blob: bfc8266725bafec7126d55cce9b68cf92290ae9d [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include <assert.h>
#include <string.h>
#include "webrtc/common_types.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/trace.h"
#ifdef _WIN32
// Disable warning C4355: 'this' : used in base member initializer list.
#pragma warning(disable : 4355)
#endif
namespace webrtc {
RtpRtcp::Configuration::Configuration()
: id(-1),
audio(false),
clock(NULL),
default_module(NULL),
receive_statistics(NullObjectReceiveStatistics()),
outgoing_transport(NULL),
intra_frame_callback(NULL),
bandwidth_callback(NULL),
rtt_stats(NULL),
audio_messages(NullObjectRtpAudioFeedback()),
remote_bitrate_estimator(NULL),
paced_sender(NULL),
send_bitrate_observer(NULL),
send_frame_count_observer(NULL),
send_side_delay_observer(NULL) {
}
RtpRtcp* RtpRtcp::CreateRtpRtcp(const RtpRtcp::Configuration& configuration) {
if (configuration.clock) {
return new ModuleRtpRtcpImpl(configuration);
} else {
// No clock implementation provided, use default clock.
RtpRtcp::Configuration configuration_copy;
memcpy(&configuration_copy, &configuration,
sizeof(RtpRtcp::Configuration));
configuration_copy.clock = Clock::GetRealTimeClock();
return new ModuleRtpRtcpImpl(configuration_copy);
}
}
ModuleRtpRtcpImpl::ModuleRtpRtcpImpl(const Configuration& configuration)
: rtp_sender_(configuration.id,
configuration.audio,
configuration.clock,
configuration.outgoing_transport,
configuration.audio_messages,
configuration.paced_sender,
configuration.send_bitrate_observer,
configuration.send_frame_count_observer,
configuration.send_side_delay_observer),
rtcp_sender_(configuration.id,
configuration.audio,
configuration.clock,
configuration.receive_statistics),
rtcp_receiver_(configuration.id, configuration.clock, this),
clock_(configuration.clock),
id_(configuration.id),
audio_(configuration.audio),
collision_detected_(false),
last_process_time_(configuration.clock->TimeInMilliseconds()),
last_bitrate_process_time_(configuration.clock->TimeInMilliseconds()),
last_rtt_process_time_(configuration.clock->TimeInMilliseconds()),
packet_overhead_(28), // IPV4 UDP.
critical_section_module_ptrs_(
CriticalSectionWrapper::CreateCriticalSection()),
critical_section_module_ptrs_feedback_(
CriticalSectionWrapper::CreateCriticalSection()),
default_module_(
static_cast<ModuleRtpRtcpImpl*>(configuration.default_module)),
padding_index_(static_cast<size_t>(-1)), // Start padding at first child.
nack_method_(kNackOff),
nack_last_time_sent_full_(0),
nack_last_time_sent_full_prev_(0),
nack_last_seq_number_sent_(0),
simulcast_(false),
key_frame_req_method_(kKeyFrameReqFirRtp),
remote_bitrate_(configuration.remote_bitrate_estimator),
rtt_stats_(configuration.rtt_stats),
critical_section_rtt_(CriticalSectionWrapper::CreateCriticalSection()),
rtt_ms_(0) {
send_video_codec_.codecType = kVideoCodecUnknown;
if (default_module_) {
default_module_->RegisterChildModule(this);
}
// TODO(pwestin) move to constructors of each rtp/rtcp sender/receiver object.
rtcp_receiver_.RegisterRtcpObservers(configuration.intra_frame_callback,
configuration.bandwidth_callback);
rtcp_sender_.RegisterSendTransport(configuration.outgoing_transport);
// Make sure that RTCP objects are aware of our SSRC.
uint32_t SSRC = rtp_sender_.SSRC();
rtcp_sender_.SetSSRC(SSRC);
SetRtcpReceiverSsrcs(SSRC);
}
ModuleRtpRtcpImpl::~ModuleRtpRtcpImpl() {
// All child modules MUST be deleted before deleting the default.
assert(child_modules_.empty());
// Deregister for the child modules.
// Will go in to the default and remove it self.
if (default_module_) {
default_module_->DeRegisterChildModule(this);
}
}
void ModuleRtpRtcpImpl::RegisterChildModule(RtpRtcp* module) {
CriticalSectionScoped lock(
critical_section_module_ptrs_.get());
CriticalSectionScoped double_lock(
critical_section_module_ptrs_feedback_.get());
// We use two locks for protecting child_modules_, one
// (critical_section_module_ptrs_feedback_) for incoming
// messages (BitrateSent) and critical_section_module_ptrs_
// for all outgoing messages sending packets etc.
child_modules_.push_back(static_cast<ModuleRtpRtcpImpl*>(module));
}
void ModuleRtpRtcpImpl::DeRegisterChildModule(RtpRtcp* remove_module) {
CriticalSectionScoped lock(
critical_section_module_ptrs_.get());
CriticalSectionScoped double_lock(
critical_section_module_ptrs_feedback_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module == remove_module) {
child_modules_.erase(it);
return;
}
it++;
}
}
// Returns the number of milliseconds until the module want a worker thread
// to call Process.
int64_t ModuleRtpRtcpImpl::TimeUntilNextProcess() {
const int64_t now = clock_->TimeInMilliseconds();
const int64_t kRtpRtcpMaxIdleTimeProcessMs = 5;
return kRtpRtcpMaxIdleTimeProcessMs - (now - last_process_time_);
}
// Process any pending tasks such as timeouts (non time critical events).
