blob: e37313c9d9a2b48241f6f03c92f3f6f5156497ad [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULE_COMMON_TYPES_H
#define MODULE_COMMON_TYPES_H
#include <assert.h>
#include <string.h> // memcpy
#include <algorithm>
#include "webrtc/base/constructormagic.h"
#include "webrtc/common_types.h"
#include "webrtc/typedefs.h"
#ifdef _WIN32
// Remove warning "new behavior: elements of array will be default initialized".
#pragma warning(disable : 4351)
#endif
namespace webrtc {
struct RTPAudioHeader {
uint8_t numEnergy; // number of valid entries in arrOfEnergy
uint8_t arrOfEnergy[kRtpCsrcSize]; // one energy byte (0-9) per channel
bool isCNG; // is this CNG
uint8_t channel; // number of channels 2 = stereo
};
enum {
kNoPictureId = -1
};
enum {
kNoTl0PicIdx = -1
};
enum {
kNoTemporalIdx = -1
};
enum {
kNoKeyIdx = -1
};
enum {
kNoSimulcastIdx = 0
};
struct RTPVideoHeaderVP8 {
void InitRTPVideoHeaderVP8() {
nonReference = false;
pictureId = kNoPictureId;
tl0PicIdx = kNoTl0PicIdx;
temporalIdx = kNoTemporalIdx;
layerSync = false;
keyIdx = kNoKeyIdx;
partitionId = 0;
beginningOfPartition = false;
}
bool nonReference; // Frame is discardable.
int16_t pictureId; // Picture ID index, 15 bits;
// kNoPictureId if PictureID does not exist.
int16_t tl0PicIdx; // TL0PIC_IDX, 8 bits;
// kNoTl0PicIdx means no value provided.
int8_t temporalIdx; // Temporal layer index, or kNoTemporalIdx.
bool layerSync; // This frame is a layer sync frame.
// Disabled if temporalIdx == kNoTemporalIdx.
int keyIdx; // 5 bits; kNoKeyIdx means not used.
int partitionId; // VP8 partition ID
bool beginningOfPartition; // True if this packet is the first
// in a VP8 partition. Otherwise false
};
struct RTPVideoHeaderH264 {
uint8_t nalu_header;
bool single_nalu;
};
union RTPVideoTypeHeader {
RTPVideoHeaderVP8 VP8;
RTPVideoHeaderH264 H264;
};
enum RtpVideoCodecTypes {
kRtpVideoNone,
kRtpVideoGeneric,
kRtpVideoVp8,
kRtpVideoH264
};
struct RTPVideoHeader {
uint16_t width; // size
uint16_t height;
bool isFirstPacket; // first packet in frame
uint8_t simulcastIdx; // Index if the simulcast encoder creating
// this frame, 0 if not using simulcast.
RtpVideoCodecTypes codec;
RTPVideoTypeHeader codecHeader;
};
union RTPTypeHeader {
RTPAudioHeader Audio;
RTPVideoHeader Video;
};
struct WebRtcRTPHeader {
RTPHeader header;
FrameType frameType;
RTPTypeHeader type;
// NTP time of the capture time in local timebase in milliseconds.
