blob: 9e58c93365bb32ddf2a209869b285aca9aa63e08 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/main/interface/audio_coding_module.h"
#include "webrtc/modules/audio_coding/main/interface/audio_coding_module_typedefs.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/compile_assert.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/event_wrapper.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/system_wrappers/interface/thread_annotations.h"
#include "webrtc/system_wrappers/interface/thread_wrapper.h"
#include "webrtc/test/testsupport/gtest_disable.h"
namespace webrtc {
const int kSampleRateHz = 16000;
const int kNumSamples10ms = kSampleRateHz / 100;
const int kFrameSizeMs = 10; // Multiple of 10.
const int kFrameSizeSamples = kFrameSizeMs / 10 * kNumSamples10ms;
const int kPayloadSizeBytes = kFrameSizeSamples * sizeof(int16_t);
const uint8_t kPayloadType = 111;
class RtpUtility {
public:
RtpUtility(int samples_per_packet, uint8_t payload_type)
: samples_per_packet_(samples_per_packet), payload_type_(payload_type) {}
virtual ~RtpUtility() {}
void Populate(WebRtcRTPHeader* rtp_header) {
rtp_header->header.sequenceNumber = 0xABCD;
rtp_header->header.timestamp = 0xABCDEF01;
rtp_header->header.payloadType = payload_type_;
rtp_header->header.markerBit = false;
rtp_header->header.ssrc = 0x1234;
rtp_header->header.numCSRCs = 0;
rtp_header->frameType = kAudioFrameSpeech;
rtp_header->header.payload_type_frequency = kSampleRateHz;
rtp_header->type.Audio.channel = 1;
rtp_header->type.Audio.isCNG = false;
}
void Forward(WebRtcRTPHeader* rtp_header) {
++rtp_header->header.sequenceNumber;
rtp_header->header.timestamp += samples_per_packet_;
}
private:
int samples_per_packet_;
uint8_t payload_type_;
};
class PacketizationCallbackStub : public AudioPacketizationCallback {
public:
PacketizationCallbackStub()
: num_calls_(0),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()) {}
virtual int32_t SendData(
FrameType frame_type,
uint8_t payload_type,
uint32_t timestamp,
const uint8_t* payload_data,
uint16_t payload_len_bytes,
const RTPFragmentationHeader* fragmentation) OVERRIDE {
CriticalSectionScoped lock(crit_sect_.get());
++num_calls_;
return 0;
}
int num_calls() const {
CriticalSectionScoped lock(crit_sect_.get());
return num_calls_;
}
private:
int num_calls_ GUARDED_BY(crit_sect_);
const scoped_ptr<CriticalSectionWrapper> crit_sect_;
};
class AudioCodingModuleTest : public ::testing::Test {
protected:
AudioCodingModuleTest()
: id_(1),
rtp_utility_(new RtpUtility(kFrameSizeSamples, kPayloadType)),
clock_(Clock::GetRealTimeClock()) {}
~AudioCodingModuleTest() {}
void TearDown() {}
void SetUp() {
acm_.reset(AudioCodingModule::Create(id_, clock_));
AudioCodingModule::Codec("L16", &codec_, kSampleRateHz, 1);
codec_.pltype = kPayloadType;
// Register L16 codec in ACM.
ASSERT_EQ(0, acm_->RegisterReceiveCodec(codec_));
ASSERT_EQ(0, acm_->RegisterSendCodec(codec_));
rtp_utility_->Populate(&rtp_header_);
input_frame_.sample_rate_hz_ = kSampleRateHz;
input_frame_.samples_per_channel_ = kSampleRateHz * 10 / 1000; // 10 ms.
COMPILE_ASSERT(kSampleRateHz * 10 / 1000 <= AudioFrame::kMaxDataSizeSamples,
audio_frame_too_small);
memset(input_frame_.data_,
0,
input_frame_.samples_per_channel_ * sizeof(input_frame_.data_[0]));
ASSERT_EQ(0, acm_->RegisterTransportCallback(&packet_cb_));
}
void InsertPacketAndPullAudio() {
InsertPacket();
PullAudio();
}
void InsertPacket() {
const uint8_t kPayload[kPayloadSizeBytes] = {0};
ASSERT_EQ(0,
acm_->IncomingPacket(kPayload, kPayloadSizeBytes, rtp_header_));
rtp_utility_->Forward(&rtp_header_);
}
void PullAudio() {
AudioFrame audio_frame;
ASSERT_EQ(0, acm_->PlayoutData10Ms(-1, &audio_frame));
}
void InsertAudio() { ASSERT_EQ(0, acm_->Add10MsData(input_frame_)); }
void Encode() {
int32_t encoded_bytes = acm_->Process();
// Expect to get one packet with two bytes per sample, or no packet at all,
// depending on how many 10 ms blocks go into |codec_.pacsize|.
