blob: 932eff1091b689d5752ea228eb746a5bd05d3597 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
#include "webrtc/common_audio/window_generator.h"
using std::complex;
using std::max;
using std::min;
namespace webrtc {
const int IntelligibilityEnhancer::kErbResolution = 2;
const int IntelligibilityEnhancer::kWindowSizeMs = 2;
// The size of the chunk provided by APM, in milliseconds.
const int IntelligibilityEnhancer::kChunkSizeMs = 10;
const int IntelligibilityEnhancer::kAnalyzeRate = 800;
const int IntelligibilityEnhancer::kVarianceRate = 2;
const float IntelligibilityEnhancer::kClipFreq = 200.0f;
const float IntelligibilityEnhancer::kConfigRho = 0.02f;
const float IntelligibilityEnhancer::kKbdAlpha = 1.5f;
const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f;
using VarianceType = intelligibility::VarianceArray::StepType;
IntelligibilityEnhancer::TransformCallback::TransformCallback(
IntelligibilityEnhancer* parent,
IntelligibilityEnhancer::AudioSource source)
: parent_(parent),
source_(source) {}
void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
const complex<float>* const* in_block,
int in_channels, int frames, int /* out_channels */,
complex<float>* const* out_block) {
DCHECK_EQ(parent_->freqs_, frames);
for (int i = 0; i < in_channels; ++i) {
parent_->DispatchAudio(source_, in_block[i], out_block[i]);
}
}
IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
int sample_rate_hz,
int channels,
int cv_type, float cv_alpha,
int cv_win,
int analysis_rate,
int variance_rate,
float gain_limit)
: freqs_(RealFourier::ComplexLength(RealFourier::FftOrder(
sample_rate_hz * kWindowSizeMs / 1000))),
window_size_(1 << RealFourier::FftOrder(freqs_)),
chunk_length_(sample_rate_hz * kChunkSizeMs / 1000),
bank_size_(GetBankSize(sample_rate_hz, erb_resolution)),
sample_rate_hz_(sample_rate_hz),
erb_resolution_(erb_resolution),
channels_(channels),
analysis_rate_(analysis_rate),
variance_rate_(variance_rate),
clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win,
cv_alpha),
noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f),
filtered_clear_var_(new float[bank_size_]),
filtered_noise_var_(new float[bank_size_]),
filter_bank_(nullptr),
center_freqs_(new float[bank_size_]),
rho_(new float[bank_size_]),
gains_eq_(new float[bank_size_]),
gain_applier_(freqs_, gain_limit),
temp_out_buffer_(nullptr),
input_audio_(new float*[channels]),
kbd_window_(new float[window_size_]),
render_callback_(this, AudioSource::kRenderStream),
capture_callback_(this, AudioSource::kCaptureStream),
block_count_(0),
analysis_step_(0),
vad_high_(nullptr),
vad_low_(nullptr),
vad_tmp_buffer_(new int16_t[chunk_length_]) {
DCHECK_LE(kConfigRho, 1.0f);
CreateErbBank();
WebRtcVad_Create(&vad_high_);
WebRtcVad_Init(vad_high_);
WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech
WebRtcVad_Create(&vad_low_);
WebRtcVad_Init(vad_low_);
WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech
temp_out_buffer_ = static_cast<float**>(malloc(
sizeof(*temp_out_buffer_) * channels_ +
sizeof(**temp_out_buffer_) * chunk_length_ * channels_));
for (int i = 0; i < channels_; ++i) {
temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_)
+ chunk_length_ * i;
}
for (int i = 0; i < bank_size_; ++i) {
rho_[i] = kConfigRho * kConfigRho;
}
float freqs_khz = kClipFreq / 1000.0f;
int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) /
(freqs_khz + 14.6575f))
+ 43.0f));
start_freq_ = max(1, erb_index * kErbResolution);
WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
kbd_window_.get());
render_mangler_.reset(new LappedTransform(channels_, channels_,
chunk_length_,
kbd_window_.get(),
window_size_,
window_size_ / 2,
&render_callback_));
capture_mangler_.reset(new LappedTransform(channels_, channels_,
chunk_length_,
kbd_window_.get(),
window_size_,
window_size_ / 2,
&capture_callback_));
}
IntelligibilityEnhancer::~IntelligibilityEnhancer() {
WebRtcVad_Free(vad_low_);
WebRtcVad_Free(vad_high_);
free(filter_bank_);
}
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) {
for (int i = 0; i < chunk_length_; ++i) {
vad_tmp_buffer_[i] = (int16_t)audio[0][i];
}
has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_,
vad_tmp_buffer_.get(), chunk_length_) == 1;
render_mangler_->ProcessChunk(audio, temp_out_buffer_);
for (int i = 0; i < channels_; ++i) {
memcpy(audio[i], temp_out_buffer_[i],
chunk_length_ * sizeof(**temp_out_buffer_));
}
}
void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) {
for (int i = 0; i < chunk_length_; ++i) {
vad_tmp_buffer_[i] = (int16_t)audio[0][i];
}
// TODO(bercic): the VAD was always detecting voice in the noise stream,
// no matter what the aggressiveness, so it was temporarily disabled here
//if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(),
// chunk_length_) == 1) {
// printf("capture HAS speech\n");
// return;
//}
//printf("capture NO speech\n");
capture_mangler_->ProcessChunk(audio, temp_out_buffer_);
}
void IntelligibilityEnhancer::DispatchAudio(
IntelligibilityEnhancer::AudioSource source,
