics* content_metrics_;
VCMResolutionScale* qm_scale_;
void InitQmNativeData(float initial_bit_rate,
int user_frame_rate,
int native_width,
int native_height,
int num_layers);
void UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates);
void UpdateQmRateData(int* target_rate,
int* encoder_sent_rate,
int* incoming_frame_rate,
uint8_t* fraction_lost,
int num_updates);
void UpdateQmContentData(float motion_metric,
float spatial_metric,
float spatial_metric_horiz,
float spatial_metric_vert);
bool IsSelectedActionCorrect(VCMResolutionScale* qm_scale,
float fac_width,
float fac_height,
float fac_temp,
uint16_t new_width,
uint16_t new_height,
float new_frame_rate);
void TearDown() {
delete qm_resolution_;
delete content_metrics_;
}
};
TEST_F(QmSelectTest, HandleInputs) {
// Expect parameter error. Initialize with invalid inputs.
EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 0, 640, 480, 1));
EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 640, 0, 1));
EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 0, 480, 1));
// Expect uninitialized error.: No valid initialization before selection.
EXPECT_EQ(-7, qm_resolution_->SelectResolution(&qm_scale_));
VideoContentMetrics* content_metrics = NULL;
EXPECT_EQ(0, qm_resolution_->Initialize(1000, 30, 640, 480, 1));
qm_resolution_->UpdateContent(content_metrics);
// Content metrics are NULL: Expect success and no down-sampling action.
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0, 1.0, 1.0, 640, 480,
30.0f));
}
// TODO(marpan): Add a test for number of temporal layers > 1.
// No down-sampling action at high rates.
TEST_F(QmSelectTest, NoActionHighRate) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(800, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {800, 800, 800};
int encoder_sent_rate[] = {800, 800, 800};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(0, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
30.0f));
}
// Rate is well below transition, down-sampling action is taken,
// depending on the content state.
TEST_F(QmSelectTest, DownActionLowRate) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial: 2x2 spatial expected.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, low spatial: 2/3 temporal is expected.
UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(0, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480,
20.5f));
qm_resolution_->ResetDownSamplingState();
// Medium motion, low spatial: 2x2 spatial expected.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
qm_resolution_->ResetDownSamplingState();
// High motion, high spatial: 2/3 temporal expected.
UpdateQmContentData(kTemporalHigh, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(4, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480,
20.5f));
qm_resolution_->ResetDownSamplingState();
// Low motion, high spatial: 1/2 temporal expected.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480,
15.5f));
qm_resolution_->ResetDownSamplingState();
// Medium motion, high spatial: 1/2 temporal expected.
UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh,
kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480,
15.5f));
qm_resolution_->ResetDownSamplingState();
// High motion, medium spatial: 2x2 spatial expected.
UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium,
kSpatialMedium);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
// Target frame rate for frame dropper should be the same as previous == 15.
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, medium spatial: high frame rate, so 1/2 temporal expected.
UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium,
kSpatialMedium);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(2, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480,
15.5f));
qm_resolution_->ResetDownSamplingState();
// Medium motion, medium spatial: high frame rate, so 2/3 temporal expected.
UpdateQmContentData(kTemporalMedium, kSpatialMedium, kSpatialMedium,
kSpatialMedium);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(8, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480,
20.5f));
}
// Rate mis-match is high, and we have over-shooting.
// since target rate is below max for down-sampling, down-sampling is selected.
TEST_F(QmSelectTest, DownActionHighRateMMOvershoot) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(300, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {300, 300, 300};
int encoder_sent_rate[] = {900, 900, 900};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 360, 30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, high spatial
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480,
20.5f));
}
// Rate mis-match is high, target rate is below max for down-sampling,
// but since we have consistent under-shooting, no down-sampling action.
TEST_F(QmSelectTest, NoActionHighRateMMUndershoot) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(300, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {300, 300, 300};
int encoder_sent_rate[] = {100, 100, 100};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, high spatial
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
30.0f));
}
// Buffer is underflowing, and target rate is below max for down-sampling,
// so action is taken.
TEST_F(QmSelectTest, DownActionBufferUnderflow) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(300, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update with encoded size over a number of frames.
