blob: 3a5a13ff75e23398550e3b6bbf2088133c86f1d4 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/audio_decoder_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#ifdef WEBRTC_CODEC_CELT
#include "webrtc/modules/audio_coding/codecs/celt/include/celt_interface.h"
#endif
#include "webrtc/modules/audio_coding/codecs/g711/include/g711_interface.h"
#include "webrtc/modules/audio_coding/codecs/g711/include/audio_encoder_pcm.h"
#include "webrtc/modules/audio_coding/codecs/g722/include/g722_interface.h"
#include "webrtc/modules/audio_coding/codecs/ilbc/interface/ilbc.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/interface/isacfix.h"
#include "webrtc/modules/audio_coding/codecs/isac/main/interface/isac.h"
#include "webrtc/modules/audio_coding/codecs/opus/interface/opus_interface.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h"
#include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "webrtc/system_wrappers/interface/data_log.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace {
// The absolute difference between the input and output (the first channel) is
// compared vs |tolerance|. The parameter |delay| is used to correct for codec
// delays.
void CompareInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int tolerance,
int delay) {
ASSERT_LE(num_samples, input.size());
ASSERT_LE(num_samples * channels, output.size());
for (unsigned int n = 0; n < num_samples - delay; ++n) {
ASSERT_NEAR(input[n], output[channels * n + delay], tolerance)
<< "Exit test on first diff; n = " << n;
DataLog::InsertCell("CodecTest", "input", input[n]);
DataLog::InsertCell("CodecTest", "output", output[channels * n]);
DataLog::NextRow("CodecTest");
}
}
// The absolute difference between the first two channels in |output| is
// compared vs |tolerance|.
void CompareTwoChannels(const std::vector<int16_t>& output,
size_t samples_per_channel,
size_t channels,
int tolerance) {
ASSERT_GE(channels, 2u);
ASSERT_LE(samples_per_channel * channels, output.size());
for (unsigned int n = 0; n < samples_per_channel; ++n)
ASSERT_NEAR(output[channels * n], output[channels * n + 1], tolerance)
<< "Stereo samples differ.";
}
// Calculates mean-squared error between input and output (the first channel).
// The parameter |delay| is used to correct for codec delays.
double MseInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int delay) {
assert(delay < static_cast<int>(num_samples));
assert(num_samples <= input.size());
assert(num_samples * channels <= output.size());
if (num_samples == 0)
return 0.0;
double squared_sum = 0.0;
for (unsigned int n = 0; n < num_samples - delay; ++n) {
squared_sum += (input[n] - output[channels * n + delay]) *
(input[n] - output[channels * n + delay]);
}
return squared_sum / (num_samples - delay);
}
} // namespace
class AudioDecoderTest : public ::testing::Test {
protected:
AudioDecoderTest()
: input_audio_(webrtc::test::ProjectRootPath() +
"resources/audio_coding/testfile32kHz.pcm",
32000),
codec_input_rate_hz_(32000), // Legacy default value.
encoded_(NULL),
frame_size_(0),
data_length_(0),
encoded_bytes_(0),
channels_(1),
output_timestamp_(0),
decoder_(NULL) {}
virtual ~AudioDecoderTest() {}
virtual void SetUp() {
if (audio_encoder_)
codec_input_rate_hz_ = audio_encoder_->sample_rate_hz();
// Create arrays.
ASSERT_GT(data_length_, 0u) << "The test must set data_length_ > 0";
// Longest encoded data is produced by PCM16b with 2 bytes per sample.
encoded_ = new uint8_t[data_length_ * 2];
// Logging to view input and output in Matlab.
// Use 'gyp -Denable_data_logging=1' to enable logging.
DataLog::CreateLog();
DataLog::AddTable("CodecTest");
DataLog::AddColumn("CodecTest", "input", 1);
DataLog::AddColumn("CodecTest", "output", 1);
}
virtual void TearDown() {
delete decoder_;
decoder_ = NULL;
// Delete arrays.
delete [] encoded_;
encoded_ = NULL;
// Close log.