int32_t ModuleRtpRtcpImpl::Process() {
const int64_t now = clock_->TimeInMilliseconds();
last_process_time_ = now;
const int64_t kRtpRtcpBitrateProcessTimeMs = 10;
if (now >= last_bitrate_process_time_ + kRtpRtcpBitrateProcessTimeMs) {
rtp_sender_.ProcessBitrate();
last_bitrate_process_time_ = now;
}
if (!IsDefaultModule()) {
const int64_t kRtpRtcpRttProcessTimeMs = 1000;
bool process_rtt = now >= last_rtt_process_time_ + kRtpRtcpRttProcessTimeMs;
if (rtcp_sender_.Sending()) {
// Process RTT if we have received a receiver report and we haven't
// processed RTT for at least |kRtpRtcpRttProcessTimeMs| milliseconds.
if (rtcp_receiver_.LastReceivedReceiverReport() >
last_rtt_process_time_ && process_rtt) {
std::vector<RTCPReportBlock> receive_blocks;
rtcp_receiver_.StatisticsReceived(&receive_blocks);
int64_t max_rtt = 0;
for (std::vector<RTCPReportBlock>::iterator it = receive_blocks.begin();
it != receive_blocks.end(); ++it) {
int64_t rtt = 0;
rtcp_receiver_.RTT(it->remoteSSRC, &rtt, NULL, NULL, NULL);
max_rtt = (rtt > max_rtt) ? rtt : max_rtt;
}
// Report the rtt.
if (rtt_stats_ && max_rtt != 0)
rtt_stats_->OnRttUpdate(max_rtt);
}
// Verify receiver reports are delivered and the reported sequence number
// is increasing.
int64_t rtcp_interval = RtcpReportInterval();
if (rtcp_receiver_.RtcpRrTimeout(rtcp_interval)) {
LOG_F(LS_WARNING) << "Timeout: No RTCP RR received.";
} else if (rtcp_receiver_.RtcpRrSequenceNumberTimeout(rtcp_interval)) {
LOG_F(LS_WARNING) <<
"Timeout: No increase in RTCP RR extended highest sequence number.";
}
if (remote_bitrate_ && rtcp_sender_.TMMBR()) {
unsigned int target_bitrate = 0;
std::vector<unsigned int> ssrcs;
if (remote_bitrate_->LatestEstimate(&ssrcs, &target_bitrate)) {
if (!ssrcs.empty()) {
target_bitrate = target_bitrate / ssrcs.size();
}
rtcp_sender_.SetTargetBitrate(target_bitrate);
}
}
} else {
// Report rtt from receiver.
if (process_rtt) {
int64_t rtt_ms;
if (rtt_stats_ && rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)) {
rtt_stats_->OnRttUpdate(rtt_ms);
}
}
}
// Get processed rtt.
if (process_rtt) {
last_rtt_process_time_ = now;
if (rtt_stats_) {
set_rtt_ms(rtt_stats_->LastProcessedRtt());
}
}
if (rtcp_sender_.TimeToSendRTCPReport()) {
rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport);
}
}
if (UpdateRTCPReceiveInformationTimers()) {
// A receiver has timed out
rtcp_receiver_.UpdateTMMBR();
}
return 0;
}
void ModuleRtpRtcpImpl::SetRtxSendStatus(int mode) {
rtp_sender_.SetRtxStatus(mode);
}
int ModuleRtpRtcpImpl::RtxSendStatus() const {
return rtp_sender_.RtxStatus();
}
void ModuleRtpRtcpImpl::SetRtxSsrc(uint32_t ssrc) {
rtp_sender_.SetRtxSsrc(ssrc);
}
void ModuleRtpRtcpImpl::SetRtxSendPayloadType(int payload_type) {
rtp_sender_.SetRtxPayloadType(payload_type);
}
int32_t ModuleRtpRtcpImpl::IncomingRtcpPacket(
const uint8_t* rtcp_packet,
const size_t length) {
// Allow receive of non-compound RTCP packets.
RTCPUtility::RTCPParserV2 rtcp_parser(rtcp_packet, length, true);
const bool valid_rtcpheader = rtcp_parser.IsValid();
if (!valid_rtcpheader) {
LOG(LS_WARNING) << "Incoming invalid RTCP packet";
return -1;
}
RTCPHelp::RTCPPacketInformation rtcp_packet_information;
int32_t ret_val = rtcp_receiver_.IncomingRTCPPacket(
rtcp_packet_information, &rtcp_parser);
if (ret_val == 0) {
rtcp_receiver_.TriggerCallbacksFromRTCPPacket(rtcp_packet_information);
}
return ret_val;
}
int32_t ModuleRtpRtcpImpl::RegisterSendPayload(
const CodecInst& voice_codec) {
return rtp_sender_.RegisterPayload(
voice_codec.plname,
voice_codec.pltype,
voice_codec.plfreq,
voice_codec.channels,
(voice_codec.rate < 0) ? 0 : voice_codec.rate);
}
int32_t ModuleRtpRtcpImpl::RegisterSendPayload(const VideoCodec& video_codec) {
send_video_codec_ = video_codec;
{
// simulcast_ is accessed when accessing child_modules_, so this write needs
// to be protected by the same lock.