// per-frame bandwidth = 15 = 450/30: simulate (decoder) buffer underflow:
size_t encoded_size[] = {200, 100, 50, 30, 60, 40, 20, 30, 20, 40};
UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size));
// Update rates for a sequence of intervals.
int target_rate[] = {300, 300, 300};
int encoder_sent_rate[] = {450, 450, 450};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 360, 30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, high spatial
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480,
20.5f));
}
// Target rate is below max for down-sampling, but buffer level is stable,
// so no action is taken.
TEST_F(QmSelectTest, NoActionBufferStable) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(350, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update with encoded size over a number of frames.
// per-frame bandwidth = 15 = 450/30: simulate stable (decoder) buffer levels.
size_t encoded_size[] = {40, 10, 10, 16, 18, 20, 17, 20, 16, 15};
UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size));
// Update rates for a sequence of intervals.
int target_rate[] = {350, 350, 350};
int encoder_sent_rate[] = {350, 450, 450};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
30.0f));
qm_resolution_->ResetDownSamplingState();
// Low motion, high spatial
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
30.0f));
}
// Very low rate, but no spatial down-sampling below some size (QCIF).
TEST_F(QmSelectTest, LimitDownSpatialAction) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(10, 30, 176, 144, 1);
// Update with encoder frame size.
uint16_t codec_width = 176;
uint16_t codec_height = 144;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(0, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {10, 10, 10};
int encoder_sent_rate[] = {10, 10, 10};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 176, 144,
30.0f));
}
// Very low rate, but no frame reduction below some frame_rate (8fps).
TEST_F(QmSelectTest, LimitDownTemporalAction) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(10, 8, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(8.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {10, 10, 10};
int encoder_sent_rate[] = {10, 10, 10};
int incoming_frame_rate[] = {8, 8, 8};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, medium spatial.
UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium,
kSpatialMedium);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(2, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
8.0f));
}
// Two stages: spatial down-sample and then back up spatially,
// as rate as increased.
TEST_F(QmSelectTest, 2StageDownSpatialUpSpatial) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
// Reset and go up in rate: expected to go back up, in 2 stages of 3/4.
qm_resolution_->ResetRates();
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
// Update rates for a sequence of intervals.
int target_rate2[] = {400, 400, 400, 400, 400};
int encoder_sent_rate2[] = {400, 400, 400, 400, 400};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
float scale = (4.0f / 3.0f) / 2.0f;
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360,
30.0f));
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
640, 480, 30.0f));
}
// Two stages: spatial down-sample and then back up spatially, since encoder
// is under-shooting target even though rate has not increased much.
TEST_F(QmSelectTest, 2StageDownSpatialUpSpatialUndershoot) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
// Reset rates and simulate under-shooting scenario.: expect to go back up.
// Goes up spatially in two stages for 1/2x1/2 down-sampling.
qm_resolution_->ResetRates();
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
// Update rates for a sequence of intervals.
int target_rate2[] = {200, 200, 200, 200, 200};
int encoder_sent_rate2[] = {50, 50, 50, 50, 50};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
float scale = (4.0f / 3.0f) / 2.0f;
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360,
30.0f));
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
640, 480, 30.0f));
}
// Two stages: spatial down-sample and then no action to go up,
// as encoding rate mis-match is too high.
TEST_F(QmSelectTest, 2StageDownSpatialNoActionUp) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
// Reset and simulate large rate mis-match: expect no action to go back up.
qm_resolution_->ResetRates();
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
// Update rates for a sequence of intervals.
int target_rate2[] = {400, 400, 400, 400, 400};
int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 320, 240,
30.0f));
}
// Two stages: temporally down-sample and then back up temporally,
// as rate as increased.
TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporal) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480,
15.5f));
// Reset rates and go up in rate: expect to go back up.
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate2[] = {400, 400, 400, 400, 400};
int encoder_sent_rate2[] = {400, 400, 400, 400, 400};
int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480,
30.0f));
}
// Two stages: temporal down-sample and then back up temporally, since encoder
// is under-shooting target even though rate has not increased much.
TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporalUndershoot) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480,
15.5f));
// Reset rates and simulate under-shooting scenario.: expect to go back up.
