Remove the different block lengths in ns_core

Relanding the CL: https://webrtc-codereview.appspot.com/30539004/
It had to be reverted because some development code was uploaded by mistake.

TBR=bjornv@webrtc.org

BUG=webrtc:3811

Review URL: https://webrtc-codereview.appspot.com/28589005

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7307 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/webrtc/modules/audio_processing/ns/ns_core.c b/webrtc/modules/audio_processing/ns/ns_core.c
index 285e404..5d367ee 100644
--- a/webrtc/modules/audio_processing/ns/ns_core.c
+++ b/webrtc/modules/audio_processing/ns/ns_core.c
@@ -90,24 +90,18 @@
   if (fs == 8000) {
     // We only support 10ms frames
     inst->blockLen = 80;
-    inst->blockLen10ms = 80;
     inst->anaLen = 128;
     inst->window = kBlocks80w128;
-    inst->outLen = 0;
   } else if (fs == 16000) {
     // We only support 10ms frames
     inst->blockLen = 160;
-    inst->blockLen10ms = 160;
     inst->anaLen = 256;
     inst->window = kBlocks160w256;
-    inst->outLen = 0;
   } else if (fs == 32000) {
     // We only support 10ms frames
     inst->blockLen = 160;
-    inst->blockLen10ms = 160;
     inst->anaLen = 256;
     inst->window = kBlocks160w256;
-    inst->outLen = 0;
   }
   inst->magnLen = inst->anaLen / 2 + 1;  // Number of frequency bins
 
@@ -148,13 +142,13 @@
   // initialize variables for new method
   inst->priorSpeechProb = (float)0.5;  // prior prob for speech/noise
   for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
-    inst->magnPrev[i] = (float)0.0;  // previous mag spectrum
+    inst->magnPrev[i] = (float)0.0;   // previous mag spectrum
     inst->noisePrev[i] = (float)0.0;  // previous noise-spectrum
     inst->logLrtTimeAvg[i] =
-        LRT_FEATURE_THR;  // smooth LR ratio (same as threshold)
+        LRT_FEATURE_THR;                 // smooth LR ratio (same as threshold)
     inst->magnAvgPause[i] = (float)0.0;  // conservative noise spectrum estimate
-    inst->speechProb[i] = (float)0.0;  // for estimation of HB in second pass
-    inst->initMagnEst[i] = (float)0.0;  // initial average mag spectrum
+    inst->speechProb[i] = (float)0.0;    // for estimation of HB in second pass
+    inst->initMagnEst[i] = (float)0.0;   // initial average mag spectrum
   }
 
   // feature quantities
@@ -215,8 +209,6 @@
   // default mode
   WebRtcNs_set_policy_core(inst, 0);
 
-  memset(inst->outBuf, 0, sizeof(float) * 3 * BLOCKL_MAX);
-
   inst->initFlag = 1;
   return 0;
 }
@@ -789,250 +781,245 @@
 
   // update analysis buffer for L band
   memcpy(inst->analyzeBuf,
-         inst->analyzeBuf + inst->blockLen10ms,
-         sizeof(float) * (inst->anaLen - inst->blockLen10ms));
-  memcpy(inst->analyzeBuf + inst->anaLen - inst->blockLen10ms,
+         inst->analyzeBuf + inst->blockLen,
+         sizeof(float) * (inst->anaLen - inst->blockLen));
+  memcpy(inst->analyzeBuf + inst->anaLen - inst->blockLen,
          speechFrame,
-         sizeof(float) * inst->blockLen10ms);
+         sizeof(float) * inst->blockLen);
 
-  // check if processing needed
-  if (inst->outLen == 0) {
-    // windowing
-    energy = 0.0;
-    for (i = 0; i < inst->anaLen; i++) {
-      winData[i] = inst->window[i] * inst->analyzeBuf[i];
-      energy += winData[i] * winData[i];
-    }
-    if (energy == 0.0) {
-      // we want to avoid updating statistics in this case:
-      // Updating feature statistics when we have zeros only will cause
-      // thresholds to move towards zero signal situations. This in turn has the
-      // effect that once the signal is "turned on" (non-zero values) everything
-      // will be treated as speech and there is no noise suppression effect.
-      // Depending on the duration of the inactive signal it takes a
-      // considerable amount of time for the system to learn what is noise and
-      // what is speech.
-      return 0;
-    }
+  // windowing
+  energy = 0.0;
+  for (i = 0; i < inst->anaLen; i++) {
+    winData[i] = inst->window[i] * inst->analyzeBuf[i];
+    energy += winData[i] * winData[i];
+  }
+  if (energy == 0.0) {
+    // we want to avoid updating statistics in this case:
+    // Updating feature statistics when we have zeros only will cause
+    // thresholds to move towards zero signal situations. This in turn has the
+    // effect that once the signal is "turned on" (non-zero values) everything
+    // will be treated as speech and there is no noise suppression effect.
+    // Depending on the duration of the inactive signal it takes a
+    // considerable amount of time for the system to learn what is noise and
+    // what is speech.
+    return 0;
+  }
 