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
simulcast_ = video_codec.numberOfSimulcastStreams > 1;
}
return rtp_sender_.RegisterPayload(video_codec.plName,
video_codec.plType,
90000,
0,
video_codec.maxBitrate);
}
int32_t ModuleRtpRtcpImpl::DeRegisterSendPayload(const int8_t payload_type) {
return rtp_sender_.DeRegisterSendPayload(payload_type);
}
int8_t ModuleRtpRtcpImpl::SendPayloadType() const {
return rtp_sender_.SendPayloadType();
}
uint32_t ModuleRtpRtcpImpl::StartTimestamp() const {
return rtp_sender_.StartTimestamp();
}
// Configure start timestamp, default is a random number.
void ModuleRtpRtcpImpl::SetStartTimestamp(const uint32_t timestamp) {
rtcp_sender_.SetStartTimestamp(timestamp);
rtp_sender_.SetStartTimestamp(timestamp, true);
}
uint16_t ModuleRtpRtcpImpl::SequenceNumber() const {
return rtp_sender_.SequenceNumber();
}
// Set SequenceNumber, default is a random number.
void ModuleRtpRtcpImpl::SetSequenceNumber(const uint16_t seq_num) {
rtp_sender_.SetSequenceNumber(seq_num);
}
void ModuleRtpRtcpImpl::SetRtpStateForSsrc(uint32_t ssrc,
const RtpState& rtp_state) {
if (rtp_sender_.SSRC() == ssrc) {
rtp_sender_.SetRtpState(rtp_state);
return;
}
if (rtp_sender_.RtxSsrc() == ssrc) {
rtp_sender_.SetRtxRtpState(rtp_state);
return;
}
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
for (size_t i = 0; i < child_modules_.size(); ++i) {
child_modules_[i]->SetRtpStateForSsrc(ssrc, rtp_state);
}
}
bool ModuleRtpRtcpImpl::GetRtpStateForSsrc(uint32_t ssrc, RtpState* rtp_state) {
if (rtp_sender_.SSRC() == ssrc) {
*rtp_state = rtp_sender_.GetRtpState();
return true;
}
if (rtp_sender_.RtxSsrc() == ssrc) {
*rtp_state = rtp_sender_.GetRtxRtpState();
return true;
}
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
for (size_t i = 0; i < child_modules_.size(); ++i) {
if (child_modules_[i]->GetRtpStateForSsrc(ssrc, rtp_state))
return true;
}
return false;
}
uint32_t ModuleRtpRtcpImpl::SSRC() const {
return rtp_sender_.SSRC();
}
// Configure SSRC, default is a random number.
void ModuleRtpRtcpImpl::SetSSRC(const uint32_t ssrc) {
rtp_sender_.SetSSRC(ssrc);
rtcp_sender_.SetSSRC(ssrc);
SetRtcpReceiverSsrcs(ssrc);
}
void ModuleRtpRtcpImpl::SetCsrcs(const std::vector<uint32_t>& csrcs) {
if (IsDefaultModule()) {
// For default we need to update all child modules too.
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
module->SetCsrcs(csrcs);
}
it++;
}
return;
}
rtcp_sender_.SetCsrcs(csrcs);
rtp_sender_.SetCsrcs(csrcs);
}
// TODO(pbos): Handle media and RTX streams separately (separate RTCP
// feedbacks).
RTCPSender::FeedbackState ModuleRtpRtcpImpl::GetFeedbackState() {
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_sender_.GetDataCounters(&rtp_stats, &rtx_stats);
RTCPSender::FeedbackState state;
state.send_payload_type = SendPayloadType();
state.frequency_hz = CurrentSendFrequencyHz();
state.packets_sent = rtp_stats.transmitted.packets +
rtx_stats.transmitted.packets;
state.media_bytes_sent = rtp_stats.transmitted.payload_bytes +
rtx_stats.transmitted.payload_bytes;
state.module = this;
LastReceivedNTP(&state.last_rr_ntp_secs,
&state.last_rr_ntp_frac,
&state.remote_sr);
state.has_last_xr_rr = LastReceivedXrReferenceTimeInfo(&state.last_xr_rr);
uint32_t tmp;
BitrateSent(&state.send_bitrate, &tmp, &tmp, &tmp);
return state;
}
int ModuleRtpRtcpImpl::CurrentSendFrequencyHz() const {
return rtp_sender_.SendPayloadFrequency();
}
int32_t ModuleRtpRtcpImpl::SetSendingStatus(const bool sending) {
if (rtcp_sender_.Sending() != sending) {
// Sends RTCP BYE when going from true to false
if (rtcp_sender_.SetSendingStatus(GetFeedbackState(), sending) != 0) {
LOG(LS_WARNING) << "Failed to send RTCP BYE";
}
collision_detected_ = false;
// Generate a new time_stamp if true and not configured via API
// Generate a new SSRC for the next "call" if false
rtp_sender_.SetSendingStatus(sending);
if (sending) {
// Make sure the RTCP sender has the same timestamp offset.
rtcp_sender_.SetStartTimestamp(rtp_sender_.StartTimestamp());
}
// Make sure that RTCP objects are aware of our SSRC (it could have changed
// Due to collision)
uint32_t SSRC = rtp_sender_.SSRC();
rtcp_sender_.SetSSRC(SSRC);
SetRtcpReceiverSsrcs(SSRC);
return 0;
}
return 0;
}
bool ModuleRtpRtcpImpl::Sending() const {
return rtcp_sender_.Sending();
}
void ModuleRtpRtcpImpl::SetSendingMediaStatus(const bool sending) {
rtp_sender_.SetSendingMediaStatus(sending);
}
bool ModuleRtpRtcpImpl::SendingMedia() const {
if (!IsDefaultModule()) {
return rtp_sender_.SendingMedia();
}
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::const_iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RTPSender& rtp_sender = (*it)->rtp_sender_;
if (rtp_sender.SendingMedia()) {
return true;
}
it++;
}
return false;
}
int32_t ModuleRtpRtcpImpl::SendOutgoingData(
FrameType frame_type,
int8_t payload_type,
uint32_t time_stamp,
int64_t capture_time_ms,
const uint8_t* payload_data,
size_t payload_size,
const RTPFragmentationHeader* fragmentation,
const RTPVideoHeader* rtp_video_hdr) {
rtcp_sender_.SetLastRtpTime(time_stamp, capture_time_ms);
if (!IsDefaultModule()) {
// Don't send RTCP from default module.
