blob: eb690ea86be0f774f66233ec0c7c6bfc3bf221d1 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_format.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
namespace webrtc {
namespace {
const size_t kMaxPayloadSize = 1200;
const size_t kLengthFieldLength = 2;
enum Nalu {
kSlice = 1,
kIdr = 5,
kSei = 6,
kSps = 7,
kPps = 8,
kStapA = 24,
kFuA = 28
};
static const size_t kNalHeaderSize = 1;
static const size_t kFuAHeaderSize = 2;
// Bit masks for FU (A and B) indicators.
enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
// Bit masks for FU (A and B) headers.
enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
void VerifyFua(size_t fua_index,
const uint8_t* expected_payload,
int offset,
const uint8_t* packet,
size_t length,
const std::vector<size_t>& expected_sizes) {
ASSERT_EQ(expected_sizes[fua_index] + kFuAHeaderSize, length)
<< "FUA index: " << fua_index;
const uint8_t kFuIndicator = 0x1C; // F=0, NRI=0, Type=28.
EXPECT_EQ(kFuIndicator, packet[0]) << "FUA index: " << fua_index;
bool should_be_last_fua = (fua_index == expected_sizes.size() - 1);
uint8_t fu_header = 0;
if (fua_index == 0)
fu_header = 0x85; // S=1, E=0, R=0, Type=5.
else if (should_be_last_fua)
fu_header = 0x45; // S=0, E=1, R=0, Type=5.
else
fu_header = 0x05; // S=0, E=0, R=0, Type=5.
EXPECT_EQ(fu_header, packet[1]) << "FUA index: " << fua_index;
std::vector<uint8_t> expected_packet_payload(
&expected_payload[offset],
&expected_payload[offset + expected_sizes[fua_index]]);
EXPECT_THAT(
expected_packet_payload,
::testing::ElementsAreArray(&packet[2], expected_sizes[fua_index]))
<< "FUA index: " << fua_index;
}
void TestFua(size_t frame_size,
size_t max_payload_size,
const std::vector<size_t>& expected_sizes) {
scoped_ptr<uint8_t[]> frame;
frame.reset(new uint8_t[frame_size]);
frame[0] = 0x05; // F=0, NRI=0, Type=5.
for (size_t i = 0; i < frame_size - kNalHeaderSize; ++i) {
frame[i + kNalHeaderSize] = i;
}
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(1);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = frame_size;
scoped_ptr<RtpPacketizer> packetizer(RtpPacketizer::Create(
kRtpVideoH264, max_payload_size, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame.get(), frame_size, &fragmentation);
scoped_ptr<uint8_t[]> packet(new uint8_t[max_payload_size]);
size_t length = 0;
bool last = false;
size_t offset = kNalHeaderSize;
for (size_t i = 0; i < expected_sizes.size(); ++i) {
ASSERT_TRUE(packetizer->NextPacket(packet.get(), &length, &last));
VerifyFua(i, frame.get(), offset, packet.get(), length, expected_sizes);
EXPECT_EQ(i == expected_sizes.size() - 1, last) << "FUA index: " << i;
offset += expected_sizes[i];
}
EXPECT_FALSE(packetizer->NextPacket(packet.get(), &length, &last));
}
size_t GetExpectedNaluOffset(const RTPFragmentationHeader& fragmentation,
size_t start_index,
size_t nalu_index) {
assert(nalu_index < fragmentation.fragmentationVectorSize);
size_t expected_nalu_offset = kNalHeaderSize; // STAP-A header.
for (size_t i = start_index; i < nalu_index; ++i) {
expected_nalu_offset +=
kLengthFieldLength + fragmentation.fragmentationLength[i];
}
return expected_nalu_offset;
}
void VerifyStapAPayload(const RTPFragmentationHeader& fragmentation,
size_t first_stapa_index,
size_t nalu_index,
const uint8_t* frame,
size_t frame_length,
const uint8_t* packet,
size_t packet_length) {
size_t expected_payload_offset =
GetExpectedNaluOffset(fragmentation, first_stapa_index, nalu_index) +
kLengthFieldLength;
size_t offset = fragmentation.fragmentationOffset[nalu_index];
const uint8_t* expected_payload = &frame[offset];
size_t expected_payload_length =
fragmentation.fragmentationLength[nalu_index];
ASSERT_LE(offset + expected_payload_length, frame_length);
ASSERT_LE(expected_payload_offset + expected_payload_length, packet_length);
std::vector<uint8_t> expected_payload_vector(
expected_payload, &expected_payload[expected_payload_length]);
EXPECT_THAT(expected_payload_vector,
::testing::ElementsAreArray(&packet[expected_payload_offset],
expected_payload_length));
}
void VerifySingleNaluPayload(const RTPFragmentationHeader& fragmentation,
size_t nalu_index,
const uint8_t* frame,
size_t frame_length,
const uint8_t* packet,
size_t packet_length) {
std::vector<uint8_t> expected_payload_vector(
&frame[fragmentation.fragmentationOffset[nalu_index]],
&frame[fragmentation.fragmentationOffset[nalu_index] +
fragmentation.fragmentationLength[nalu_index]]);
EXPECT_THAT(expected_payload_vector,
::testing::ElementsAreArray(packet, packet_length));
}
} // namespace
TEST(RtpPacketizerH264Test, TestSingleNalu) {
const uint8_t frame[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5.