-    //
-    inst->blockInd++;  // Update the block index only when we process a block.
-    // FFT
-    WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
+  //
+  inst->blockInd++;  // Update the block index only when we process a block.
+  // FFT
+  WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
 
-    imag[0] = 0;
-    real[0] = winData[0];
-    magn[0] = (float)(fabs(real[0]) + 1.0f);
-    imag[inst->magnLen - 1] = 0;
-    real[inst->magnLen - 1] = winData[1];
-    magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
-    signalEnergy = (float)(real[0] * real[0]) +
-                   (float)(real[inst->magnLen - 1] * real[inst->magnLen - 1]);
-    sumMagn = magn[0] + magn[inst->magnLen - 1];
+  imag[0] = 0;
+  real[0] = winData[0];
+  magn[0] = (float)(fabs(real[0]) + 1.0f);
+  imag[inst->magnLen - 1] = 0;
+  real[inst->magnLen - 1] = winData[1];
+  magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
+  signalEnergy = (float)(real[0] * real[0]) +
+                 (float)(real[inst->magnLen - 1] * real[inst->magnLen - 1]);
+  sumMagn = magn[0] + magn[inst->magnLen - 1];
+  if (inst->blockInd < END_STARTUP_SHORT) {
+    tmpFloat2 = log((float)(inst->magnLen - 1));
+    sum_log_i = tmpFloat2;
+    sum_log_i_square = tmpFloat2 * tmpFloat2;
+    tmpFloat1 = log(magn[inst->magnLen - 1]);
+    sum_log_magn = tmpFloat1;
+    sum_log_i_log_magn = tmpFloat2 * tmpFloat1;
+  }
+  for (i = 1; i < inst->magnLen - 1; i++) {
+    real[i] = winData[2 * i];
+    imag[i] = winData[2 * i + 1];
+    // magnitude spectrum
+    fTmp = real[i] * real[i];
+    fTmp += imag[i] * imag[i];
+    signalEnergy += fTmp;
+    magn[i] = ((float)sqrt(fTmp)) + 1.0f;
+    sumMagn += magn[i];
     if (inst->blockInd < END_STARTUP_SHORT) {
-      tmpFloat2 = log((float)(inst->magnLen - 1));
-      sum_log_i = tmpFloat2;
-      sum_log_i_square = tmpFloat2 * tmpFloat2;
-      tmpFloat1 = log(magn[inst->magnLen - 1]);
-      sum_log_magn = tmpFloat1;
-      sum_log_i_log_magn = tmpFloat2 * tmpFloat1;
-    }
-    for (i = 1; i < inst->magnLen - 1; i++) {
-      real[i] = winData[2 * i];
-      imag[i] = winData[2 * i + 1];
-      // magnitude spectrum
-      fTmp = real[i] * real[i];
-      fTmp += imag[i] * imag[i];
-      signalEnergy += fTmp;
-      magn[i] = ((float)sqrt(fTmp)) + 1.0f;
-      sumMagn += magn[i];
-      if (inst->blockInd < END_STARTUP_SHORT) {
-        if (i >= kStartBand) {
-          tmpFloat2 = log((float)i);
-          sum_log_i += tmpFloat2;
-          sum_log_i_square += tmpFloat2 * tmpFloat2;
-          tmpFloat1 = log(magn[i]);
-          sum_log_magn += tmpFloat1;
-          sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
-        }
+      if (i >= kStartBand) {
+        tmpFloat2 = log((float)i);
+        sum_log_i += tmpFloat2;
+        sum_log_i_square += tmpFloat2 * tmpFloat2;
+        tmpFloat1 = log(magn[i]);
+        sum_log_magn += tmpFloat1;
+        sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
       }
     }
-    signalEnergy = signalEnergy / ((float)inst->magnLen);
-    inst->signalEnergy = signalEnergy;
-    inst->sumMagn = sumMagn;
+  }
+  signalEnergy = signalEnergy / ((float)inst->magnLen);
+  inst->signalEnergy = signalEnergy;
+  inst->sumMagn = sumMagn;
 