int64_t ntp_time_ms;
};
class RTPFragmentationHeader {
public:
RTPFragmentationHeader()
: fragmentationVectorSize(0),
fragmentationOffset(NULL),
fragmentationLength(NULL),
fragmentationTimeDiff(NULL),
fragmentationPlType(NULL) {};
~RTPFragmentationHeader() {
delete[] fragmentationOffset;
delete[] fragmentationLength;
delete[] fragmentationTimeDiff;
delete[] fragmentationPlType;
}
void CopyFrom(const RTPFragmentationHeader& src) {
if (this == &src) {
return;
}
if (src.fragmentationVectorSize != fragmentationVectorSize) {
// new size of vectors
// delete old
delete[] fragmentationOffset;
fragmentationOffset = NULL;
delete[] fragmentationLength;
fragmentationLength = NULL;
delete[] fragmentationTimeDiff;
fragmentationTimeDiff = NULL;
delete[] fragmentationPlType;
fragmentationPlType = NULL;
if (src.fragmentationVectorSize > 0) {
// allocate new
if (src.fragmentationOffset) {
fragmentationOffset = new uint32_t[src.fragmentationVectorSize];
}
if (src.fragmentationLength) {
fragmentationLength = new uint32_t[src.fragmentationVectorSize];
}
if (src.fragmentationTimeDiff) {
fragmentationTimeDiff = new uint16_t[src.fragmentationVectorSize];
}
if (src.fragmentationPlType) {
fragmentationPlType = new uint8_t[src.fragmentationVectorSize];
}
}
// set new size
fragmentationVectorSize = src.fragmentationVectorSize;
}
if (src.fragmentationVectorSize > 0) {
// copy values
if (src.fragmentationOffset) {
memcpy(fragmentationOffset, src.fragmentationOffset,
src.fragmentationVectorSize * sizeof(uint32_t));
}
if (src.fragmentationLength) {
memcpy(fragmentationLength, src.fragmentationLength,
src.fragmentationVectorSize * sizeof(uint32_t));
}
if (src.fragmentationTimeDiff) {
memcpy(fragmentationTimeDiff, src.fragmentationTimeDiff,
src.fragmentationVectorSize * sizeof(uint16_t));
}
if (src.fragmentationPlType) {
memcpy(fragmentationPlType, src.fragmentationPlType,
src.fragmentationVectorSize * sizeof(uint8_t));
}
}
}
void VerifyAndAllocateFragmentationHeader(const uint16_t size) {
if (fragmentationVectorSize < size) {
uint16_t oldVectorSize = fragmentationVectorSize;
{
// offset
uint32_t* oldOffsets = fragmentationOffset;
fragmentationOffset = new uint32_t[size];
memset(fragmentationOffset + oldVectorSize, 0,
sizeof(uint32_t) * (size - oldVectorSize));
// copy old values
memcpy(fragmentationOffset, oldOffsets,
sizeof(uint32_t) * oldVectorSize);
delete[] oldOffsets;
}
// length
{
uint32_t* oldLengths = fragmentationLength;
fragmentationLength = new uint32_t[size];
memset(fragmentationLength + oldVectorSize, 0,
sizeof(uint32_t) * (size - oldVectorSize));
memcpy(fragmentationLength, oldLengths,
sizeof(uint32_t) * oldVectorSize);
delete[] oldLengths;
}
// time diff
{
uint16_t* oldTimeDiffs = fragmentationTimeDiff;
fragmentationTimeDiff = new uint16_t[size];
memset(fragmentationTimeDiff + oldVectorSize, 0,
sizeof(uint16_t) * (size - oldVectorSize));
memcpy(fragmentationTimeDiff, oldTimeDiffs,
sizeof(uint16_t) * oldVectorSize);
delete[] oldTimeDiffs;
}
// payload type
{
uint8_t* oldTimePlTypes = fragmentationPlType;
fragmentationPlType = new uint8_t[size];
memset(fragmentationPlType + oldVectorSize, 0,
sizeof(uint8_t) * (size - oldVectorSize));
memcpy(fragmentationPlType, oldTimePlTypes,
sizeof(uint8_t) * oldVectorSize);
delete[] oldTimePlTypes;
}
fragmentationVectorSize = size;
}
}
uint16_t fragmentationVectorSize; // Number of fragmentations
uint32_t* fragmentationOffset; // Offset of pointer to data for each fragm.
uint32_t* fragmentationLength; // Data size for each fragmentation
uint16_t* fragmentationTimeDiff; // Timestamp difference relative "now" for
// each fragmentation
uint8_t* fragmentationPlType; // Payload type of each fragmentation
private:
DISALLOW_COPY_AND_ASSIGN(RTPFragmentationHeader);
};
struct RTCPVoIPMetric {
// RFC 3611 4.7
uint8_t lossRate;
uint8_t discardRate;
uint8_t burstDensity;
uint8_t gapDensity;
uint16_t burstDuration;
uint16_t gapDuration;
uint16_t roundTripDelay;
uint16_t endSystemDelay;
uint8_t signalLevel;
uint8_t noiseLevel;
uint8_t RERL;
uint8_t Gmin;
uint8_t Rfactor;
uint8_t extRfactor;
uint8_t MOSLQ;
uint8_t MOSCQ;
uint8_t RXconfig;
uint16_t JBnominal;
uint16_t JBmax;
uint16_t JBabsMax;
};
// Types for the FEC packet masks. The type |kFecMaskRandom| is based on a
// random loss model. The type |kFecMaskBursty| is based on a bursty/consecutive
// loss model. The packet masks are defined in
// modules/rtp_rtcp/fec_private_tables_random(bursty).h
enum FecMaskType {
kFecMaskRandom,
kFecMaskBursty,
};
// Struct containing forward error correction settings.