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(1);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = sizeof(frame);
scoped_ptr<RtpPacketizer> packetizer(
RtpPacketizer::Create(kRtpVideoH264, kMaxPayloadSize, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame, sizeof(frame), &fragmentation);
uint8_t packet[kMaxPayloadSize] = {0};
size_t length = 0;
bool last = false;
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
EXPECT_EQ(2u, length);
EXPECT_TRUE(last);
VerifySingleNaluPayload(
fragmentation, 0, frame, sizeof(frame), packet, length);
EXPECT_FALSE(packetizer->NextPacket(packet, &length, &last));
}
TEST(RtpPacketizerH264Test, TestSingleNaluTwoPackets) {
const size_t kFrameSize = kMaxPayloadSize + 100;
uint8_t frame[kFrameSize] = {0};
for (size_t i = 0; i < kFrameSize; ++i)
frame[i] = i;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(2);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = kMaxPayloadSize;
fragmentation.fragmentationOffset[1] = kMaxPayloadSize;
fragmentation.fragmentationLength[1] = 100;
// Set NAL headers.
frame[fragmentation.fragmentationOffset[0]] = 0x01;
frame[fragmentation.fragmentationOffset[1]] = 0x01;
scoped_ptr<RtpPacketizer> packetizer(
RtpPacketizer::Create(kRtpVideoH264, kMaxPayloadSize, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame, kFrameSize, &fragmentation);
uint8_t packet[kMaxPayloadSize] = {0};
size_t length = 0;
bool last = false;
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
ASSERT_EQ(fragmentation.fragmentationOffset[1], length);
VerifySingleNaluPayload(fragmentation, 0, frame, kFrameSize, packet, length);
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
ASSERT_EQ(fragmentation.fragmentationLength[1], length);
VerifySingleNaluPayload(fragmentation, 1, frame, kFrameSize, packet, length);
EXPECT_TRUE(last);
EXPECT_FALSE(packetizer->NextPacket(packet, &length, &last));
}
TEST(RtpPacketizerH264Test, TestStapA) {
const size_t kFrameSize =
kMaxPayloadSize - 3 * kLengthFieldLength - kNalHeaderSize;
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7.
0x08, 0xFF, // F=0, NRI=0, Type=8.
0x05}; // F=0, NRI=0, Type=5.
const size_t kPayloadOffset = 5;
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
frame[i + kPayloadOffset] = i;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(3);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = 2;
fragmentation.fragmentationOffset[1] = 2;
fragmentation.fragmentationLength[1] = 2;
fragmentation.fragmentationOffset[2] = 4;
fragmentation.fragmentationLength[2] =
kNalHeaderSize + kFrameSize - kPayloadOffset;
scoped_ptr<RtpPacketizer> packetizer(
RtpPacketizer::Create(kRtpVideoH264, kMaxPayloadSize, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame, kFrameSize, &fragmentation);
uint8_t packet[kMaxPayloadSize] = {0};
size_t length = 0;
bool last = false;
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
size_t expected_packet_size =
kNalHeaderSize + 3 * kLengthFieldLength + kFrameSize;
ASSERT_EQ(expected_packet_size, length);
EXPECT_TRUE(last);
for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i)
VerifyStapAPayload(fragmentation, 0, i, frame, kFrameSize, packet, length);
EXPECT_FALSE(packetizer->NextPacket(packet, &length, &last));
}
TEST(RtpPacketizerH264Test, TestTooSmallForStapAHeaders) {
const size_t kFrameSize = kMaxPayloadSize - 1;
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7.
0x08, 0xFF, // F=0, NRI=0, Type=8.