if (rtcp_sender_.TimeToSendRTCPReport(kVideoFrameKey == frame_type)) {
rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport);
}
return rtp_sender_.SendOutgoingData(frame_type,
payload_type,
time_stamp,
capture_time_ms,
payload_data,
payload_size,
fragmentation,
NULL,
&(rtp_video_hdr->codecHeader));
}
int32_t ret_val = -1;
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
if (simulcast_) {
if (rtp_video_hdr == NULL) {
return -1;
}
int idx = 0;
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
for (; idx < rtp_video_hdr->simulcastIdx; ++it) {
if (it == child_modules_.end()) {
return -1;
}
if ((*it)->SendingMedia()) {
++idx;
}
}
for (; it != child_modules_.end(); ++it) {
if ((*it)->SendingMedia()) {
break;
}
++idx;
}
if (it == child_modules_.end()) {
return -1;
}
return (*it)->SendOutgoingData(frame_type,
payload_type,
time_stamp,
capture_time_ms,
payload_data,
payload_size,
fragmentation,
rtp_video_hdr);
} else {
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
// Send to all "child" modules
while (it != child_modules_.end()) {
if ((*it)->SendingMedia()) {
ret_val = (*it)->SendOutgoingData(frame_type,
payload_type,
time_stamp,
capture_time_ms,
payload_data,
payload_size,
fragmentation,
rtp_video_hdr);
}
it++;
}
}
return ret_val;
}
bool ModuleRtpRtcpImpl::TimeToSendPacket(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission) {
if (!IsDefaultModule()) {
// Don't send from default module.
if (SendingMedia() && ssrc == rtp_sender_.SSRC()) {
return rtp_sender_.TimeToSendPacket(sequence_number, capture_time_ms,
retransmission);
}
} else {
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
if ((*it)->SendingMedia() && ssrc == (*it)->rtp_sender_.SSRC()) {
return (*it)->rtp_sender_.TimeToSendPacket(sequence_number,
capture_time_ms,
retransmission);
}
++it;
}
}
// No RTP sender is interested in sending this packet.
return true;
}
size_t ModuleRtpRtcpImpl::TimeToSendPadding(size_t bytes) {
if (!IsDefaultModule()) {
// Don't send from default module.
return rtp_sender_.TimeToSendPadding(bytes);
} else {
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
for (size_t i = 0; i < child_modules_.size(); ++i) {
// Send padding on one of the modules sending media.
if (child_modules_[i]->SendingMedia()) {
return child_modules_[i]->rtp_sender_.TimeToSendPadding(bytes);
}
}
}
return 0;
}
bool ModuleRtpRtcpImpl::GetSendSideDelay(int* avg_send_delay_ms,
int* max_send_delay_ms) const {
assert(avg_send_delay_ms);
assert(max_send_delay_ms);
if (IsDefaultModule()) {
// This API is only supported for child modules.
return false;
}
return rtp_sender_.GetSendSideDelay(avg_send_delay_ms, max_send_delay_ms);
}
uint16_t ModuleRtpRtcpImpl::MaxPayloadLength() const {
return rtp_sender_.MaxPayloadLength();
}
uint16_t ModuleRtpRtcpImpl::MaxDataPayloadLength() const {
// Assuming IP/UDP.
uint16_t min_data_payload_length = IP_PACKET_SIZE - 28;
if (IsDefaultModule()) {
// For default we need to update all child modules too.
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::const_iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
uint16_t data_payload_length =
module->MaxDataPayloadLength();
if (data_payload_length < min_data_payload_length) {
min_data_payload_length = data_payload_length;
}
}
it++;
}
}
uint16_t data_payload_length = rtp_sender_.MaxDataPayloadLength();
if (data_payload_length < min_data_payload_length) {
min_data_payload_length = data_payload_length;
}
return min_data_payload_length;
}
int32_t ModuleRtpRtcpImpl::SetTransportOverhead(
const bool tcp,
const bool ipv6,
const uint8_t authentication_overhead) {
uint16_t packet_overhead = 0;
if (ipv6) {
packet_overhead = 40;
} else {
packet_overhead = 20;
}
if (tcp) {
// TCP.
packet_overhead += 20;
} else {
// UDP.
packet_overhead += 8;
}
packet_overhead += authentication_overhead;
if (packet_overhead == packet_overhead_) {
// Ok same as before.
return 0;
}
// Calc diff.
int16_t packet_over_head_diff = packet_overhead - packet_overhead_;
// Store new.
packet_overhead_ = packet_overhead;
uint16_t length =
rtp_sender_.MaxPayloadLength() - packet_over_head_diff;
return rtp_sender_.SetMaxPayloadLength(length, packet_overhead_);
}
int32_t ModuleRtpRtcpImpl::SetMaxTransferUnit(const uint16_t mtu) {
if (mtu > IP_PACKET_SIZE) {
LOG(LS_ERROR) << "Invalid mtu: " << mtu;
return -1;
}
return rtp_sender_.SetMaxPayloadLength(mtu - packet_overhead_,
packet_overhead_);
}
RTCPMethod ModuleRtpRtcpImpl::RTCP() const {
if (rtcp_sender_.Status() != kRtcpOff) {
return rtcp_receiver_.Status();
}
return kRtcpOff;
}
// Configure RTCP status i.e on/off.
void ModuleRtpRtcpImpl::SetRTCPStatus(const RTCPMethod method) {
rtcp_sender_.SetRTCPStatus(method);
rtcp_receiver_.SetRTCPStatus(method);
}
// Only for internal test.