struct FecProtectionParams {
int fec_rate;
bool use_uep_protection;
int max_fec_frames;
FecMaskType fec_mask_type;
};
// Interface used by the CallStats class to distribute call statistics.
// Callbacks will be triggered as soon as the class has been registered to a
// CallStats object using RegisterStatsObserver.
class CallStatsObserver {
public:
virtual void OnRttUpdate(uint32_t rtt_ms) = 0;
virtual ~CallStatsObserver() {}
};
// class describing a complete, or parts of an encoded frame.
class EncodedVideoData {
public:
EncodedVideoData()
: payloadType(0),
timeStamp(0),
renderTimeMs(0),
encodedWidth(0),
encodedHeight(0),
completeFrame(false),
missingFrame(false),
payloadData(NULL),
payloadSize(0),
bufferSize(0),
fragmentationHeader(),
frameType(kVideoFrameDelta),
codec(kVideoCodecUnknown) {};
EncodedVideoData(const EncodedVideoData& data) {
payloadType = data.payloadType;
timeStamp = data.timeStamp;
renderTimeMs = data.renderTimeMs;
encodedWidth = data.encodedWidth;
encodedHeight = data.encodedHeight;
completeFrame = data.completeFrame;
missingFrame = data.missingFrame;
payloadSize = data.payloadSize;
fragmentationHeader.CopyFrom(data.fragmentationHeader);
frameType = data.frameType;
codec = data.codec;
if (data.payloadSize > 0) {
payloadData = new uint8_t[data.payloadSize];
memcpy(payloadData, data.payloadData, data.payloadSize);
} else {
payloadData = NULL;
}
}
~EncodedVideoData() {
delete[] payloadData;
};
EncodedVideoData& operator=(const EncodedVideoData& data) {
if (this == &data) {
return *this;
}
payloadType = data.payloadType;
timeStamp = data.timeStamp;
renderTimeMs = data.renderTimeMs;
encodedWidth = data.encodedWidth;
encodedHeight = data.encodedHeight;
completeFrame = data.completeFrame;
missingFrame = data.missingFrame;
payloadSize = data.payloadSize;
fragmentationHeader.CopyFrom(data.fragmentationHeader);
frameType = data.frameType;
codec = data.codec;
if (data.payloadSize > 0) {
delete[] payloadData;
payloadData = new uint8_t[data.payloadSize];
memcpy(payloadData, data.payloadData, data.payloadSize);
bufferSize = data.payloadSize;
}
return *this;
};
void VerifyAndAllocate(const uint32_t size) {
if (bufferSize < size) {
uint8_t* oldPayload = payloadData;
payloadData = new uint8_t[size];
memcpy(payloadData, oldPayload, sizeof(uint8_t) * payloadSize);
bufferSize = size;
delete[] oldPayload;
}
}
uint8_t payloadType;
uint32_t timeStamp;
int64_t renderTimeMs;
uint32_t encodedWidth;
uint32_t encodedHeight;
bool completeFrame;
bool missingFrame;
uint8_t* payloadData;
uint32_t payloadSize;
uint32_t bufferSize;
RTPFragmentationHeader fragmentationHeader;
FrameType frameType;
VideoCodecType codec;
};
struct VideoContentMetrics {
VideoContentMetrics()
: motion_magnitude(0.0f),
spatial_pred_err(0.0f),
spatial_pred_err_h(0.0f),
spatial_pred_err_v(0.0f) {}
void Reset() {
motion_magnitude = 0.0f;
spatial_pred_err = 0.0f;
spatial_pred_err_h = 0.0f;
spatial_pred_err_v = 0.0f;
}
float motion_magnitude;
float spatial_pred_err;
float spatial_pred_err_h;
float spatial_pred_err_v;
};
/*************************************************
*
* VideoFrame class
*
* The VideoFrame class allows storing and
* handling of video frames.