0x05}; // F=0, NRI=0, Type=5.
const size_t kPayloadOffset = 5;
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
frame[i + kPayloadOffset] = i;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(3);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = 2;
fragmentation.fragmentationOffset[1] = 2;
fragmentation.fragmentationLength[1] = 2;
fragmentation.fragmentationOffset[2] = 4;
fragmentation.fragmentationLength[2] =
kNalHeaderSize + kFrameSize - kPayloadOffset;
scoped_ptr<RtpPacketizer> packetizer(
RtpPacketizer::Create(kRtpVideoH264, kMaxPayloadSize, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame, kFrameSize, &fragmentation);
uint8_t packet[kMaxPayloadSize] = {0};
size_t length = 0;
bool last = false;
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
size_t expected_packet_size = kNalHeaderSize;
for (size_t i = 0; i < 2; ++i) {
expected_packet_size +=
kLengthFieldLength + fragmentation.fragmentationLength[i];
}
ASSERT_EQ(expected_packet_size, length);
EXPECT_FALSE(last);
for (size_t i = 0; i < 2; ++i)
VerifyStapAPayload(fragmentation, 0, i, frame, kFrameSize, packet, length);
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
expected_packet_size = fragmentation.fragmentationLength[2];
ASSERT_EQ(expected_packet_size, length);
EXPECT_TRUE(last);
VerifySingleNaluPayload(fragmentation, 2, frame, kFrameSize, packet, length);
EXPECT_FALSE(packetizer->NextPacket(packet, &length, &last));
}
TEST(RtpPacketizerH264Test, TestMixedStapA_FUA) {
const size_t kFuaNaluSize = 2 * (kMaxPayloadSize - 100);
const size_t kStapANaluSize = 100;
RTPFragmentationHeader fragmentation;
fragmentation.VerifyAndAllocateFragmentationHeader(3);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = kFuaNaluSize;
fragmentation.fragmentationOffset[1] = kFuaNaluSize;
fragmentation.fragmentationLength[1] = kStapANaluSize;
fragmentation.fragmentationOffset[2] = kFuaNaluSize + kStapANaluSize;
fragmentation.fragmentationLength[2] = kStapANaluSize;
const size_t kFrameSize = kFuaNaluSize + 2 * kStapANaluSize;
uint8_t frame[kFrameSize];
size_t nalu_offset = 0;
for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i) {
nalu_offset = fragmentation.fragmentationOffset[i];
frame[nalu_offset] = 0x05; // F=0, NRI=0, Type=5.
for (size_t j = 1; j < fragmentation.fragmentationLength[i]; ++j) {
frame[nalu_offset + j] = i + j;
}
}
scoped_ptr<RtpPacketizer> packetizer(
RtpPacketizer::Create(kRtpVideoH264, kMaxPayloadSize, NULL, kFrameEmpty));
packetizer->SetPayloadData(frame, kFrameSize, &fragmentation);
// First expecting two FU-A packets.
std::vector<size_t> fua_sizes;
fua_sizes.push_back(1100);
fua_sizes.push_back(1099);
uint8_t packet[kMaxPayloadSize] = {0};
size_t length = 0;
bool last = false;
int fua_offset = kNalHeaderSize;
for (size_t i = 0; i < 2; ++i) {
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
VerifyFua(i, frame, fua_offset, packet, length, fua_sizes);
EXPECT_FALSE(last);
fua_offset += fua_sizes[i];
}
// Then expecting one STAP-A packet with two nal units.
ASSERT_TRUE(packetizer->NextPacket(packet, &length, &last));
size_t expected_packet_size =
kNalHeaderSize + 2 * kLengthFieldLength + 2 * kStapANaluSize;
ASSERT_EQ(expected_packet_size, length);
EXPECT_TRUE(last);
for (size_t i = 1; i < fragmentation.fragmentationVectorSize; ++i)
VerifyStapAPayload(fragmentation, 1, i, frame, kFrameSize, packet, length);
EXPECT_FALSE(packetizer->NextPacket(packet, &length, &last));
}
TEST(RtpPacketizerH264Test, TestFUAOddSize) {
const size_t kExpectedPayloadSizes[2] = {600, 600};
TestFua(
kMaxPayloadSize + 1,
kMaxPayloadSize,
std::vector<size_t>(kExpectedPayloadSizes,
kExpectedPayloadSizes +
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
}
TEST(RtpPacketizerH264Test, TestFUAEvenSize) {
const size_t kExpectedPayloadSizes[2] = {601, 600};
TestFua(
kMaxPayloadSize + 2,
kMaxPayloadSize,
std::vector<size_t>(kExpectedPayloadSizes,
kExpectedPayloadSizes +
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
}
TEST(RtpPacketizerH264Test, TestFUARounding) {
const size_t kExpectedPayloadSizes[8] = {1266, 1266, 1266, 1266,
1266, 1266, 1266, 1261};
TestFua(
10124,
1448,
std::vector<size_t>(kExpectedPayloadSizes,
kExpectedPayloadSizes +
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
}
TEST(RtpPacketizerH264Test, TestFUABig) {
const size_t kExpectedPayloadSizes[10] = {1198, 1198, 1198, 1198, 1198,
1198, 1198, 1198, 1198, 1198};
// Generate 10 full sized packets, leave room for FU-A headers minus the NALU
// header.