-    // compute spectral flatness on input spectrum
-    WebRtcNs_ComputeSpectralFlatness(inst, magn);
-    // quantile noise estimate
-    WebRtcNs_NoiseEstimation(inst, magn, noise);
-    // compute simplified noise model during startup
-    if (inst->blockInd < END_STARTUP_SHORT) {
-      // Estimate White noise
-      inst->whiteNoiseLevel +=
-          sumMagn / ((float)inst->magnLen) * inst->overdrive;
-      // Estimate Pink noise parameters
-      tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
-      tmpFloat1 -= (sum_log_i * sum_log_i);
-      tmpFloat2 =
-          (sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
-      tmpFloat3 = tmpFloat2 / tmpFloat1;
-      // Constrain the estimated spectrum to be positive
-      if (tmpFloat3 < 0.0f) {
-        tmpFloat3 = 0.0f;
-      }
-      inst->pinkNoiseNumerator += tmpFloat3;
-      tmpFloat2 = (sum_log_i * sum_log_magn);
-      tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
-      tmpFloat3 = tmpFloat2 / tmpFloat1;
-      // Constrain the pink noise power to be in the interval [0, 1];
-      if (tmpFloat3 < 0.0f) {
-        tmpFloat3 = 0.0f;
-      }
-      if (tmpFloat3 > 1.0f) {
-        tmpFloat3 = 1.0f;
-      }
-      inst->pinkNoiseExp += tmpFloat3;
+  // compute spectral flatness on input spectrum
+  WebRtcNs_ComputeSpectralFlatness(inst, magn);
+  // quantile noise estimate
+  WebRtcNs_NoiseEstimation(inst, magn, noise);
+  // compute simplified noise model during startup
+  if (inst->blockInd < END_STARTUP_SHORT) {
+    // Estimate White noise
+    inst->whiteNoiseLevel += sumMagn / ((float)inst->magnLen) * inst->overdrive;
+    // Estimate Pink noise parameters
+    tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
+    tmpFloat1 -= (sum_log_i * sum_log_i);
+    tmpFloat2 =
+        (sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
+    tmpFloat3 = tmpFloat2 / tmpFloat1;
+    // Constrain the estimated spectrum to be positive
+    if (tmpFloat3 < 0.0f) {
+      tmpFloat3 = 0.0f;
+    }
+    inst->pinkNoiseNumerator += tmpFloat3;
+    tmpFloat2 = (sum_log_i * sum_log_magn);
+    tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
+    tmpFloat3 = tmpFloat2 / tmpFloat1;
+    // Constrain the pink noise power to be in the interval [0, 1];
+    if (tmpFloat3 < 0.0f) {
+      tmpFloat3 = 0.0f;
+    }
+    if (tmpFloat3 > 1.0f) {
+      tmpFloat3 = 1.0f;
+    }
+    inst->pinkNoiseExp += tmpFloat3;
 
-      // Calculate frequency independent parts of parametric noise estimate.
-      if (inst->pinkNoiseExp > 0.0f) {
+    // Calculate frequency independent parts of parametric noise estimate.
+    if (inst->pinkNoiseExp > 0.0f) {
+      // Use pink noise estimate
+      parametric_num =
+          exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
+      parametric_num *= (float)(inst->blockInd + 1);
+      parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
+    }
+    for (i = 0; i < inst->magnLen; i++) {
+      // Estimate the background noise using the white and pink noise
+      // parameters
+      if (inst->pinkNoiseExp == 0.0f) {
+        // Use white noise estimate
+        inst->parametricNoise[i] = inst->whiteNoiseLevel;
+      } else {
         // Use pink noise estimate
-        parametric_num =
-            exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
-        parametric_num *= (float)(inst->blockInd + 1);
-        parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
+        float use_band = (float)(i < kStartBand ? kStartBand : i);
+        inst->parametricNoise[i] =
+            parametric_num / pow(use_band, parametric_exp);
       }
-      for (i = 0; i < inst->magnLen; i++) {
-        // Estimate the background noise using the white and pink noise
-        // parameters
-        if (inst->pinkNoiseExp == 0.0f) {
-          // Use white noise estimate
-          inst->parametricNoise[i] = inst->whiteNoiseLevel;
-        } else {
-          // Use pink noise estimate
-          float use_band = (float)(i < kStartBand ? kStartBand : i);
-          inst->parametricNoise[i] =
-              parametric_num / pow(use_band, parametric_exp);
-        }
-        // Weight quantile noise with modeled noise
-        noise[i] *= (inst->blockInd);
-        tmpFloat2 =
-            inst->parametricNoise[i] * (END_STARTUP_SHORT - inst->blockInd);
-        noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
-        noise[i] /= END_STARTUP_SHORT;
-      }
+      // Weight quantile noise with modeled noise
+      noise[i] *= (inst->blockInd);
+      tmpFloat2 =
+          inst->parametricNoise[i] * (END_STARTUP_SHORT - inst->blockInd);
+      noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
+      noise[i] /= END_STARTUP_SHORT;
     }
-    // compute average signal during END_STARTUP_LONG time:
-    // used to normalize spectral difference measure
-    if (inst->blockInd < END_STARTUP_LONG) {
-      inst->featureData[5] *= inst->blockInd;
-      inst->featureData[5] += signalEnergy;
-      inst->featureData[5] /= (inst->blockInd + 1);
-    }
+  }
+  // compute average signal during END_STARTUP_LONG time:
+  // used to normalize spectral difference measure
+  if (inst->blockInd < END_STARTUP_LONG) {
+    inst->featureData[5] *= inst->blockInd;
+    inst->featureData[5] += signalEnergy;
+    inst->featureData[5] /= (inst->blockInd + 1);
+  }
 