uint32_t ModuleRtpRtcpImpl::LastSendReport(
int64_t& last_rtcptime) {
return rtcp_sender_.LastSendReport(last_rtcptime);
}
int32_t ModuleRtpRtcpImpl::SetCNAME(const char c_name[RTCP_CNAME_SIZE]) {
return rtcp_sender_.SetCNAME(c_name);
}
int32_t ModuleRtpRtcpImpl::AddMixedCNAME(uint32_t ssrc,
const char c_name[RTCP_CNAME_SIZE]) {
return rtcp_sender_.AddMixedCNAME(ssrc, c_name);
}
int32_t ModuleRtpRtcpImpl::RemoveMixedCNAME(const uint32_t ssrc) {
return rtcp_sender_.RemoveMixedCNAME(ssrc);
}
int32_t ModuleRtpRtcpImpl::RemoteCNAME(
const uint32_t remote_ssrc,
char c_name[RTCP_CNAME_SIZE]) const {
return rtcp_receiver_.CNAME(remote_ssrc, c_name);
}
int32_t ModuleRtpRtcpImpl::RemoteNTP(
uint32_t* received_ntpsecs,
uint32_t* received_ntpfrac,
uint32_t* rtcp_arrival_time_secs,
uint32_t* rtcp_arrival_time_frac,
uint32_t* rtcp_timestamp) const {
return rtcp_receiver_.NTP(received_ntpsecs,
received_ntpfrac,
rtcp_arrival_time_secs,
rtcp_arrival_time_frac,
rtcp_timestamp)
? 0
: -1;
}
// Get RoundTripTime.
int32_t ModuleRtpRtcpImpl::RTT(const uint32_t remote_ssrc,
int64_t* rtt,
int64_t* avg_rtt,
int64_t* min_rtt,
int64_t* max_rtt) const {
int32_t ret = rtcp_receiver_.RTT(remote_ssrc, rtt, avg_rtt, min_rtt, max_rtt);
if (rtt && *rtt == 0) {
// Try to get RTT from RtcpRttStats class.
*rtt = rtt_ms();
}
return ret;
}
// Reset RTP data counters for the sending side.
int32_t ModuleRtpRtcpImpl::ResetSendDataCountersRTP() {
rtp_sender_.ResetDataCounters();
return 0; // TODO(pwestin): change to void.
}
// Force a send of an RTCP packet.
// Normal SR and RR are triggered via the process function.
int32_t ModuleRtpRtcpImpl::SendRTCP(uint32_t rtcp_packet_type) {
return rtcp_sender_.SendRTCP(GetFeedbackState(), rtcp_packet_type);
}
int32_t ModuleRtpRtcpImpl::SetRTCPApplicationSpecificData(
const uint8_t sub_type,
const uint32_t name,
const uint8_t* data,
const uint16_t length) {
return rtcp_sender_.SetApplicationSpecificData(sub_type, name, data, length);
}
// (XR) VOIP metric.
int32_t ModuleRtpRtcpImpl::SetRTCPVoIPMetrics(
const RTCPVoIPMetric* voip_metric) {
return rtcp_sender_.SetRTCPVoIPMetrics(voip_metric);
}
void ModuleRtpRtcpImpl::SetRtcpXrRrtrStatus(bool enable) {
return rtcp_sender_.SendRtcpXrReceiverReferenceTime(enable);
}
bool ModuleRtpRtcpImpl::RtcpXrRrtrStatus() const {
return rtcp_sender_.RtcpXrReceiverReferenceTime();
}
// TODO(asapersson): Replace this method with the one below.
int32_t ModuleRtpRtcpImpl::DataCountersRTP(
size_t* bytes_sent,
uint32_t* packets_sent) const {
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_sender_.GetDataCounters(&rtp_stats, &rtx_stats);
if (bytes_sent) {
*bytes_sent = rtp_stats.transmitted.payload_bytes +
rtp_stats.transmitted.padding_bytes +
rtp_stats.transmitted.header_bytes +
rtx_stats.transmitted.payload_bytes +
rtx_stats.transmitted.padding_bytes +
rtx_stats.transmitted.header_bytes;
}
if (packets_sent) {
*packets_sent = rtp_stats.transmitted.packets +
rtx_stats.transmitted.packets;
}
return 0;
}
void ModuleRtpRtcpImpl::GetSendStreamDataCounters(
StreamDataCounters* rtp_counters,
StreamDataCounters* rtx_counters) const {
rtp_sender_.GetDataCounters(rtp_counters, rtx_counters);
}
int32_t ModuleRtpRtcpImpl::RemoteRTCPStat(RTCPSenderInfo* sender_info) {
return rtcp_receiver_.SenderInfoReceived(sender_info);
}
// Received RTCP report.
int32_t ModuleRtpRtcpImpl::RemoteRTCPStat(
std::vector<RTCPReportBlock>* receive_blocks) const {
return rtcp_receiver_.StatisticsReceived(receive_blocks);
}
int32_t ModuleRtpRtcpImpl::AddRTCPReportBlock(
const uint32_t ssrc,
const RTCPReportBlock* report_block) {
return rtcp_sender_.AddExternalReportBlock(ssrc, report_block);
}
int32_t ModuleRtpRtcpImpl::RemoveRTCPReportBlock(
const uint32_t ssrc) {
return rtcp_sender_.RemoveExternalReportBlock(ssrc);
}
void ModuleRtpRtcpImpl::GetRtcpPacketTypeCounters(
RtcpPacketTypeCounter* packets_sent,
RtcpPacketTypeCounter* packets_received) const {
rtcp_sender_.GetPacketTypeCounter(packets_sent);
rtcp_receiver_.GetPacketTypeCounter(packets_received);
}
// (REMB) Receiver Estimated Max Bitrate.