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate2[] = {150, 150, 150, 150, 150};
int encoder_sent_rate2[] = {50, 50, 50, 50, 50};
int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480,
30.0f));
}
// Two stages: temporal down-sample and then no action to go up,
// as encoding rate mis-match is too high.
TEST_F(QmSelectTest, 2StageDownTemporalNoActionUp) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(50, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {50, 50, 50};
int encoder_sent_rate[] = {50, 50, 50};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1, 1, 2, 640, 480, 15.5f));
// Reset and simulate large rate mis-match: expect no action to go back up.
qm_resolution_->UpdateCodecParameters(15.0f, codec_width, codec_height);
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate2[] = {600, 600, 600, 600, 600};
int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000};
int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480,
15.0f));
}
// 3 stages: spatial down-sample, followed by temporal down-sample,
// and then go up to full state, as encoding rate has increased.
TEST_F(QmSelectTest, 3StageDownSpatialTemporlaUpSpatialTemporal) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(80, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {80, 80, 80};
int encoder_sent_rate[] = {80, 80, 80};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
// Change content data: expect temporal down-sample.
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
// Reset rates and go lower in rate.
qm_resolution_->ResetRates();
int target_rate2[] = {40, 40, 40, 40, 40};
int encoder_sent_rate2[] = {40, 40, 40, 40, 40};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240,
20.5f));
// Reset rates and go high up in rate: expect to go back up both spatial
// and temporally. The 1/2x1/2 spatial is undone in two stages.
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate3[] = {1000, 1000, 1000, 1000, 1000};
int encoder_sent_rate3[] = {1000, 1000, 1000, 1000, 1000};
int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
fraction_lost3, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
float scale = (4.0f / 3.0f) / 2.0f;
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f,
480, 360, 30.0f));
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
640, 480, 30.0f));
}
// No down-sampling below some total amount.
TEST_F(QmSelectTest, NoActionTooMuchDownSampling) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(150, 30, 1280, 720, 1);
// Update with encoder frame size.
uint16_t codec_width = 1280;
uint16_t codec_height = 720;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(7, qm_resolution_->GetImageType(codec_width, codec_height));
// Update rates for a sequence of intervals.
int target_rate[] = {150, 150, 150};
int encoder_sent_rate[] = {150, 150, 150};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 640, 360,
30.0f));
// Reset and lower rates to get another spatial action (3/4x3/4).
// Lower the frame rate for spatial to be selected again.
qm_resolution_->ResetRates();
qm_resolution_->UpdateCodecParameters(10.0f, 640, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(640, 360));
// Update rates for a sequence of intervals.
int target_rate2[] = {70, 70, 70, 70, 70};
int encoder_sent_rate2[] = {70, 70, 70, 70, 70};
int incoming_frame_rate2[] = {10, 10, 10, 10, 10};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, medium spatial.
UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium,
kSpatialMedium);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 270, 10.0f));
// Reset and go to very low rate: no action should be taken,
// we went down too much already.
qm_resolution_->ResetRates();
qm_resolution_->UpdateCodecParameters(10.0f, 480, 270);
EXPECT_EQ(3, qm_resolution_->GetImageType(480, 270));
// Update rates for a sequence of intervals.
int target_rate3[] = {10, 10, 10, 10, 10};
int encoder_sent_rate3[] = {10, 10, 10, 10, 10};
int incoming_frame_rate3[] = {10, 10, 10, 10, 10};
uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
fraction_lost3, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 480, 270,
10.0f));
}
// Multiple down-sampling stages and then undo all of them.
// Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3,
// followed by spatial 3/4x3/4. Then go up to full state,
// as encoding rate has increased.
TEST_F(QmSelectTest, MultipleStagesCheckActionHistory1) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(150, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Go down spatial 3/4x3/4.
// Update rates for a sequence of intervals.
int target_rate[] = {150, 150, 150};
int encoder_sent_rate[] = {150, 150, 150};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, low spatial.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 360, 30.0f));
// Go down 2/3 temporal.