DataLog::ReturnLog();
}
virtual void InitEncoder() { }
// TODO(henrik.lundin) Change return type to size_t once most/all overriding
// implementations are gone.
virtual int EncodeFrame(const int16_t* input,
size_t input_len_samples,
uint8_t* output) {
size_t enc_len_bytes = 0;
for (int i = 0; i < audio_encoder_->num_10ms_frames_per_packet(); ++i) {
EXPECT_EQ(0u, enc_len_bytes);
EXPECT_TRUE(audio_encoder_->Encode(0,
input,
audio_encoder_->sample_rate_hz() / 100,
data_length_ * 2,
output,
&enc_len_bytes,
&output_timestamp_));
}
EXPECT_EQ(input_len_samples, enc_len_bytes);
return static_cast<int>(enc_len_bytes);
}
// Encodes and decodes audio. The absolute difference between the input and
// output is compared vs |tolerance|, and the mean-squared error is compared
// with |mse|. The encoded stream should contain |expected_bytes|. For stereo
// audio, the absolute difference between the two channels is compared vs
// |channel_diff_tolerance|.
void EncodeDecodeTest(size_t expected_bytes, int tolerance, double mse,
int delay = 0, int channel_diff_tolerance = 0) {
ASSERT_GE(tolerance, 0) << "Test must define a tolerance >= 0";
ASSERT_GE(channel_diff_tolerance, 0) <<
"Test must define a channel_diff_tolerance >= 0";
size_t processed_samples = 0u;
encoded_bytes_ = 0u;
InitEncoder();
EXPECT_EQ(0, decoder_->Init());
std::vector<int16_t> input;
std::vector<int16_t> decoded;
while (processed_samples + frame_size_ <= data_length_) {
// Extend input vector with |frame_size_|.
input.resize(input.size() + frame_size_, 0);
// Read from input file.
ASSERT_GE(input.size() - processed_samples, frame_size_);
ASSERT_TRUE(input_audio_.Read(
frame_size_, codec_input_rate_hz_, &input[processed_samples]));
size_t enc_len = EncodeFrame(
&input[processed_samples], frame_size_, &encoded_[encoded_bytes_]);
// Make sure that frame_size_ * channels_ samples are allocated and free.
decoded.resize((processed_samples + frame_size_) * channels_, 0);
AudioDecoder::SpeechType speech_type;
size_t dec_len = decoder_->Decode(&encoded_[encoded_bytes_],
enc_len,
&decoded[processed_samples * channels_],
&speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
encoded_bytes_ += enc_len;
processed_samples += frame_size_;
}
// For some codecs it doesn't make sense to check expected number of bytes,
// since the number can vary for different platforms. Opus and iSAC are
// such codecs. In this case expected_bytes is set to 0.
if (expected_bytes) {
EXPECT_EQ(expected_bytes, encoded_bytes_);
}
CompareInputOutput(
input, decoded, processed_samples, channels_, tolerance, delay);
if (channels_ == 2)
CompareTwoChannels(
decoded, processed_samples, channels_, channel_diff_tolerance);
EXPECT_LE(
MseInputOutput(input, decoded, processed_samples, channels_, delay),
mse);
}
// Encodes a payload and decodes it twice with decoder re-init before each
// decode. Verifies that the decoded result is the same.
void ReInitTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
size_t dec_len;
AudioDecoder::SpeechType speech_type1, speech_type2;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output1(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, output1.get(), &speech_type1);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Re-init decoder and decode again.
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output2(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, output2.get(), &speech_type2);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
for (unsigned int n = 0; n < frame_size_; ++n) {
ASSERT_EQ(output1[n], output2[n]) << "Exit test on first diff; n = " << n;
}
EXPECT_EQ(speech_type1, speech_type2);
}
// Call DecodePlc and verify that the correct number of samples is produced.
void DecodePlcTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len =
decoder_->Decode(encoded_, enc_len, output.get(), &speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Call DecodePlc and verify that we get one frame of data.