*
*
*************************************************/
class VideoFrame {
public:
VideoFrame();
~VideoFrame();
/**
* Verifies that current allocated buffer size is larger than or equal to the
* input size.
* If the current buffer size is smaller, a new allocation is made and the old
* buffer data
* is copied to the new buffer.
* Buffer size is updated to minimumSize.
*/
int32_t VerifyAndAllocate(const uint32_t minimumSize);
/**
* Update length of data buffer in frame. Function verifies that new length
* is less or
* equal to allocated size.
*/
int32_t SetLength(const uint32_t newLength);
/*
* Swap buffer and size data
*/
int32_t Swap(uint8_t*& newMemory, uint32_t& newLength, uint32_t& newSize);
/*
* Swap buffer and size data
*/
int32_t SwapFrame(VideoFrame& videoFrame);
/**
* Copy buffer: If newLength is bigger than allocated size, a new buffer of
* size length
* is allocated.
*/
int32_t CopyFrame(const VideoFrame& videoFrame);
/**
* Copy buffer: If newLength is bigger than allocated size, a new buffer of
* size length
* is allocated.
*/
int32_t CopyFrame(uint32_t length, const uint8_t* sourceBuffer);
/**
* Delete VideoFrame and resets members to zero
*/
void Free();
/**
* Set frame timestamp (90kHz)
*/
void SetTimeStamp(const uint32_t timeStamp) { _timeStamp = timeStamp; }
/**
* Get pointer to frame buffer
*/
uint8_t* Buffer() const { return _buffer; }
uint8_t*& Buffer() { return _buffer; }
/**
* Get allocated buffer size
*/
uint32_t Size() const { return _bufferSize; }
/**
* Get frame length
*/
uint32_t Length() const { return _bufferLength; }
/**
* Get frame timestamp (90kHz)
*/
uint32_t TimeStamp() const { return _timeStamp; }
/**
* Get frame width
*/
uint32_t Width() const { return _width; }
/**
* Get frame height
*/
uint32_t Height() const { return _height; }
/**
* Set frame width
*/
void SetWidth(const uint32_t width) { _width = width; }
/**
* Set frame height
*/
void SetHeight(const uint32_t height) { _height = height; }
/**
* Set render time in miliseconds
*/
void SetRenderTime(const int64_t renderTimeMs) {
_renderTimeMs = renderTimeMs;
}
/**
* Get render time in miliseconds
*/
int64_t RenderTimeMs() const { return _renderTimeMs; }
private:
void Set(uint8_t* buffer, uint32_t size, uint32_t length, uint32_t timeStamp);
uint8_t* _buffer; // Pointer to frame buffer
uint32_t _bufferSize; // Allocated buffer size
uint32_t _bufferLength; // Length (in bytes) of buffer
uint32_t _timeStamp; // Timestamp of frame (90kHz)
uint32_t _width;
uint32_t _height;
int64_t _renderTimeMs;
}; // end of VideoFrame class declaration
// inline implementation of VideoFrame class:
inline VideoFrame::VideoFrame()
: _buffer(0),
_bufferSize(0),
_bufferLength(0),
_timeStamp(0),
_width(0),
_height(0),
_renderTimeMs(0) {
//
}
inline VideoFrame::~VideoFrame() {
if (_buffer) {
delete[] _buffer;
_buffer = NULL;
}
}
inline int32_t VideoFrame::VerifyAndAllocate(const uint32_t minimumSize) {
if (minimumSize < 1) {
return -1;
}
if (minimumSize > _bufferSize) {
// create buffer of sufficient size
uint8_t* newBufferBuffer = new uint8_t[minimumSize];
if (_buffer) {
// copy old data
memcpy(newBufferBuffer, _buffer, _bufferSize);
delete[] _buffer;
} else {
memset(newBufferBuffer, 0, minimumSize * sizeof(uint8_t));
}
_buffer = newBufferBuffer;
_bufferSize = minimumSize;
}
return 0;
}