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
qm_resolution_->ResetRates();
int target_rate2[] = {100, 100, 100, 100, 100};
int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360,
20.5f));
// Go down 3/4x3/4 spatial:
qm_resolution_->UpdateCodecParameters(20.0f, 480, 360);
qm_resolution_->ResetRates();
int target_rate3[] = {80, 80, 80, 80, 80};
int encoder_sent_rate3[] = {80, 80, 80, 80, 80};
int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
fraction_lost3, 5);
// Update content: motion level, and 3 spatial prediction errors.
// High motion, low spatial.
UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
// The two spatial actions of 3/4x3/4 are converted to 1/2x1/2,
// so scale factor is 2.0.
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
20.0f));
// Reset rates and go high up in rate: expect to go up:
// 1/2x1x2 spatial and 1/2 temporally.
// Go up 1/2x1/2 spatially and 1/2 temporally. Spatial is done in 2 stages.
qm_resolution_->UpdateCodecParameters(15.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate4[] = {1000, 1000, 1000, 1000, 1000};
int encoder_sent_rate4[] = {1000, 1000, 1000, 1000, 1000};
int incoming_frame_rate4[] = {15, 15, 15, 15, 15};
uint8_t fraction_lost4[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
fraction_lost4, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
float scale = (4.0f / 3.0f) / 2.0f;
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480,
360, 30.0f));
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
640, 480, 30.0f));
}
// Multiple down-sampling and up-sample stages, with partial undoing.
// Spatial down-sample 1/2x1/2, followed by temporal down-sample 2/3, undo the
// temporal, then another temporal, and then undo both spatial and temporal.
TEST_F(QmSelectTest, MultipleStagesCheckActionHistory2) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(80, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Go down 1/2x1/2 spatial.
// Update rates for a sequence of intervals.
int target_rate[] = {80, 80, 80};
int encoder_sent_rate[] = {80, 80, 80};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, low spatial.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
// Go down 2/3 temporal.
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
qm_resolution_->ResetRates();
int target_rate2[] = {40, 40, 40, 40, 40};
int encoder_sent_rate2[] = {40, 40, 40, 40, 40};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, high spatial.
UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh,
kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240,
20.5f));
// Go up 2/3 temporally.
qm_resolution_->UpdateCodecParameters(20.0f, 320, 240);
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate3[] = {150, 150, 150, 150, 150};
int encoder_sent_rate3[] = {150, 150, 150, 150, 150};
int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
fraction_lost3, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 320,
240, 30.0f));
// Go down 2/3 temporal.
qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
qm_resolution_->ResetRates();
int target_rate4[] = {40, 40, 40, 40, 40};
int encoder_sent_rate4[] = {40, 40, 40, 40, 40};
int incoming_frame_rate4[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost4[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
fraction_lost4, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240,
20.5f));
// Go up spatial and temporal. Spatial undoing is done in 2 stages.
qm_resolution_->UpdateCodecParameters(20.5f, 320, 240);
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate5[] = {1000, 1000, 1000, 1000, 1000};
int encoder_sent_rate5[] = {1000, 1000, 1000, 1000, 1000};
int incoming_frame_rate5[] = {20, 20, 20, 20, 20};
uint8_t fraction_lost5[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate5, encoder_sent_rate5, incoming_frame_rate5,
fraction_lost5, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
float scale = (4.0f / 3.0f) / 2.0f;
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f,
480, 360, 30.0f));
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
640, 480, 30.0f));
}
// Multiple down-sampling and up-sample stages, with partial undoing.
// Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3,
// undo the temporal 2/3, and then undo the spatial.
TEST_F(QmSelectTest, MultipleStagesCheckActionHistory3) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(100, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Go down 3/4x3/4 spatial.
// Update rates for a sequence of intervals.
int target_rate[] = {100, 100, 100};
int encoder_sent_rate[] = {100, 100, 100};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, low spatial.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 360, 30.0f));
// Go down 2/3 temporal.
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
qm_resolution_->ResetRates();
int target_rate2[] = {100, 100, 100, 100, 100};
int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Low motion, high spatial.
UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360,
20.5f));
// Go up 2/3 temporal.
qm_resolution_->UpdateCodecParameters(20.5f, 480, 360);
qm_resolution_->ResetRates();
// Update rates for a sequence of intervals.
int target_rate3[] = {250, 250, 250, 250, 250};
int encoder_sent_rate3[] = {250, 250, 250, 250, 250};
int incoming_frame_rate3[] = {20, 20, 20, 20, 120};
uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
fraction_lost3, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 480,
360, 30.0f));
// Go up spatial.