-    // start processing at frames == converged+1
-    // STEP 1: compute  prior and post snr based on quantile noise est
-    // compute DD estimate of prior SNR: needed for new method
-    for (i = 0; i < inst->magnLen; i++) {
-      // post snr
-      snrLocPost[i] = (float)0.0;
-      if (magn[i] > noise[i]) {
-        snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
-      }
-      // previous post snr
-      // previous estimate: based on previous frame with gain filter
-      inst->previousEstimateStsa[i] = inst->magnPrev[i] /
-                                (inst->noisePrev[i] + (float)0.0001) *
-                                (inst->smooth[i]);
-      // DD estimate is sum of two terms: current estimate and previous estimate
-      // directed decision update of snrPrior
-      snrLocPrior[i] = DD_PR_SNR * inst->previousEstimateStsa[i] +
-                       ((float)1.0 - DD_PR_SNR) * snrLocPost[i];
-      // post and prior snr needed for step 2
-    }  // end of loop over freqs
-       // done with step 1: dd computation of prior and post snr
+  // start processing at frames == converged+1
+  // STEP 1: compute  prior and post snr based on quantile noise est
+  // compute DD estimate of prior SNR: needed for new method
+  for (i = 0; i < inst->magnLen; i++) {
+    // post snr
+    snrLocPost[i] = (float)0.0;
+    if (magn[i] > noise[i]) {
+      snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
+    }
+    // previous post snr
+    // previous estimate: based on previous frame with gain filter
+    inst->previousEstimateStsa[i] = inst->magnPrev[i] /
+                                    (inst->noisePrev[i] + (float)0.0001) *
+                                    (inst->smooth[i]);
+    // DD estimate is sum of two terms: current estimate and previous estimate
+    // directed decision update of snrPrior
+    snrLocPrior[i] = DD_PR_SNR * inst->previousEstimateStsa[i] +
+                     ((float)1.0 - DD_PR_SNR) * snrLocPost[i];
+    // post and prior snr needed for step 2
+  }  // end of loop over freqs
+     // done with step 1: dd computation of prior and post snr
 
-    // STEP 2: compute speech/noise likelihood
-    // compute difference of input spectrum with learned/estimated noise
-    // spectrum
-    WebRtcNs_ComputeSpectralDifference(inst, magn);
-    // compute histograms for parameter decisions (thresholds and weights for
-    // features)
-    // parameters are extracted once every window time
-    // (=inst->modelUpdatePars[1])
-    if (updateParsFlag >= 1) {
-      // counter update
-      inst->modelUpdatePars[3]--;
-      // update histogram
-      if (inst->modelUpdatePars[3] > 0) {
-        WebRtcNs_FeatureParameterExtraction(inst, 0);
-      }
-      // compute model parameters
-      if (inst->modelUpdatePars[3] == 0) {
-        WebRtcNs_FeatureParameterExtraction(inst, 1);
-        inst->modelUpdatePars[3] = inst->modelUpdatePars[1];
-        // if wish to update only once, set flag to zero
-        if (updateParsFlag == 1) {
-          inst->modelUpdatePars[0] = 0;
-        } else {
-          // update every window:
-          // get normalization for spectral difference for next window estimate
-          inst->featureData[6] =
-              inst->featureData[6] / ((float)inst->modelUpdatePars[1]);
-          inst->featureData[5] =
-              (float)0.5 * (inst->featureData[6] + inst->featureData[5]);
-          inst->featureData[6] = (float)0.0;
-        }
+  // STEP 2: compute speech/noise likelihood
+  // compute difference of input spectrum with learned/estimated noise
+  // spectrum
+  WebRtcNs_ComputeSpectralDifference(inst, magn);
+  // compute histograms for parameter decisions (thresholds and weights for
+  // features)
+  // parameters are extracted once every window time
+  // (=inst->modelUpdatePars[1])
+  if (updateParsFlag >= 1) {
+    // counter update
+    inst->modelUpdatePars[3]--;
+    // update histogram
+    if (inst->modelUpdatePars[3] > 0) {
+      WebRtcNs_FeatureParameterExtraction(inst, 0);
+    }
+    // compute model parameters
+    if (inst->modelUpdatePars[3] == 0) {
+      WebRtcNs_FeatureParameterExtraction(inst, 1);
+      inst->modelUpdatePars[3] = inst->modelUpdatePars[1];
+      // if wish to update only once, set flag to zero
+      if (updateParsFlag == 1) {
+        inst->modelUpdatePars[0] = 0;
+      } else {
+        // update every window:
+        // get normalization for spectral difference for next window estimate
+        inst->featureData[6] =
+            inst->featureData[6] / ((float)inst->modelUpdatePars[1]);
+        inst->featureData[5] =
+            (float)0.5 * (inst->featureData[6] + inst->featureData[5]);
+        inst->featureData[6] = (float)0.0;
       }
     }
-    // compute speech/noise probability
-    WebRtcNs_SpeechNoiseProb(inst, inst->speechProb, snrLocPrior, snrLocPost);
-    // time-avg parameter for noise update
+  }
+  // compute speech/noise probability
+  WebRtcNs_SpeechNoiseProb(inst, inst->speechProb, snrLocPrior, snrLocPost);
+  // time-avg parameter for noise update
+  gammaNoiseTmp = NOISE_UPDATE;
+  for (i = 0; i < inst->magnLen; i++) {
+    probSpeech = inst->speechProb[i];
+    probNonSpeech = (float)1.0 - probSpeech;
+    // temporary noise update:
+    // use it for speech frames if update value is less than previous
+    noiseUpdateTmp =
+        gammaNoiseTmp * inst->noisePrev[i] +
+        ((float)1.0 - gammaNoiseTmp) *
+            (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
+    //
+    // time-constant based on speech/noise state
+    gammaNoiseOld = gammaNoiseTmp;
     gammaNoiseTmp = NOISE_UPDATE;
-    for (i = 0; i < inst->magnLen; i++) {
-      probSpeech = inst->speechProb[i];
-      probNonSpeech = (float)1.0 - probSpeech;
-      // temporary noise update:
-      // use it for speech frames if update value is less than previous
-      noiseUpdateTmp =
+    // increase gamma (i.e., less noise update) for frame likely to be speech
+    if (probSpeech > PROB_RANGE) {
+      gammaNoiseTmp = SPEECH_UPDATE;
+    }
+    // conservative noise update
+    if (probSpeech < PROB_RANGE) {
+      inst->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
+    }
+    // noise update
+    if (gammaNoiseTmp == gammaNoiseOld) {
+      noise[i] = noiseUpdateTmp;
+    } else {
+      noise[i] =
           gammaNoiseTmp * inst->noisePrev[i] +
           ((float)1.0 - gammaNoiseTmp) *
               (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
-      //
-      // time-constant based on speech/noise state
-      gammaNoiseOld = gammaNoiseTmp;
-      gammaNoiseTmp = NOISE_UPDATE;
-      // increase gamma (i.e., less noise update) for frame likely to be speech
-      if (probSpeech > PROB_RANGE) {
-        gammaNoiseTmp = SPEECH_UPDATE;
-      }
-      // conservative noise update
-      if (probSpeech < PROB_RANGE) {
-        inst->magnAvgPause[i] +=
-            GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
-      }
-      // noise update
-      if (gammaNoiseTmp == gammaNoiseOld) {
+      // allow for noise update downwards:
+      // if noise update decreases the noise, it is safe, so allow it to
+      // happen
+      if (noiseUpdateTmp < noise[i]) {
         noise[i] = noiseUpdateTmp;
-      } else {
-        noise[i] =
-            gammaNoiseTmp * inst->noisePrev[i] +
-            ((float)1.0 - gammaNoiseTmp) *
-                (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
-        // allow for noise update downwards:
-        // if noise update decreases the noise, it is safe, so allow it to
-        // happen
-        if (noiseUpdateTmp < noise[i]) {
-          noise[i] = noiseUpdateTmp;
-        }
       }
-    }  // end of freq loop
-    // done with step 2: noise update
-
-    // keep track of noise spectrum for next frame
-    for (i = 0; i < inst->magnLen; i++) {
-      inst->noisePrev[i] = noise[i];
     }
-  }  // end of if inst->outLen == 0
+  }  // end of freq loop
+  // done with step 2: noise update
+
+  // keep track of noise spectrum for next frame
+  for (i = 0; i < inst->magnLen; i++) {
+    inst->noisePrev[i] = noise[i];
+  }
 