const complex<float>* in_block, complex<float>* out_block) {
switch (source) {
case kRenderStream:
ProcessClearBlock(in_block, out_block);
break;
case kCaptureStream:
ProcessNoiseBlock(in_block, out_block);
break;
}
}
void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
complex<float>* out_block) {
float power_target;
if (block_count_ < 2) {
memset(out_block, 0, freqs_ * sizeof(*out_block));
++block_count_;
return;
}
if (has_voice_low_ || true) {
clear_variance_.Step(in_block, false);
power_target = std::accumulate(clear_variance_.variance(),
clear_variance_.variance() + freqs_, 0.0f);
if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
AnalyzeClearBlock(power_target);
++analysis_step_;
if (analysis_step_ == variance_rate_) {
analysis_step_ = 0;
clear_variance_.Clear();
noise_variance_.Clear();
}
}
++block_count_;
}
/* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */
gain_applier_.Apply(in_block, out_block);
}
void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
/* lambda binary search */
float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda;
float power_bot, power_top, power;
SolveEquation14(lambda_top, start_freq_, gains_eq_.get());
power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(),
bank_size_);
SolveEquation14(lambda_bot, start_freq_, gains_eq_.get());
power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(),
bank_size_);
DCHECK(power_target >= power_bot && power_target <= power_top);
float power_ratio = 2.0f;
int iters = 0;
while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) {
lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
SolveEquation14(lambda, start_freq_, gains_eq_.get());
power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
if (power < power_target) {
lambda_bot = lambda;
} else {
lambda_top = lambda;
}
power_ratio = fabs(power / power_target);
++iters;
}
/* b = filterbank' * b */
float* gains = gain_applier_.target();
for (int i = 0; i < freqs_; ++i) {
gains[i] = 0.0f;
for (int j = 0; j < bank_size_; ++j) {
gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]);
}
}
}
void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block,
complex<float>* /*out_block*/) {
noise_variance_.Step(in_block);
}
int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) {
float freq_limit = sample_rate / 2000.0f;
int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) /
(freq_limit + 14.6575f)) + 43.0f);
return erb_scale * erb_resolution;
}
void IntelligibilityEnhancer::CreateErbBank() {
int lf = 1, rf = 4;
for (int i = 0; i < bank_size_; ++i) {
float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
center_freqs_[i] -= 14678.49f;
}
float last_center_freq = center_freqs_[bank_size_ - 1];
for (int i = 0; i < bank_size_; ++i) {
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
}
filter_bank_ = static_cast<float**>(malloc(
sizeof(*filter_bank_) * bank_size_ +
sizeof(**filter_bank_) * freqs_ * bank_size_));
for (int i = 0; i < bank_size_; ++i) {
filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) +
freqs_ * i;
}
for (int i = 1; i <= bank_size_; ++i) {
int lll, ll, rr, rrr;
lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
ll = round(center_freqs_[max(1, i ) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
lll = min(freqs_, max(lll, 1)) - 1;
ll = min(freqs_, max(ll, 1)) - 1;
rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ /
(0.5f * sample_rate_hz_));
rrr = min(freqs_, max(rrr, 1)) - 1;
rr = min(freqs_, max(rr, 1)) - 1;
float step, element;
step = 1.0f / (ll - lll);
element = 0.0f;
for (int j = lll; j <= ll; ++j) {
filter_bank_[i - 1][j] = element;
element += step;
}
step = 1.0f / (rrr - rr);
element = 1.0f;
for (int j = rr; j <= rrr; ++j) {
filter_bank_[i - 1][j] = element;
element -= step;
}
for (int j = ll; j <= rr; ++j) {
filter_bank_[i - 1][j] = 1.0f;
}
}
float sum;
for (int i = 0; i < freqs_; ++i) {
sum = 0.0f;
for (int j = 0; j < bank_size_; ++j) {
sum += filter_bank_[j][i];
}
for (int j = 0; j < bank_size_; ++j) {
filter_bank_[j][i] /= sum;
}
}
}
void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq,
float* sols) {
bool quadratic = (kConfigRho < 1.0f);
const float* var_x0 = filtered_clear_var_.get();
const float* var_n0 = filtered_noise_var_.get();
for (int n = 0; n < start_freq; ++n) {
sols[n] = 1.0f;
}
for (int n = start_freq - 1; n < bank_size_; ++n) {
float alpha0, beta0, gamma0;
gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
lambda * var_x0[n] * var_n0[n] * var_n0[n];
beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
if (quadratic) {
alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0))
/ (2 * alpha0);
} else {
sols[n] = -gamma0 / beta0;
}
sols[n] = fmax(0, sols[n]);
}
}
void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
for (int i = 0; i < bank_size_; ++i) {
result[i] = DotProduct(filter_bank_[i], var, freqs_);
}
}
float IntelligibilityEnhancer::DotProduct(const float* a, const float* b,
int length) {
float ret = 0.0f;
for (int i = 0; i < length; ++i) {
ret = fmaf(a[i], b[i], ret);
}
return ret;
}
} // namespace webrtc