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
qm_resolution_->ResetRates();
int target_rate4[] = {500, 500, 500, 500, 500};
int encoder_sent_rate4[] = {500, 500, 500, 500, 500};
int incoming_frame_rate4[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost4[] = {30, 30, 30, 30, 30};
UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
fraction_lost4, 5);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f,
1.0f, 640, 480, 30.0f));
}
// Two stages of 3/4x3/4 converted to one stage of 1/2x1/2.
TEST_F(QmSelectTest, ConvertThreeQuartersToOneHalf) {
// Initialize with bitrate, frame rate, native system width/height, and
// number of temporal layers.
InitQmNativeData(150, 30, 640, 480, 1);
// Update with encoder frame size.
uint16_t codec_width = 640;
uint16_t codec_height = 480;
qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
// Go down 3/4x3/4 spatial.
// Update rates for a sequence of intervals.
int target_rate[] = {150, 150, 150};
int encoder_sent_rate[] = {150, 150, 150};
int incoming_frame_rate[] = {30, 30, 30};
uint8_t fraction_lost[] = {10, 10, 10};
UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
fraction_lost, 3);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, low spatial.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f,
1.0f, 480, 360, 30.0f));
// Set rates to go down another 3/4 spatial. Should be converted ton 1/2.
qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
qm_resolution_->ResetRates();
int target_rate2[] = {100, 100, 100, 100, 100};
int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
fraction_lost2, 5);
// Update content: motion level, and 3 spatial prediction errors.
// Medium motion, low spatial.
UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240,
30.0f));
}
void QmSelectTest::InitQmNativeData(float initial_bit_rate,
int user_frame_rate,
int native_width,
int native_height,
int num_layers) {
EXPECT_EQ(0, qm_resolution_->Initialize(initial_bit_rate,
user_frame_rate,
native_width,
native_height,
num_layers));
}
void QmSelectTest::UpdateQmContentData(float motion_metric,
float spatial_metric,
float spatial_metric_horiz,
float spatial_metric_vert) {
content_metrics_->motion_magnitude = motion_metric;
content_metrics_->spatial_pred_err = spatial_metric;
content_metrics_->spatial_pred_err_h = spatial_metric_horiz;
content_metrics_->spatial_pred_err_v = spatial_metric_vert;
qm_resolution_->UpdateContent(content_metrics_);
}
void QmSelectTest::UpdateQmEncodedFrame(size_t* encoded_size,
size_t num_updates) {
for (size_t i = 0; i < num_updates; ++i) {
// Convert to bytes.
size_t encoded_size_update = 1000 * encoded_size[i] / 8;
qm_resolution_->UpdateEncodedSize(encoded_size_update);
}
}
void QmSelectTest::UpdateQmRateData(int* target_rate,
int* encoder_sent_rate,
int* incoming_frame_rate,
uint8_t* fraction_lost,
int num_updates) {
for (int i = 0; i < num_updates; ++i) {
float target_rate_update = target_rate[i];
float encoder_sent_rate_update = encoder_sent_rate[i];
float incoming_frame_rate_update = incoming_frame_rate[i];
uint8_t fraction_lost_update = fraction_lost[i];
qm_resolution_->UpdateRates(target_rate_update,
encoder_sent_rate_update,
incoming_frame_rate_update,
fraction_lost_update);
}
}
// Check is the selected action from the QmResolution class is the same
// as the expected scales from |fac_width|, |fac_height|, |fac_temp|.
bool QmSelectTest::IsSelectedActionCorrect(VCMResolutionScale* qm_scale,
float fac_width,
float fac_height,
float fac_temp,
uint16_t new_width,
uint16_t new_height,
float new_frame_rate) {
if (qm_scale->spatial_width_fact == fac_width &&
qm_scale->spatial_height_fact == fac_height &&
qm_scale->temporal_fact == fac_temp &&
qm_scale->codec_width == new_width &&
qm_scale->codec_height == new_height &&
qm_scale->frame_rate == new_frame_rate) {
return true;
} else {
return false;
}
}
} // namespace webrtc