   return 0;
 }
@@ -1081,194 +1068,30 @@
 
   // update analysis buffer for L band
   memcpy(inst->dataBuf,
-         inst->dataBuf + inst->blockLen10ms,
-         sizeof(float) * (inst->anaLen - inst->blockLen10ms));
-  memcpy(inst->dataBuf + inst->anaLen - inst->blockLen10ms,
+         inst->dataBuf + inst->blockLen,
+         sizeof(float) * (inst->anaLen - inst->blockLen));
+  memcpy(inst->dataBuf + inst->anaLen - inst->blockLen,
          speechFrame,
-         sizeof(float) * inst->blockLen10ms);
+         sizeof(float) * inst->blockLen);
 
   if (flagHB == 1) {
     // update analysis buffer for H band
     memcpy(inst->dataBufHB,
-           inst->dataBufHB + inst->blockLen10ms,
-           sizeof(float) * (inst->anaLen - inst->blockLen10ms));
-    memcpy(inst->dataBufHB + inst->anaLen - inst->blockLen10ms,
+           inst->dataBufHB + inst->blockLen,
+           sizeof(float) * (inst->anaLen - inst->blockLen));
+    memcpy(inst->dataBufHB + inst->anaLen - inst->blockLen,
            speechFrameHB,
-           sizeof(float) * inst->blockLen10ms);
+           sizeof(float) * inst->blockLen);
   }
 