EXPECT_TRUE(encoded_bytes == 2 * codec_.pacsize || encoded_bytes == 0);
}
const int id_;
scoped_ptr<RtpUtility> rtp_utility_;
scoped_ptr<AudioCodingModule> acm_;
PacketizationCallbackStub packet_cb_;
WebRtcRTPHeader rtp_header_;
AudioFrame input_frame_;
CodecInst codec_;
Clock* clock_;
};
// Check if the statistics are initialized correctly. Before any call to ACM
// all fields have to be zero.
TEST_F(AudioCodingModuleTest, DISABLED_ON_ANDROID(InitializedToZero)) {
AudioDecodingCallStats stats;
acm_->GetDecodingCallStatistics(&stats);
EXPECT_EQ(0, stats.calls_to_neteq);
EXPECT_EQ(0, stats.calls_to_silence_generator);
EXPECT_EQ(0, stats.decoded_normal);
EXPECT_EQ(0, stats.decoded_cng);
EXPECT_EQ(0, stats.decoded_plc);
EXPECT_EQ(0, stats.decoded_plc_cng);
}
// Apply an initial playout delay. Calls to AudioCodingModule::PlayoutData10ms()
// should result in generating silence, check the associated field.
TEST_F(AudioCodingModuleTest, DISABLED_ON_ANDROID(SilenceGeneratorCalled)) {
AudioDecodingCallStats stats;
const int kInitialDelay = 100;
acm_->SetInitialPlayoutDelay(kInitialDelay);
int num_calls = 0;
for (int time_ms = 0; time_ms < kInitialDelay;
time_ms += kFrameSizeMs, ++num_calls) {
InsertPacketAndPullAudio();
}
acm_->GetDecodingCallStatistics(&stats);
EXPECT_EQ(0, stats.calls_to_neteq);
EXPECT_EQ(num_calls, stats.calls_to_silence_generator);
EXPECT_EQ(0, stats.decoded_normal);
EXPECT_EQ(0, stats.decoded_cng);
EXPECT_EQ(0, stats.decoded_plc);
EXPECT_EQ(0, stats.decoded_plc_cng);
}
// Insert some packets and pull audio. Check statistics are valid. Then,
// simulate packet loss and check if PLC and PLC-to-CNG statistics are
// correctly updated.
TEST_F(AudioCodingModuleTest, DISABLED_ON_ANDROID(NetEqCalls)) {
AudioDecodingCallStats stats;
const int kNumNormalCalls = 10;
for (int num_calls = 0; num_calls < kNumNormalCalls; ++num_calls) {
InsertPacketAndPullAudio();
}
acm_->GetDecodingCallStatistics(&stats);
EXPECT_EQ(kNumNormalCalls, stats.calls_to_neteq);
EXPECT_EQ(0, stats.calls_to_silence_generator);
EXPECT_EQ(kNumNormalCalls, stats.decoded_normal);
EXPECT_EQ(0, stats.decoded_cng);
EXPECT_EQ(0, stats.decoded_plc);
EXPECT_EQ(0, stats.decoded_plc_cng);
const int kNumPlc = 3;
const int kNumPlcCng = 5;
// Simulate packet-loss. NetEq first performs PLC then PLC fades to CNG.