bool ModuleRtpRtcpImpl::REMB() const {
return rtcp_sender_.REMB();
}
void ModuleRtpRtcpImpl::SetREMBStatus(const bool enable) {
rtcp_sender_.SetREMBStatus(enable);
}
void ModuleRtpRtcpImpl::SetREMBData(const uint32_t bitrate,
const std::vector<uint32_t>& ssrcs) {
rtcp_sender_.SetREMBData(bitrate, ssrcs);
}
// (IJ) Extended jitter report.
bool ModuleRtpRtcpImpl::IJ() const {
return rtcp_sender_.IJ();
}
void ModuleRtpRtcpImpl::SetIJStatus(const bool enable) {
rtcp_sender_.SetIJStatus(enable);
}
int32_t ModuleRtpRtcpImpl::RegisterSendRtpHeaderExtension(
const RTPExtensionType type,
const uint8_t id) {
return rtp_sender_.RegisterRtpHeaderExtension(type, id);
}
int32_t ModuleRtpRtcpImpl::DeregisterSendRtpHeaderExtension(
const RTPExtensionType type) {
return rtp_sender_.DeregisterRtpHeaderExtension(type);
}
// (TMMBR) Temporary Max Media Bit Rate.
bool ModuleRtpRtcpImpl::TMMBR() const {
return rtcp_sender_.TMMBR();
}
void ModuleRtpRtcpImpl::SetTMMBRStatus(const bool enable) {
rtcp_sender_.SetTMMBRStatus(enable);
}
int32_t ModuleRtpRtcpImpl::SetTMMBN(const TMMBRSet* bounding_set) {
uint32_t max_bitrate_kbit =
rtp_sender_.MaxConfiguredBitrateVideo() / 1000;
return rtcp_sender_.SetTMMBN(bounding_set, max_bitrate_kbit);
}
// Returns the currently configured retransmission mode.
int ModuleRtpRtcpImpl::SelectiveRetransmissions() const {
return rtp_sender_.SelectiveRetransmissions();
}
// Enable or disable a retransmission mode, which decides which packets will
// be retransmitted if NACKed.
int ModuleRtpRtcpImpl::SetSelectiveRetransmissions(uint8_t settings) {
return rtp_sender_.SetSelectiveRetransmissions(settings);
}
// Send a Negative acknowledgment packet.
int32_t ModuleRtpRtcpImpl::SendNACK(const uint16_t* nack_list,
const uint16_t size) {
uint16_t nack_length = size;
uint16_t start_id = 0;
int64_t now = clock_->TimeInMilliseconds();
if (TimeToSendFullNackList(now)) {
nack_last_time_sent_full_ = now;
nack_last_time_sent_full_prev_ = now;
} else {
// Only send extended list.
if (nack_last_seq_number_sent_ == nack_list[size - 1]) {
// Last sequence number is the same, do not send list.
return 0;
}
// Send new sequence numbers.
for (int i = 0; i < size; ++i) {
if (nack_last_seq_number_sent_ == nack_list[i]) {
start_id = i + 1;
break;
}
}
nack_length = size - start_id;
}
// Our RTCP NACK implementation is limited to kRtcpMaxNackFields sequence
// numbers per RTCP packet.
if (nack_length > kRtcpMaxNackFields) {
nack_length = kRtcpMaxNackFields;
}
nack_last_seq_number_sent_ = nack_list[start_id + nack_length - 1];
return rtcp_sender_.SendRTCP(
GetFeedbackState(), kRtcpNack, nack_length, &nack_list[start_id]);
}
bool ModuleRtpRtcpImpl::TimeToSendFullNackList(int64_t now) const {
// Use RTT from RtcpRttStats class if provided.
int64_t rtt = rtt_ms();
if (rtt == 0) {
rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL);
}
const int64_t kStartUpRttMs = 100;
int64_t wait_time = 5 + ((rtt * 3) >> 1); // 5 + RTT * 1.5.
if (rtt == 0) {
wait_time = kStartUpRttMs;
}
// Send a full NACK list once within every |wait_time|.
if (rtt_stats_) {
return now - nack_last_time_sent_full_ > wait_time;
}
return now - nack_last_time_sent_full_prev_ > wait_time;
}
// Store the sent packets, needed to answer to Negative acknowledgment requests.
void ModuleRtpRtcpImpl::SetStorePacketsStatus(const bool enable,
const uint16_t number_to_store) {
rtp_sender_.SetStorePacketsStatus(enable, number_to_store);
}
bool ModuleRtpRtcpImpl::StorePackets() const {
return rtp_sender_.StorePackets();
}
void ModuleRtpRtcpImpl::RegisterRtcpStatisticsCallback(
RtcpStatisticsCallback* callback) {
rtcp_receiver_.RegisterRtcpStatisticsCallback(callback);
}
RtcpStatisticsCallback*
ModuleRtpRtcpImpl::GetRtcpStatisticsCallback() {
return rtcp_receiver_.GetRtcpStatisticsCallback();
}
// Send a TelephoneEvent tone using RFC 2833 (4733).
int32_t ModuleRtpRtcpImpl::SendTelephoneEventOutband(
const uint8_t key,
const uint16_t time_ms,
const uint8_t level) {
return rtp_sender_.SendTelephoneEvent(key, time_ms, level);
}
bool ModuleRtpRtcpImpl::SendTelephoneEventActive(
int8_t& telephone_event) const {
return rtp_sender_.SendTelephoneEventActive(&telephone_event);
}
// Set audio packet size, used to determine when it's time to send a DTMF
// packet in silence (CNG).
int32_t ModuleRtpRtcpImpl::SetAudioPacketSize(
const uint16_t packet_size_samples) {
return rtp_sender_.SetAudioPacketSize(packet_size_samples);
}
int32_t ModuleRtpRtcpImpl::SetAudioLevel(
const uint8_t level_d_bov) {
return rtp_sender_.SetAudioLevel(level_d_bov);
}
// Set payload type for Redundant Audio Data RFC 2198.