-  // check if processing needed
-  if (inst->outLen == 0) {
-    // windowing
-    energy1 = 0.0;
-    for (i = 0; i < inst->anaLen; i++) {
-      winData[i] = inst->window[i] * inst->dataBuf[i];
-      energy1 += winData[i] * winData[i];
-    }
-    if (energy1 == 0.0) {
-      // synthesize the special case of zero input
-      // read out fully processed segment
-      for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
-        fout[i - inst->windShift] = inst->syntBuf[i];
-      }
-      // update synthesis buffer
-      memcpy(inst->syntBuf,
-             inst->syntBuf + inst->blockLen,
-             sizeof(float) * (inst->anaLen - inst->blockLen));
-      memset(inst->syntBuf + inst->anaLen - inst->blockLen,
-             0,
-             sizeof(float) * inst->blockLen);
-
-      // out buffer
-      inst->outLen = inst->blockLen - inst->blockLen10ms;
-      if (inst->blockLen > inst->blockLen10ms) {
-        for (i = 0; i < inst->outLen; i++) {
-          inst->outBuf[i] = fout[i + inst->blockLen10ms];
-        }
-      }
-      for (i = 0; i < inst->blockLen10ms; ++i)
-        outFrame[i] = WEBRTC_SPL_SAT(
-            WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
-
-      // for time-domain gain of HB
-      if (flagHB == 1)
-        for (i = 0; i < inst->blockLen10ms; ++i)
-          outFrameHB[i] = WEBRTC_SPL_SAT(
-              WEBRTC_SPL_WORD16_MAX, inst->dataBufHB[i], WEBRTC_SPL_WORD16_MIN);
-
-      return 0;
-    }
-
-    // FFT
-    WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
-
-    imag[0] = 0;
-    real[0] = winData[0];
-    magn[0] = (float)(fabs(real[0]) + 1.0f);
-    imag[inst->magnLen - 1] = 0;
-    real[inst->magnLen - 1] = winData[1];
-    magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
-    if (inst->blockInd < END_STARTUP_SHORT) {
-      inst->initMagnEst[0] += magn[0];
-      inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
-    }
-    for (i = 1; i < inst->magnLen - 1; i++) {
-      real[i] = winData[2 * i];
-      imag[i] = winData[2 * i + 1];
-      // magnitude spectrum
-      fTmp = real[i] * real[i];
-      fTmp += imag[i] * imag[i];
-      magn[i] = ((float)sqrt(fTmp)) + 1.0f;
-      if (inst->blockInd < END_STARTUP_SHORT) {
-        inst->initMagnEst[i] += magn[i];
-      }
-    }
-
-    // Compute dd update of prior snr and post snr based on new noise estimate
-    for (i = 0; i < inst->magnLen; i++) {
-      // post and prior snr
-      currentEstimateStsa = (float)0.0;
-      if (magn[i] > inst->noisePrev[i]) {
-        currentEstimateStsa =
-            magn[i] / (inst->noisePrev[i] + (float)0.0001) - (float)1.0;
-      }
-      // DD estimate is sume of two terms: current estimate and previous
-      // estimate
-      // directed decision update of snrPrior
-      snrPrior = DD_PR_SNR * inst->previousEstimateStsa[i] +
-                 ((float)1.0 - DD_PR_SNR) * currentEstimateStsa;
-      // gain filter
-      tmpFloat1 = inst->overdrive + snrPrior;
-      tmpFloat2 = (float)snrPrior / tmpFloat1;
-      theFilter[i] = (float)tmpFloat2;
-    }  // end of loop over freqs
-
-    for (i = 0; i < inst->magnLen; i++) {
-      // flooring bottom
-      if (theFilter[i] < inst->denoiseBound) {
-        theFilter[i] = inst->denoiseBound;
-      }
-      // flooring top
-      if (theFilter[i] > (float)1.0) {
-        theFilter[i] = 1.0;
-      }
-      if (inst->blockInd < END_STARTUP_SHORT) {
-        theFilterTmp[i] =
-            (inst->initMagnEst[i] - inst->overdrive * inst->parametricNoise[i]);
-        theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
-        // flooring bottom
-        if (theFilterTmp[i] < inst->denoiseBound) {
-          theFilterTmp[i] = inst->denoiseBound;
-        }
-        // flooring top
-        if (theFilterTmp[i] > (float)1.0) {
-          theFilterTmp[i] = 1.0;
-        }
-        // Weight the two suppression filters
-        theFilter[i] *= (inst->blockInd);
-        theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
-        theFilter[i] += theFilterTmp[i];
-        theFilter[i] /= (END_STARTUP_SHORT);
-      }
-      // smoothing
-      inst->smooth[i] = theFilter[i];
-      real[i] *= inst->smooth[i];
-      imag[i] *= inst->smooth[i];
-    }
-    // keep track of magn spectrum for next frame
-    for (i = 0; i < inst->magnLen; i++) {
-      inst->magnPrev[i] = magn[i];
-    }
-    // back to time domain
-    winData[0] = real[0];
-    winData[1] = real[inst->magnLen - 1];
-    for (i = 1; i < inst->magnLen - 1; i++) {
-      winData[2 * i] = real[i];
-      winData[2 * i + 1] = imag[i];
-    }
-    WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);
-
-    for (i = 0; i < inst->anaLen; i++) {
-      real[i] = 2.0f * winData[i] / inst->anaLen;  // fft scaling
-    }
-
-    // scale factor: only do it after END_STARTUP_LONG time
-    factor = (float)1.0;
-    if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG) {
-      factor1 = (float)1.0;
-      factor2 = (float)1.0;
-
-      energy2 = 0.0;
-      for (i = 0; i < inst->anaLen; i++) {
-        energy2 += (float)real[i] * (float)real[i];
-      }
-      gain = (float)sqrt(energy2 / (energy1 + (float)1.0));
-
-      // scaling for new version
-      if (gain > B_LIM) {
-        factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
-        if (gain * factor1 > (float)1.0) {
-          factor1 = (float)1.0 / gain;
-        }
-      }
-      if (gain < B_LIM) {
-        // don't reduce scale too much for pause regions:
-        // attenuation here should be controlled by flooring
-        if (gain <= inst->denoiseBound) {
-          gain = inst->denoiseBound;
-        }
-        factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
-      }
-      // combine both scales with speech/noise prob:
-      // note prior (priorSpeechProb) is not frequency dependent
-      factor = inst->priorSpeechProb * factor1 +
-               ((float)1.0 - inst->priorSpeechProb) * factor2;
-    }  // out of inst->gainmap==1
-
-    // synthesis
-    for (i = 0; i < inst->anaLen; i++) {
-      inst->syntBuf[i] += factor * inst->window[i] * (float)real[i];
-    }
+  // windowing
+  energy1 = 0.0;
+  for (i = 0; i < inst->anaLen; i++) {
+    winData[i] = inst->window[i] * inst->dataBuf[i];
+    energy1 += winData[i] * winData[i];
+  }
+  if (energy1 == 0.0) {
+    // synthesize the special case of zero input
     // read out fully processed segment
     for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
       fout[i - inst->windShift] = inst->syntBuf[i];
@@ -1281,28 +1104,161 @@
            0,
            sizeof(float) * inst->blockLen);
 