// (Overwrite the output from the above Decode call, but that does not
// matter.)
dec_len = decoder_->DecodePlc(1, output.get());
EXPECT_EQ(frame_size_ * channels_, dec_len);
}
test::ResampleInputAudioFile input_audio_;
int codec_input_rate_hz_;
uint8_t* encoded_;
size_t frame_size_;
size_t data_length_;
size_t encoded_bytes_;
size_t channels_;
uint32_t output_timestamp_;
AudioDecoder* decoder_;
scoped_ptr<AudioEncoder> audio_encoder_;
};
class AudioDecoderPcmUTest : public AudioDecoderTest {
protected:
AudioDecoderPcmUTest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmU;
AudioEncoderPcmU::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
audio_encoder_.reset(new AudioEncoderPcmU(config));
}
};
class AudioDecoderPcmATest : public AudioDecoderTest {
protected:
AudioDecoderPcmATest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmA;
AudioEncoderPcmA::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
audio_encoder_.reset(new AudioEncoderPcmA(config));
}
};
class AudioDecoderPcm16BTest : public AudioDecoderTest {
protected:
AudioDecoderPcm16BTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 8000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcm16B(kDecoderPCM16B);
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes = WebRtcPcm16b_EncodeW16(
const_cast<int16_t*>(input), static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(2 * input_len_samples, static_cast<size_t>(enc_len_bytes));
return enc_len_bytes;
}
};
class AudioDecoderIlbcTest : public AudioDecoderTest {
protected:
AudioDecoderIlbcTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 8000;
frame_size_ = 240;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIlbc;
assert(decoder_);
WebRtcIlbcfix_EncoderCreate(&encoder_);
}
~AudioDecoderIlbcTest() {
WebRtcIlbcfix_EncoderFree(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIlbcfix_EncoderInit(encoder_, 30)); // 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcIlbcfix_Encode(encoder_, input,
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(50, enc_len_bytes);
return enc_len_bytes;
}
// Overload the default test since iLBC's function WebRtcIlbcfix_NetEqPlc does
// not return any data. It simply resets a few states and returns 0.
void DecodePlcTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len =
decoder_->Decode(encoded_, enc_len, output.get(), &speech_type);
EXPECT_EQ(frame_size_, dec_len);
// Simply call DecodePlc and verify that we get 0 as return value.
EXPECT_EQ(0, decoder_->DecodePlc(1, output.get()));
}
iLBC_encinst_t* encoder_;
};
class AudioDecoderIsacFloatTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFloatTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
input_size_ = 160;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsac;
assert(decoder_);
WebRtcIsac_Create(&encoder_);
WebRtcIsac_SetEncSampRate(encoder_, 16000);
}
~AudioDecoderIsacFloatTest() {
WebRtcIsac_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output));
input += input_size_;
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output));
input += input_size_;
int enc_len_bytes = WebRtcIsac_Encode(encoder_, input, output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACStruct* encoder_;
int input_size_;
};
class AudioDecoderIsacSwbTest : public AudioDecoderTest {
protected:
AudioDecoderIsacSwbTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 32000;
input_size_ = 320;
frame_size_ = 960;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsacSwb;
assert(decoder_);
WebRtcIsac_Create(&encoder_);
WebRtcIsac_SetEncSampRate(encoder_, 32000);
}
~AudioDecoderIsacSwbTest() {
WebRtcIsac_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output));
input += input_size_;
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output));
input += input_size_;
int enc_len_bytes = WebRtcIsac_Encode(encoder_, input, output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACStruct* encoder_;
int input_size_;
};
// This test is identical to AudioDecoderIsacSwbTest, except that it creates
// an AudioDecoderIsacFb decoder object.
class AudioDecoderIsacFbTest : public AudioDecoderIsacSwbTest {
protected:
AudioDecoderIsacFbTest() : AudioDecoderIsacSwbTest() {
// Delete the |decoder_| that was created by AudioDecoderIsacSwbTest and
// create an AudioDecoderIsacFb object instead.
delete decoder_;
decoder_ = new AudioDecoderIsacFb;
assert(decoder_);
}
};
class AudioDecoderIsacFixTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFixTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
input_size_ = 160;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsacFix;
assert(decoder_);
WebRtcIsacfix_Create(&encoder_);
}
~AudioDecoderIsacFixTest() {
WebRtcIsacfix_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsacfix_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0,
WebRtcIsacfix_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input, output));
input += input_size_;
EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input, output));
input += input_size_;
int enc_len_bytes = WebRtcIsacfix_Encode(encoder_, input, output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACFIX_MainStruct* encoder_;
int input_size_;
};
class AudioDecoderG722Test : public AudioDecoderTest {
protected:
AudioDecoderG722Test() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722;
assert(decoder_);
WebRtcG722_CreateEncoder(&encoder_);
}
~AudioDecoderG722Test() {
WebRtcG722_FreeEncoder(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcG722_EncoderInit(encoder_));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcG722_Encode(encoder_, const_cast<int16_t*>(input),
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(80, enc_len_bytes);
return enc_len_bytes;
}
G722EncInst* encoder_;
};
class AudioDecoderG722StereoTest : public AudioDecoderG722Test {
protected:
AudioDecoderG722StereoTest() : AudioDecoderG722Test() {
channels_ = 2;
// Delete the |decoder_| that was created by AudioDecoderG722Test and
// create an AudioDecoderG722Stereo object instead.