int32_t ModuleRtpRtcpImpl::SetSendREDPayloadType(
const int8_t payload_type) {
return rtp_sender_.SetRED(payload_type);
}
// Get payload type for Redundant Audio Data RFC 2198.
int32_t ModuleRtpRtcpImpl::SendREDPayloadType(
int8_t& payload_type) const {
return rtp_sender_.RED(&payload_type);
}
void ModuleRtpRtcpImpl::SetTargetSendBitrate(
const std::vector<uint32_t>& stream_bitrates) {
if (IsDefaultModule()) {
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
if (simulcast_) {
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
for (size_t i = 0;
it != child_modules_.end() && i < stream_bitrates.size(); ++it) {
if ((*it)->SendingMedia()) {
RTPSender& rtp_sender = (*it)->rtp_sender_;
rtp_sender.SetTargetBitrate(stream_bitrates[i]);
++i;
}
}
} else {
if (stream_bitrates.size() > 1)
return;
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
for (; it != child_modules_.end(); ++it) {
RTPSender& rtp_sender = (*it)->rtp_sender_;
rtp_sender.SetTargetBitrate(stream_bitrates[0]);
}
}
} else {
if (stream_bitrates.size() > 1)
return;
rtp_sender_.SetTargetBitrate(stream_bitrates[0]);
}
}
int32_t ModuleRtpRtcpImpl::SetKeyFrameRequestMethod(
const KeyFrameRequestMethod method) {
key_frame_req_method_ = method;
return 0;
}
int32_t ModuleRtpRtcpImpl::RequestKeyFrame() {
switch (key_frame_req_method_) {
case kKeyFrameReqFirRtp:
return rtp_sender_.SendRTPIntraRequest();
case kKeyFrameReqPliRtcp:
return SendRTCP(kRtcpPli);
case kKeyFrameReqFirRtcp:
return SendRTCP(kRtcpFir);
}
return -1;
}
int32_t ModuleRtpRtcpImpl::SendRTCPSliceLossIndication(
const uint8_t picture_id) {
return rtcp_sender_.SendRTCP(
GetFeedbackState(), kRtcpSli, 0, 0, false, picture_id);
}
int32_t ModuleRtpRtcpImpl::SetCameraDelay(const int32_t delay_ms) {
if (IsDefaultModule()) {
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
module->SetCameraDelay(delay_ms);
}
it++;
}
return 0;
}
return rtcp_sender_.SetCameraDelay(delay_ms);
}
int32_t ModuleRtpRtcpImpl::SetGenericFECStatus(
const bool enable,
const uint8_t payload_type_red,
const uint8_t payload_type_fec) {
return rtp_sender_.SetGenericFECStatus(enable,
payload_type_red,
payload_type_fec);
}
int32_t ModuleRtpRtcpImpl::GenericFECStatus(
bool& enable,
uint8_t& payload_type_red,
uint8_t& payload_type_fec) {
bool child_enabled = false;
if (IsDefaultModule()) {
// For default we need to check all child modules too.
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
bool enabled = false;
uint8_t dummy_ptype_red = 0;
uint8_t dummy_ptype_fec = 0;
if (module->GenericFECStatus(enabled,
dummy_ptype_red,
dummy_ptype_fec) == 0 && enabled) {
child_enabled = true;
break;
}
}
it++;
}
}
int32_t ret_val = rtp_sender_.GenericFECStatus(&enable,
&payload_type_red,
&payload_type_fec);
if (child_enabled) {
// Returns true if enabled for any child module.
enable = child_enabled;
}
return ret_val;
}
int32_t ModuleRtpRtcpImpl::SetFecParameters(
const FecProtectionParams* delta_params,
const FecProtectionParams* key_params) {
if (IsDefaultModule()) {
// For default we need to update all child modules too.
CriticalSectionScoped lock(critical_section_module_ptrs_.get());
std::vector<ModuleRtpRtcpImpl*>::iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
module->SetFecParameters(delta_params, key_params);
}
it++;
}
return 0;
}
return rtp_sender_.SetFecParameters(delta_params, key_params);
}
void ModuleRtpRtcpImpl::SetRemoteSSRC(const uint32_t ssrc) {
// Inform about the incoming SSRC.
rtcp_sender_.SetRemoteSSRC(ssrc);
rtcp_receiver_.SetRemoteSSRC(ssrc);
// Check for a SSRC collision.
if (rtp_sender_.SSRC() == ssrc && !collision_detected_) {
// If we detect a collision change the SSRC but only once.
collision_detected_ = true;
uint32_t new_ssrc = rtp_sender_.GenerateNewSSRC();
if (new_ssrc == 0) {
// Configured via API ignore.
return;
}
if (kRtcpOff != rtcp_sender_.Status()) {
// Send RTCP bye on the current SSRC.
SendRTCP(kRtcpBye);
}
// Change local SSRC and inform all objects about the new SSRC.
rtcp_sender_.SetSSRC(new_ssrc);
SetRtcpReceiverSsrcs(new_ssrc);
}
}
void ModuleRtpRtcpImpl::BitrateSent(uint32_t* total_rate,
uint32_t* video_rate,
uint32_t* fec_rate,
uint32_t* nack_rate) const {
if (IsDefaultModule()) {
// For default we need to update the send bitrate.