for (int n = 0; n < kNumPlc + kNumPlcCng; ++n) {
PullAudio();
}
acm_->GetDecodingCallStatistics(&stats);
EXPECT_EQ(kNumNormalCalls + kNumPlc + kNumPlcCng, stats.calls_to_neteq);
EXPECT_EQ(0, stats.calls_to_silence_generator);
EXPECT_EQ(kNumNormalCalls, stats.decoded_normal);
EXPECT_EQ(0, stats.decoded_cng);
EXPECT_EQ(kNumPlc, stats.decoded_plc);
EXPECT_EQ(kNumPlcCng, stats.decoded_plc_cng);
}
TEST_F(AudioCodingModuleTest, VerifyOutputFrame) {
AudioFrame audio_frame;
const int kSampleRateHz = 32000;
EXPECT_EQ(0, acm_->PlayoutData10Ms(kSampleRateHz, &audio_frame));
EXPECT_EQ(id_, audio_frame.id_);
EXPECT_EQ(0u, audio_frame.timestamp_);
EXPECT_GT(audio_frame.num_channels_, 0);
EXPECT_EQ(kSampleRateHz / 100, audio_frame.samples_per_channel_);
EXPECT_EQ(kSampleRateHz, audio_frame.sample_rate_hz_);
}
TEST_F(AudioCodingModuleTest, FailOnZeroDesiredFrequency) {
AudioFrame audio_frame;
EXPECT_EQ(-1, acm_->PlayoutData10Ms(0, &audio_frame));
}
class AudioCodingModuleMtTest : public AudioCodingModuleTest {
protected:
static const int kNumPackets = 10000;
static const int kNumPullCalls = 10000;
AudioCodingModuleMtTest()
: AudioCodingModuleTest(),
send_thread_(ThreadWrapper::CreateThread(CbSendThread,
this,
kRealtimePriority,
"send")),
insert_packet_thread_(ThreadWrapper::CreateThread(CbInsertPacketThread,
this,
kRealtimePriority,
"insert_packet")),
pull_audio_thread_(ThreadWrapper::CreateThread(CbPullAudioThread,
this,
kRealtimePriority,
"pull_audio")),
test_complete_(EventWrapper::Create()),
send_count_(0),
insert_packet_count_(0),
pull_audio_count_(0),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
next_insert_packet_time_ms_(0),
fake_clock_(new SimulatedClock(0)) {
clock_ = fake_clock_;
}
~AudioCodingModuleMtTest() {}
void SetUp() {
AudioCodingModuleTest::SetUp();
unsigned int thread_id = 0;
ASSERT_TRUE(send_thread_->Start(thread_id));
ASSERT_TRUE(insert_packet_thread_->Start(thread_id));
ASSERT_TRUE(pull_audio_thread_->Start(thread_id));
}
void TearDown() {
AudioCodingModuleTest::TearDown();
pull_audio_thread_->Stop();
send_thread_->Stop();
insert_packet_thread_->Stop();
}
EventTypeWrapper RunTest() { return test_complete_->Wait(60000); }
private:
static bool CbSendThread(void* context) {
return reinterpret_cast<AudioCodingModuleMtTest*>(context)->CbSendImpl();
}
// The send thread doesn't have to care about the current simulated time,
// since only the AcmReceiver is using the clock.
bool CbSendImpl() {
++send_count_;
InsertAudio();
Encode();
if (packet_cb_.num_calls() > kNumPackets) {
CriticalSectionScoped lock(crit_sect_.get());
if (pull_audio_count_ > kNumPullCalls) {
// Both conditions for completion are met. End the test.
test_complete_->Set();
}
}
return true;
}
static bool CbInsertPacketThread(void* context) {
return reinterpret_cast<AudioCodingModuleMtTest*>(context)
->CbInsertPacketImpl();
}
bool CbInsertPacketImpl() {
{
CriticalSectionScoped lock(crit_sect_.get());
if (clock_->TimeInMilliseconds() < next_insert_packet_time_ms_) {
return true;
}
next_insert_packet_time_ms_ += 10;
}
// Now we're not holding the crit sect when calling ACM.
++insert_packet_count_;
InsertPacket();
return true;
}
static bool CbPullAudioThread(void* context) {
return reinterpret_cast<AudioCodingModuleMtTest*>(context)
->CbPullAudioImpl();
}
bool CbPullAudioImpl() {
{
CriticalSectionScoped lock(crit_sect_.get());
// Don't let the insert thread fall behind.
if (next_insert_packet_time_ms_ < clock_->TimeInMilliseconds()) {
return true;
}
++pull_audio_count_;
}
// Now we're not holding the crit sect when calling ACM.
PullAudio();
fake_clock_->AdvanceTimeMilliseconds(10);
return true;
}
scoped_ptr<ThreadWrapper> send_thread_;
scoped_ptr<ThreadWrapper> insert_packet_thread_;
scoped_ptr<ThreadWrapper> pull_audio_thread_;
const scoped_ptr<EventWrapper> test_complete_;
int send_count_;
int insert_packet_count_;
int pull_audio_count_ GUARDED_BY(crit_sect_);
const scoped_ptr<CriticalSectionWrapper> crit_sect_;
int64_t next_insert_packet_time_ms_ GUARDED_BY(crit_sect_);
SimulatedClock* fake_clock_;
};
TEST_F(AudioCodingModuleMtTest, DoTest) {
EXPECT_EQ(kEventSignaled, RunTest());
}
} // namespace webrtc