delete decoder_;
decoder_ = new AudioDecoderG722Stereo;
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
uint8_t* temp_output = new uint8_t[data_length_ * 2];
// Encode a mono payload using the base test class.
int mono_enc_len_bytes =
AudioDecoderG722Test::EncodeFrame(input, input_len_samples,
temp_output);
// The bit-stream consists of 4-bit samples:
// +--------+--------+--------+
// | s0 s1 | s2 s3 | s4 s5 |
// +--------+--------+--------+
//
// Duplicate them to the |output| such that the stereo stream becomes:
// +--------+--------+--------+
// | s0 s0 | s1 s1 | s2 s2 |
// +--------+--------+--------+
EXPECT_LE(mono_enc_len_bytes * 2, static_cast<int>(data_length_ * 2));
uint8_t* output_ptr = output;
for (int i = 0; i < mono_enc_len_bytes; ++i) {
*output_ptr = (temp_output[i] & 0xF0) + (temp_output[i] >> 4);
++output_ptr;
*output_ptr = (temp_output[i] << 4) + (temp_output[i] & 0x0F);
++output_ptr;
}
delete [] temp_output;
return mono_enc_len_bytes * 2;
}
};
#ifdef WEBRTC_CODEC_CELT
class AudioDecoderCeltTest : public AudioDecoderTest {
protected:
static const int kEncodingRateBitsPerSecond = 64000;
AudioDecoderCeltTest() : AudioDecoderTest(), encoder_(NULL) {
frame_size_ = 640;
data_length_ = 10 * frame_size_;
decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32);
assert(decoder_);
WebRtcCelt_CreateEnc(&encoder_, static_cast<int>(channels_));
}
~AudioDecoderCeltTest() {
WebRtcCelt_FreeEnc(encoder_);
}
virtual void InitEncoder() {
assert(encoder_);
ASSERT_EQ(0, WebRtcCelt_EncoderInit(
encoder_, static_cast<int>(channels_), kEncodingRateBitsPerSecond));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
assert(encoder_);
return WebRtcCelt_Encode(encoder_, input, output);
}
CELT_encinst_t* encoder_;
};
class AudioDecoderCeltStereoTest : public AudioDecoderTest {
protected:
static const int kEncodingRateBitsPerSecond = 64000;
AudioDecoderCeltStereoTest() : AudioDecoderTest(), encoder_(NULL) {
channels_ = 2;
frame_size_ = 640;
data_length_ = 10 * frame_size_;
decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32_2ch);
assert(decoder_);
stereo_input_ = new int16_t[frame_size_ * channels_];
WebRtcCelt_CreateEnc(&encoder_, static_cast<int>(channels_));
}
~AudioDecoderCeltStereoTest() {
delete [] stereo_input_;
WebRtcCelt_FreeEnc(encoder_);
}
virtual void InitEncoder() {
assert(encoder_);
ASSERT_EQ(0, WebRtcCelt_EncoderInit(
encoder_, static_cast<int>(channels_), kEncodingRateBitsPerSecond));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
assert(encoder_);
assert(stereo_input_);
for (size_t n = 0; n < frame_size_; ++n) {
stereo_input_[n * 2] = stereo_input_[n * 2 + 1] = input[n];
}
return WebRtcCelt_Encode(encoder_, stereo_input_, output);
}
int16_t* stereo_input_;
CELT_encinst_t* encoder_;
};
#endif
class AudioDecoderOpusTest : public AudioDecoderTest {
protected:
AudioDecoderOpusTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 48000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderOpus(kDecoderOpus);
assert(decoder_);
WebRtcOpus_EncoderCreate(&encoder_, 1);
}
~AudioDecoderOpusTest() {
WebRtcOpus_EncoderFree(encoder_);
}
virtual void InitEncoder() {}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) OVERRIDE {
int enc_len_bytes = WebRtcOpus_Encode(encoder_, const_cast<int16_t*>(input),
static_cast<int16_t>(input_len_samples),
static_cast<int16_t>(data_length_), output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
OpusEncInst* encoder_;
};
class AudioDecoderOpusStereoTest : public AudioDecoderOpusTest {
protected:
AudioDecoderOpusStereoTest() : AudioDecoderOpusTest() {
channels_ = 2;
WebRtcOpus_EncoderFree(encoder_);
delete decoder_;
decoder_ = new AudioDecoderOpus(kDecoderOpus_2ch);
assert(decoder_);
WebRtcOpus_EncoderCreate(&encoder_, 2);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) OVERRIDE {
// Create stereo by duplicating each sample in |input|.