CriticalSectionScoped lock(critical_section_module_ptrs_feedback_.get());
if (total_rate != NULL)
*total_rate = 0;
if (video_rate != NULL)
*video_rate = 0;
if (fec_rate != NULL)
*fec_rate = 0;
if (nack_rate != NULL)
*nack_rate = 0;
std::vector<ModuleRtpRtcpImpl*>::const_iterator it = child_modules_.begin();
while (it != child_modules_.end()) {
RtpRtcp* module = *it;
if (module) {
uint32_t child_total_rate = 0;
uint32_t child_video_rate = 0;
uint32_t child_fec_rate = 0;
uint32_t child_nack_rate = 0;
module->BitrateSent(&child_total_rate,
&child_video_rate,
&child_fec_rate,
&child_nack_rate);
if (total_rate != NULL && child_total_rate > *total_rate)
*total_rate = child_total_rate;
if (video_rate != NULL && child_video_rate > *video_rate)
*video_rate = child_video_rate;
if (fec_rate != NULL && child_fec_rate > *fec_rate)
*fec_rate = child_fec_rate;
if (nack_rate != NULL && child_nack_rate > *nack_rate)
*nack_rate = child_nack_rate;
}
it++;
}
return;
}
if (total_rate != NULL)
*total_rate = rtp_sender_.BitrateSent();
if (video_rate != NULL)
*video_rate = rtp_sender_.VideoBitrateSent();
if (fec_rate != NULL)
*fec_rate = rtp_sender_.FecOverheadRate();
if (nack_rate != NULL)
*nack_rate = rtp_sender_.NackOverheadRate();
}
void ModuleRtpRtcpImpl::OnRequestIntraFrame() {
RequestKeyFrame();
}
void ModuleRtpRtcpImpl::OnRequestSendReport() {
SendRTCP(kRtcpSr);
}
int32_t ModuleRtpRtcpImpl::SendRTCPReferencePictureSelection(
const uint64_t picture_id) {
return rtcp_sender_.SendRTCP(
GetFeedbackState(), kRtcpRpsi, 0, 0, false, picture_id);
}
int64_t ModuleRtpRtcpImpl::SendTimeOfSendReport(
const uint32_t send_report) {
return rtcp_sender_.SendTimeOfSendReport(send_report);
}
bool ModuleRtpRtcpImpl::SendTimeOfXrRrReport(
uint32_t mid_ntp, int64_t* time_ms) const {
return rtcp_sender_.SendTimeOfXrRrReport(mid_ntp, time_ms);
}
void ModuleRtpRtcpImpl::OnReceivedNACK(
const std::list<uint16_t>& nack_sequence_numbers) {
if (!rtp_sender_.StorePackets() ||
nack_sequence_numbers.size() == 0) {
return;
}
// Use RTT from RtcpRttStats class if provided.
int64_t rtt = rtt_ms();
if (rtt == 0) {
rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL);
}
rtp_sender_.OnReceivedNACK(nack_sequence_numbers, rtt);
}
bool ModuleRtpRtcpImpl::LastReceivedNTP(
uint32_t* rtcp_arrival_time_secs, // When we got the last report.
uint32_t* rtcp_arrival_time_frac,
uint32_t* remote_sr) const {
// Remote SR: NTP inside the last received (mid 16 bits from sec and frac).
uint32_t ntp_secs = 0;
uint32_t ntp_frac = 0;
if (!rtcp_receiver_.NTP(&ntp_secs,
&ntp_frac,
rtcp_arrival_time_secs,
rtcp_arrival_time_frac,
NULL)) {
return false;
}
*remote_sr =
((ntp_secs & 0x0000ffff) << 16) + ((ntp_frac & 0xffff0000) >> 16);
return true;
}
bool ModuleRtpRtcpImpl::LastReceivedXrReferenceTimeInfo(
RtcpReceiveTimeInfo* info) const {
return rtcp_receiver_.LastReceivedXrReferenceTimeInfo(info);
}
bool ModuleRtpRtcpImpl::UpdateRTCPReceiveInformationTimers() {
// If this returns true this channel has timed out.
// Periodically check if this is true and if so call UpdateTMMBR.
return rtcp_receiver_.UpdateRTCPReceiveInformationTimers();
}
// Called from RTCPsender.
int32_t ModuleRtpRtcpImpl::BoundingSet(bool& tmmbr_owner,
TMMBRSet*& bounding_set) {
return rtcp_receiver_.BoundingSet(tmmbr_owner, bounding_set);
}
int64_t ModuleRtpRtcpImpl::RtcpReportInterval() {
if (audio_)
return RTCP_INTERVAL_AUDIO_MS;
else
return RTCP_INTERVAL_VIDEO_MS;
}
void ModuleRtpRtcpImpl::SetRtcpReceiverSsrcs(uint32_t main_ssrc) {
std::set<uint32_t> ssrcs;
ssrcs.insert(main_ssrc);
if (rtp_sender_.RtxStatus() != kRtxOff)
ssrcs.insert(rtp_sender_.RtxSsrc());
rtcp_receiver_.SetSsrcs(main_ssrc, ssrcs);
}
void ModuleRtpRtcpImpl::set_rtt_ms(int64_t rtt_ms) {
CriticalSectionScoped cs(critical_section_rtt_.get());
rtt_ms_ = rtt_ms;
}
int64_t ModuleRtpRtcpImpl::rtt_ms() const {
CriticalSectionScoped cs(critical_section_rtt_.get());
return rtt_ms_;
}
void ModuleRtpRtcpImpl::RegisterSendChannelRtpStatisticsCallback(
StreamDataCountersCallback* callback) {
rtp_sender_.RegisterRtpStatisticsCallback(callback);
}
StreamDataCountersCallback*
ModuleRtpRtcpImpl::GetSendChannelRtpStatisticsCallback() const {
return rtp_sender_.GetRtpStatisticsCallback();
}
bool ModuleRtpRtcpImpl::IsDefaultModule() const {
CriticalSectionScoped cs(critical_section_module_ptrs_.get());
return !child_modules_.empty();
}
} // Namespace webrtc