TestFua(
10 * (kMaxPayloadSize - kFuAHeaderSize) + kNalHeaderSize,
kMaxPayloadSize,
std::vector<size_t>(kExpectedPayloadSizes,
kExpectedPayloadSizes +
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
}
class RtpDepacketizerH264Test : public ::testing::Test {
protected:
RtpDepacketizerH264Test()
: depacketizer_(RtpDepacketizer::Create(kRtpVideoH264)) {}
void ExpectPacket(RtpDepacketizer::ParsedPayload* parsed_payload,
const uint8_t* data,
size_t length) {
ASSERT_TRUE(parsed_payload != NULL);
EXPECT_THAT(std::vector<uint8_t>(
parsed_payload->payload,
parsed_payload->payload + parsed_payload->payload_length),
::testing::ElementsAreArray(data, length));
}
scoped_ptr<RtpDepacketizer> depacketizer_;
};
TEST_F(RtpDepacketizerH264Test, TestSingleNalu) {
uint8_t packet[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5.
RtpDepacketizer::ParsedPayload payload;
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
ExpectPacket(&payload, packet, sizeof(packet));
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_TRUE(payload.type.Video.isFirstPacket);
EXPECT_TRUE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.stap_a);
}
TEST_F(RtpDepacketizerH264Test, TestStapAKey) {
uint8_t packet[16] = {kStapA, // F=0, NRI=0, Type=24.
// Length, nal header, payload.
0, 0x02, kIdr, 0xFF, 0, 0x03, kIdr, 0xFF,
0x00, 0, 0x04, kIdr, 0xFF, 0x00, 0x11};
RtpDepacketizer::ParsedPayload payload;
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
ExpectPacket(&payload, packet, sizeof(packet));
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_TRUE(payload.type.Video.isFirstPacket);
EXPECT_TRUE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_TRUE(payload.type.Video.codecHeader.H264.stap_a);
}
TEST_F(RtpDepacketizerH264Test, TestStapADelta) {
uint8_t packet[16] = {kStapA, // F=0, NRI=0, Type=24.
// Length, nal header, payload.
0, 0x02, kSlice, 0xFF, 0, 0x03, kSlice, 0xFF,
0x00, 0, 0x04, kSlice, 0xFF, 0x00, 0x11};
RtpDepacketizer::ParsedPayload payload;
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
ExpectPacket(&payload, packet, sizeof(packet));
EXPECT_EQ(kVideoFrameDelta, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_TRUE(payload.type.Video.isFirstPacket);
EXPECT_TRUE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_TRUE(payload.type.Video.codecHeader.H264.stap_a);
}
TEST_F(RtpDepacketizerH264Test, TestFuA) {
uint8_t packet1[3] = {
kFuA, // F=0, NRI=0, Type=28.
kSBit | kIdr, // FU header.
0x01 // Payload.
};
const uint8_t kExpected1[2] = {kIdr, 0x01};
uint8_t packet2[3] = {
kFuA, // F=0, NRI=0, Type=28.
kIdr, // FU header.
0x02 // Payload.
};
const uint8_t kExpected2[1] = {0x02};
uint8_t packet3[3] = {
kFuA, // F=0, NRI=0, Type=28.
kEBit | kIdr, // FU header.
0x03 // Payload.
};
const uint8_t kExpected3[1] = {0x03};
RtpDepacketizer::ParsedPayload payload;
// We expect that the first packet is one byte shorter since the FU-A header
// has been replaced by the original nal header.
ASSERT_TRUE(depacketizer_->Parse(&payload, packet1, sizeof(packet1)));
ExpectPacket(&payload, kExpected1, sizeof(kExpected1));
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_TRUE(payload.type.Video.isFirstPacket);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.stap_a);
// Following packets will be 2 bytes shorter since they will only be appended
// onto the first packet.
payload = RtpDepacketizer::ParsedPayload();
ASSERT_TRUE(depacketizer_->Parse(&payload, packet2, sizeof(packet2)));
ExpectPacket(&payload, kExpected2, sizeof(kExpected2));
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_FALSE(payload.type.Video.isFirstPacket);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.stap_a);
payload = RtpDepacketizer::ParsedPayload();
ASSERT_TRUE(depacketizer_->Parse(&payload, packet3, sizeof(packet3)));
ExpectPacket(&payload, kExpected3, sizeof(kExpected3));
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
EXPECT_FALSE(payload.type.Video.isFirstPacket);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.single_nalu);
EXPECT_FALSE(payload.type.Video.codecHeader.H264.stap_a);
}
} // namespace webrtc