inline int32_t VideoFrame::SetLength(const uint32_t newLength) {
if (newLength > _bufferSize) { // can't accomodate new value
return -1;
}
_bufferLength = newLength;
return 0;
}
inline int32_t VideoFrame::SwapFrame(VideoFrame& videoFrame) {
uint32_t tmpTimeStamp = _timeStamp;
uint32_t tmpWidth = _width;
uint32_t tmpHeight = _height;
int64_t tmpRenderTime = _renderTimeMs;
_timeStamp = videoFrame._timeStamp;
_width = videoFrame._width;
_height = videoFrame._height;
_renderTimeMs = videoFrame._renderTimeMs;
videoFrame._timeStamp = tmpTimeStamp;
videoFrame._width = tmpWidth;
videoFrame._height = tmpHeight;
videoFrame._renderTimeMs = tmpRenderTime;
return Swap(videoFrame._buffer, videoFrame._bufferLength,
videoFrame._bufferSize);
}
inline int32_t VideoFrame::Swap(uint8_t*& newMemory, uint32_t& newLength,
uint32_t& newSize) {
uint8_t* tmpBuffer = _buffer;
uint32_t tmpLength = _bufferLength;
uint32_t tmpSize = _bufferSize;
_buffer = newMemory;
_bufferLength = newLength;
_bufferSize = newSize;
newMemory = tmpBuffer;
newLength = tmpLength;
newSize = tmpSize;
return 0;
}
inline int32_t VideoFrame::CopyFrame(uint32_t length,
const uint8_t* sourceBuffer) {
if (length > _bufferSize) {
int32_t ret = VerifyAndAllocate(length);
if (ret < 0) {
return ret;
}
}
memcpy(_buffer, sourceBuffer, length);
_bufferLength = length;
return 0;
}
inline int32_t VideoFrame::CopyFrame(const VideoFrame& videoFrame) {
if (CopyFrame(videoFrame.Length(), videoFrame.Buffer()) != 0) {
return -1;
}
_timeStamp = videoFrame._timeStamp;
_width = videoFrame._width;
_height = videoFrame._height;
_renderTimeMs = videoFrame._renderTimeMs;
return 0;
}
inline void VideoFrame::Free() {
_timeStamp = 0;
_bufferLength = 0;
_bufferSize = 0;
_height = 0;
_width = 0;
_renderTimeMs = 0;
if (_buffer) {
delete[] _buffer;
_buffer = NULL;
}
}
/* This class holds up to 60 ms of super-wideband (32 kHz) stereo audio. It
* allows for adding and subtracting frames while keeping track of the resulting
* states.
*
* Notes
* - The total number of samples in |data_| is
* samples_per_channel_ * num_channels_
*
* - Stereo data is interleaved starting with the left channel.
*
* - The +operator assume that you would never add exactly opposite frames when
* deciding the resulting state. To do this use the -operator.
*/
class AudioFrame {
public:
// Stereo, 32 kHz, 60 ms (2 * 32 * 60)
static const int kMaxDataSizeSamples = 3840;
enum VADActivity {
kVadActive = 0,
kVadPassive = 1,
kVadUnknown = 2
};
enum SpeechType {
kNormalSpeech = 0,
kPLC = 1,
kCNG = 2,
kPLCCNG = 3,
kUndefined = 4
};
AudioFrame();
virtual ~AudioFrame() {}
// Resets all members to their default state (except does not modify the
// contents of |data_|).
void Reset();
// |interleaved_| is not changed by this method.
void UpdateFrame(int id, uint32_t timestamp, const int16_t* data,
int samples_per_channel, int sample_rate_hz,
SpeechType speech_type, VADActivity vad_activity,
int num_channels = 1, uint32_t energy = -1);
AudioFrame& Append(const AudioFrame& rhs);
void CopyFrom(const AudioFrame& src);
void Mute();
AudioFrame& operator>>=(const int rhs);
AudioFrame& operator+=(const AudioFrame& rhs);
AudioFrame& operator-=(const AudioFrame& rhs);
int id_;
// RTP timestamp of the first sample in the AudioFrame.
uint32_t timestamp_;
// Time since the first frame in milliseconds.