-    // out buffer
-    inst->outLen = inst->blockLen - inst->blockLen10ms;
-    if (inst->blockLen > inst->blockLen10ms) {
-      for (i = 0; i < inst->outLen; i++) {
-        inst->outBuf[i] = fout[i + inst->blockLen10ms];
-      }
+    for (i = 0; i < inst->blockLen; ++i)
+      outFrame[i] =
+          WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
+
+    // for time-domain gain of HB
+    if (flagHB == 1)
+      for (i = 0; i < inst->blockLen; ++i)
+        outFrameHB[i] = WEBRTC_SPL_SAT(
+            WEBRTC_SPL_WORD16_MAX, inst->dataBufHB[i], WEBRTC_SPL_WORD16_MIN);
+
+    return 0;
+  }
+  // FFT
+  WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
+
+  imag[0] = 0;
+  real[0] = winData[0];
+  magn[0] = (float)(fabs(real[0]) + 1.0f);
+  imag[inst->magnLen - 1] = 0;
+  real[inst->magnLen - 1] = winData[1];
+  magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
+  if (inst->blockInd < END_STARTUP_SHORT) {
+    inst->initMagnEst[0] += magn[0];
+    inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
+  }
+  for (i = 1; i < inst->magnLen - 1; i++) {
+    real[i] = winData[2 * i];
+    imag[i] = winData[2 * i + 1];
+    // magnitude spectrum
+    fTmp = real[i] * real[i];
+    fTmp += imag[i] * imag[i];
+    magn[i] = ((float)sqrt(fTmp)) + 1.0f;
+    if (inst->blockInd < END_STARTUP_SHORT) {
+      inst->initMagnEst[i] += magn[i];
     }
-  }  // end of if out.len==0
-  else {
-    for (i = 0; i < inst->blockLen10ms; i++) {
-      fout[i] = inst->outBuf[i];
-    }
-    memcpy(inst->outBuf,
-           inst->outBuf + inst->blockLen10ms,
-           sizeof(float) * (inst->outLen - inst->blockLen10ms));
-    memset(inst->outBuf + inst->outLen - inst->blockLen10ms,
-           0,
-           sizeof(float) * inst->blockLen10ms);
-    inst->outLen -= inst->blockLen10ms;
   }
 