const int input_stereo_samples = static_cast<int>(input_len_samples) * 2;
scoped_ptr<int16_t[]> input_stereo(new int16_t[input_stereo_samples]);
test::InputAudioFile::DuplicateInterleaved(
input, input_len_samples, 2, input_stereo.get());
// Note that the input length is given as samples per channel.
int enc_len_bytes =
WebRtcOpus_Encode(encoder_,
input_stereo.get(),
static_cast<int16_t>(input_len_samples),
static_cast<int16_t>(data_length_),
output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
};
TEST_F(AudioDecoderPcmUTest, EncodeDecode) {
int tolerance = 251;
double mse = 1734.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcmATest, EncodeDecode) {
int tolerance = 308;
double mse = 1931.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcm16BTest, EncodeDecode) {
int tolerance = 0;
double mse = 0.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz));
EncodeDecodeTest(2 * data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderIlbcTest, EncodeDecode) {
int tolerance = 6808;
double mse = 2.13e6;
int delay = 80; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC));
EncodeDecodeTest(500, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFloatTest, EncodeDecode) {
int tolerance = 3399;
double mse = 434951.0;
int delay = 48; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacSwbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFixTest, DISABLED_EncodeDecode) {
int tolerance = 11034;
double mse = 3.46e6;
int delay = 54; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EncodeDecodeTest(735, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722Test, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722));
EncodeDecodeTest(data_length_ / 2, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722StereoTest, CreateAndDestroy) {
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
}
TEST_F(AudioDecoderG722StereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
EncodeDecodeTest(data_length_, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusTest, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusStereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch));
EncodeDecodeTest(0, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
#ifdef WEBRTC_CODEC_CELT
// In the two following CELT tests, the low amplitude of the test signal allow
// us to have such low error thresholds, i.e. |tolerance|, |mse|. Furthermore,
// in general, stereo signals with identical channels do not result in identical
// encoded channels.
TEST_F(AudioDecoderCeltTest, EncodeDecode) {
int tolerance = 20;
double mse = 17.0;
int delay = 80; // Delay from input to output in samples.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EncodeDecodeTest(1600, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderCeltStereoTest, EncodeDecode) {
int tolerance = 20;
// If both channels are identical, CELT not necessarily decodes identical
// channels. However, for this input this is the case.
int channel_diff_tolerance = 0;
double mse = 20.0;
// Delay from input to output in samples, accounting for stereo.
int delay = 160;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
EncodeDecodeTest(1600, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
#endif
TEST(AudioDecoder, CodecSampleRateHz) {
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderILBC));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderISAC));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACswb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACfb));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_2ch));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb_2ch));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_5ch));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722_2ch));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderRED));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderAVT));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderCNGnb));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderCNGwb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb32kHz));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus_2ch));
// TODO(tlegrand): Change 32000 to 48000 below once ACM has 48 kHz support.
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb48kHz));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderArbitrary));
#ifdef WEBRTC_CODEC_CELT
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch));
#else
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch));
#endif
}
TEST(AudioDecoder, CodecSupported) {
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACfb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_5ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderRED));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderAVT));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGnb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb48kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderArbitrary));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch));
#ifdef WEBRTC_CODEC_CELT
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
#else
EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
#endif
}
} // namespace webrtc