// -1 represents an uninitialized value.
int64_t elapsed_time_ms_;
// NTP time of the estimated capture time in local timebase in milliseconds.
// -1 represents an uninitialized value.
int64_t ntp_time_ms_;
int16_t data_[kMaxDataSizeSamples];
int samples_per_channel_;
int sample_rate_hz_;
int num_channels_;
SpeechType speech_type_;
VADActivity vad_activity_;
// Note that there is no guarantee that |energy_| is correct. Any user of this
// member must verify that the value is correct.
// TODO(henrike) Remove |energy_|.
// See https://code.google.com/p/webrtc/issues/detail?id=3315.
uint32_t energy_;
bool interleaved_;
private:
DISALLOW_COPY_AND_ASSIGN(AudioFrame);
};
inline AudioFrame::AudioFrame()
: data_() {
Reset();
}
inline void AudioFrame::Reset() {
id_ = -1;
// TODO(wu): Zero is a valid value for |timestamp_|. We should initialize
// to an invalid value, or add a new member to indicate invalidity.
timestamp_ = 0;
elapsed_time_ms_ = -1;
ntp_time_ms_ = -1;
samples_per_channel_ = 0;
sample_rate_hz_ = 0;
num_channels_ = 0;
speech_type_ = kUndefined;
vad_activity_ = kVadUnknown;
energy_ = 0xffffffff;
interleaved_ = true;
}
inline void AudioFrame::UpdateFrame(int id, uint32_t timestamp,
const int16_t* data,
int samples_per_channel, int sample_rate_hz,
SpeechType speech_type,
VADActivity vad_activity, int num_channels,
uint32_t energy) {
id_ = id;
timestamp_ = timestamp;
samples_per_channel_ = samples_per_channel;
sample_rate_hz_ = sample_rate_hz;
speech_type_ = speech_type;
vad_activity_ = vad_activity;
num_channels_ = num_channels;
energy_ = energy;
const int length = samples_per_channel * num_channels;
assert(length <= kMaxDataSizeSamples && length >= 0);
if (data != NULL) {
memcpy(data_, data, sizeof(int16_t) * length);
} else {
memset(data_, 0, sizeof(int16_t) * length);
}
}
inline void AudioFrame::CopyFrom(const AudioFrame& src) {
if (this == &src) return;
id_ = src.id_;
timestamp_ = src.timestamp_;
elapsed_time_ms_ = src.elapsed_time_ms_;
ntp_time_ms_ = src.ntp_time_ms_;
samples_per_channel_ = src.samples_per_channel_;
sample_rate_hz_ = src.sample_rate_hz_;
speech_type_ = src.speech_type_;
vad_activity_ = src.vad_activity_;
num_channels_ = src.num_channels_;
energy_ = src.energy_;
interleaved_ = src.interleaved_;
const int length = samples_per_channel_ * num_channels_;
assert(length <= kMaxDataSizeSamples && length >= 0);
memcpy(data_, src.data_, sizeof(int16_t) * length);
}
inline void AudioFrame::Mute() {
memset(data_, 0, samples_per_channel_ * num_channels_ * sizeof(int16_t));
}
inline AudioFrame& AudioFrame::operator>>=(const int rhs) {
assert((num_channels_ > 0) && (num_channels_ < 3));
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
for (int i = 0; i < samples_per_channel_ * num_channels_; i++) {
data_[i] = static_cast<int16_t>(data_[i] >> rhs);
}
return *this;
}
inline AudioFrame& AudioFrame::Append(const AudioFrame& rhs) {
// Sanity check
assert((num_channels_ > 0) && (num_channels_ < 3));
assert(interleaved_ == rhs.interleaved_);
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
if (num_channels_ != rhs.num_channels_) return *this;
if ((vad_activity_ == kVadActive) || rhs.vad_activity_ == kVadActive) {
vad_activity_ = kVadActive;
} else if (vad_activity_ == kVadUnknown || rhs.vad_activity_ == kVadUnknown) {