-  for (i = 0; i < inst->blockLen10ms; ++i)
+  // Compute dd update of prior snr and post snr based on new noise estimate
+  for (i = 0; i < inst->magnLen; i++) {
+    // post and prior snr
+    currentEstimateStsa = (float)0.0;
+    if (magn[i] > inst->noisePrev[i]) {
+      currentEstimateStsa =
+          magn[i] / (inst->noisePrev[i] + (float)0.0001) - (float)1.0;
+    }
+    // DD estimate is sume of two terms: current estimate and previous
+    // estimate
+    // directed decision update of snrPrior
+    snrPrior = DD_PR_SNR * inst->previousEstimateStsa[i] +
+               ((float)1.0 - DD_PR_SNR) * currentEstimateStsa;
+    // gain filter
+    tmpFloat1 = inst->overdrive + snrPrior;
+    tmpFloat2 = (float)snrPrior / tmpFloat1;
+    theFilter[i] = (float)tmpFloat2;
+  }  // end of loop over freqs
+
+  for (i = 0; i < inst->magnLen; i++) {
+    // flooring bottom
+    if (theFilter[i] < inst->denoiseBound) {
+      theFilter[i] = inst->denoiseBound;
+    }
+    // flooring top
+    if (theFilter[i] > (float)1.0) {
+      theFilter[i] = 1.0;
+    }
+    if (inst->blockInd < END_STARTUP_SHORT) {
+      theFilterTmp[i] =
+          (inst->initMagnEst[i] - inst->overdrive * inst->parametricNoise[i]);
+      theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
+      // flooring bottom
+      if (theFilterTmp[i] < inst->denoiseBound) {
+        theFilterTmp[i] = inst->denoiseBound;
+      }
+      // flooring top
+      if (theFilterTmp[i] > (float)1.0) {
+        theFilterTmp[i] = 1.0;
+      }
+      // Weight the two suppression filters
+      theFilter[i] *= (inst->blockInd);
+      theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
+      theFilter[i] += theFilterTmp[i];
+      theFilter[i] /= (END_STARTUP_SHORT);
+    }
+    // smoothing
+    inst->smooth[i] = theFilter[i];
+    real[i] *= inst->smooth[i];
+    imag[i] *= inst->smooth[i];
+  }
+  // keep track of magn spectrum for next frame
+  for (i = 0; i < inst->magnLen; i++) {
+    inst->magnPrev[i] = magn[i];
+  }
+  // back to time domain
+  winData[0] = real[0];
+  winData[1] = real[inst->magnLen - 1];
+  for (i = 1; i < inst->magnLen - 1; i++) {
+    winData[2 * i] = real[i];
+    winData[2 * i + 1] = imag[i];
+  }
+  WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);
+
+  for (i = 0; i < inst->anaLen; i++) {
+    real[i] = 2.0f * winData[i] / inst->anaLen;  // fft scaling
+  }
+
+  // scale factor: only do it after END_STARTUP_LONG time
+  factor = (float)1.0;
+  if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG) {
+    factor1 = (float)1.0;
+    factor2 = (float)1.0;
+
+    energy2 = 0.0;
+    for (i = 0; i < inst->anaLen; i++) {
+      energy2 += (float)real[i] * (float)real[i];
+    }
+    gain = (float)sqrt(energy2 / (energy1 + (float)1.0));
+
+    // scaling for new version
+    if (gain > B_LIM) {
+      factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
+      if (gain * factor1 > (float)1.0) {
+        factor1 = (float)1.0 / gain;
+      }
+    }
+    if (gain < B_LIM) {
+      // don't reduce scale too much for pause regions:
+      // attenuation here should be controlled by flooring
+      if (gain <= inst->denoiseBound) {
+        gain = inst->denoiseBound;
+      }
+      factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
+    }
+    // combine both scales with speech/noise prob:
+    // note prior (priorSpeechProb) is not frequency dependent
+    factor = inst->priorSpeechProb * factor1 +
+             ((float)1.0 - inst->priorSpeechProb) * factor2;
+  }  // out of inst->gainmap==1
+
+  // synthesis
+  for (i = 0; i < inst->anaLen; i++) {
+    inst->syntBuf[i] += factor * inst->window[i] * (float)real[i];
+  }
+  // read out fully processed segment
+  for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
+    fout[i - inst->windShift] = inst->syntBuf[i];
+  }
+  // update synthesis buffer
+  memcpy(inst->syntBuf,
+         inst->syntBuf + inst->blockLen,
+         sizeof(float) * (inst->anaLen - inst->blockLen));
+  memset(inst->syntBuf + inst->anaLen - inst->blockLen,
+         0,
+         sizeof(float) * inst->blockLen);
+
+  for (i = 0; i < inst->blockLen; ++i)
     outFrame[i] =
         WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
 
@@ -1343,7 +1299,7 @@
       gainTimeDomainHB = 1.0;
     }
     // apply gain
-    for (i = 0; i < inst->blockLen10ms; i++) {
+    for (i = 0; i < inst->blockLen; i++) {
       float o = gainTimeDomainHB * inst->dataBufHB[i];
       outFrameHB[i] =
           WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, o, WEBRTC_SPL_WORD16_MIN);
diff --git a/webrtc/modules/audio_processing/ns/ns_core.h b/webrtc/modules/audio_processing/ns/ns_core.h
index c5ca13f..2d36d8a 100644
--- a/webrtc/modules/audio_processing/ns/ns_core.h
+++ b/webrtc/modules/audio_processing/ns/ns_core.h
@@ -52,9 +52,7 @@
 typedef struct NSinst_t_ {
   uint32_t fs;
   int blockLen;
-  int blockLen10ms;
   int windShift;
-  int outLen;
   int anaLen;
   int magnLen;
   int aggrMode;
@@ -62,7 +60,6 @@
   float analyzeBuf[ANAL_BLOCKL_MAX];
   float dataBuf[ANAL_BLOCKL_MAX];
   float syntBuf[ANAL_BLOCKL_MAX];
-  float outBuf[3 * BLOCKL_MAX];
 
   int initFlag;
   // parameters for quantile noise estimation