vad_activity_ = kVadUnknown;
}
if (speech_type_ != rhs.speech_type_) {
speech_type_ = kUndefined;
}
int offset = samples_per_channel_ * num_channels_;
for (int i = 0; i < rhs.samples_per_channel_ * rhs.num_channels_; i++) {
data_[offset + i] = rhs.data_[i];
}
samples_per_channel_ += rhs.samples_per_channel_;
return *this;
}
inline AudioFrame& AudioFrame::operator+=(const AudioFrame& rhs) {
// Sanity check
assert((num_channels_ > 0) && (num_channels_ < 3));
assert(interleaved_ == rhs.interleaved_);
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
if (num_channels_ != rhs.num_channels_) return *this;
bool noPrevData = false;
if (samples_per_channel_ != rhs.samples_per_channel_) {
if (samples_per_channel_ == 0) {
// special case we have no data to start with
samples_per_channel_ = rhs.samples_per_channel_;
noPrevData = true;
} else {
return *this;
}
}
if ((vad_activity_ == kVadActive) || rhs.vad_activity_ == kVadActive) {
vad_activity_ = kVadActive;
} else if (vad_activity_ == kVadUnknown || rhs.vad_activity_ == kVadUnknown) {
vad_activity_ = kVadUnknown;
}
if (speech_type_ != rhs.speech_type_) speech_type_ = kUndefined;
if (noPrevData) {
memcpy(data_, rhs.data_,
sizeof(int16_t) * rhs.samples_per_channel_ * num_channels_);
} else {
// IMPROVEMENT this can be done very fast in assembly
for (int i = 0; i < samples_per_channel_ * num_channels_; i++) {
int32_t wrapGuard =
static_cast<int32_t>(data_[i]) + static_cast<int32_t>(rhs.data_[i]);
if (wrapGuard < -32768) {
data_[i] = -32768;
} else if (wrapGuard > 32767) {
data_[i] = 32767;
} else {
data_[i] = (int16_t)wrapGuard;
}
}
}
energy_ = 0xffffffff;
return *this;
}
inline AudioFrame& AudioFrame::operator-=(const AudioFrame& rhs) {
// Sanity check
assert((num_channels_ > 0) && (num_channels_ < 3));
assert(interleaved_ == rhs.interleaved_);
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
if ((samples_per_channel_ != rhs.samples_per_channel_) ||
(num_channels_ != rhs.num_channels_)) {
return *this;
}
if ((vad_activity_ != kVadPassive) || rhs.vad_activity_ != kVadPassive) {
vad_activity_ = kVadUnknown;
}
speech_type_ = kUndefined;
for (int i = 0; i < samples_per_channel_ * num_channels_; i++) {
int32_t wrapGuard =
static_cast<int32_t>(data_[i]) - static_cast<int32_t>(rhs.data_[i]);
if (wrapGuard < -32768) {
data_[i] = -32768;
} else if (wrapGuard > 32767) {
data_[i] = 32767;
} else {
data_[i] = (int16_t)wrapGuard;
}
}
energy_ = 0xffffffff;
return *this;
}
inline bool IsNewerSequenceNumber(uint16_t sequence_number,
uint16_t prev_sequence_number) {
return sequence_number != prev_sequence_number &&
static_cast<uint16_t>(sequence_number - prev_sequence_number) < 0x8000;
}
inline bool IsNewerTimestamp(uint32_t timestamp, uint32_t prev_timestamp) {
return timestamp != prev_timestamp &&
static_cast<uint32_t>(timestamp - prev_timestamp) < 0x80000000;
}
inline uint16_t LatestSequenceNumber(uint16_t sequence_number1,
uint16_t sequence_number2) {
return IsNewerSequenceNumber(sequence_number1, sequence_number2)
? sequence_number1
: sequence_number2;
}
inline uint32_t LatestTimestamp(uint32_t timestamp1, uint32_t timestamp2) {
return IsNewerTimestamp(timestamp1, timestamp2) ? timestamp1 : timestamp2;
}
} // namespace webrtc
#endif // MODULE_COMMON_TYPES_H