blob: 5913f7edbaf9d09ddd1eeb7d4fd73af3a5404e6a [file] [log] [blame]
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
* Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "YarrPattern.h"
#include "Yarr.h"
#include "YarrParser.h"
#include <wtf/Vector.h>
using namespace WTF;
namespace JSC { namespace Yarr {
#include "RegExpJitTables.h"
class CharacterClassConstructor {
public:
CharacterClassConstructor(bool isCaseInsensitive = false)
: m_isCaseInsensitive(isCaseInsensitive)
{
}
void reset()
{
m_matches.clear();
m_ranges.clear();
m_matchesUnicode.clear();
m_rangesUnicode.clear();
}
void append(const CharacterClass* other)
{
for (size_t i = 0; i < other->m_matches.size(); ++i)
addSorted(m_matches, other->m_matches[i]);
for (size_t i = 0; i < other->m_ranges.size(); ++i)
addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
}
void putChar(UChar ch)
{
if (ch <= 0x7f) {
if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
addSorted(m_matches, toASCIIUpper(ch));
addSorted(m_matches, toASCIILower(ch));
} else
addSorted(m_matches, ch);
} else {
UChar upper, lower;
if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) {
addSorted(m_matchesUnicode, upper);
addSorted(m_matchesUnicode, lower);
} else
addSorted(m_matchesUnicode, ch);
}
}
// returns true if this character has another case, and 'ch' is the upper case form.
static inline bool isUnicodeUpper(UChar ch)
{
return ch != Unicode::toLower(ch);
}
// returns true if this character has another case, and 'ch' is the lower case form.
static inline bool isUnicodeLower(UChar ch)
{
return ch != Unicode::toUpper(ch);
}
void putRange(UChar lo, UChar hi)
{
if (lo <= 0x7f) {
char asciiLo = lo;
char asciiHi = std::min(hi, (UChar)0x7f);
addSortedRange(m_ranges, lo, asciiHi);
if (m_isCaseInsensitive) {
if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
if ((asciiLo <= 'z') && (asciiHi >= 'a'))
addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
}
}
if (hi >= 0x80) {
uint32_t unicodeCurr = std::max(lo, (UChar)0x80);
addSortedRange(m_rangesUnicode, unicodeCurr, hi);
if (m_isCaseInsensitive) {
while (unicodeCurr <= hi) {
// If the upper bound of the range (hi) is 0xffff, the increments to
// unicodeCurr in this loop may take it to 0x10000. This is fine
// (if so we won't re-enter the loop, since the loop condition above
// will definitely fail) - but this does mean we cannot use a UChar
// to represent unicodeCurr, we must use a 32-bit value instead.
ASSERT(unicodeCurr <= 0xffff);
if (isUnicodeUpper(unicodeCurr)) {
UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr);
UChar lowerCaseRangeEnd = lowerCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1)))
lowerCaseRangeEnd++;
addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd);
} else if (isUnicodeLower(unicodeCurr)) {
UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr);
UChar upperCaseRangeEnd = upperCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1)))
upperCaseRangeEnd++;
addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd);
} else
++unicodeCurr;
}
}
}
}
CharacterClass* charClass()
{
CharacterClass* characterClass = new CharacterClass(0);
characterClass->m_matches.append(m_matches);
characterClass->m_ranges.append(m_ranges);
characterClass->m_matchesUnicode.append(m_matchesUnicode);
characterClass->m_rangesUnicode.append(m_rangesUnicode);
reset();
return characterClass;
}
private:
void addSorted(Vector<UChar>& matches, UChar ch)
{
unsigned pos = 0;
unsigned range = matches.size();
// binary chop, find position to insert char.
while (range) {
unsigned index = range >> 1;
int val = matches[pos+index] - ch;
if (!val)
return;
else if (val > 0)
range = index;
else {
pos += (index+1);
range -= (index+1);
}
}
if (pos == matches.size())
matches.append(ch);
else
matches.insert(pos, ch);
}
void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
{
unsigned end = ranges.size();
// Simple linear scan - I doubt there are that many ranges anyway...
// feel free to fix this with something faster (eg binary chop).
for (unsigned i = 0; i < end; ++i) {
// does the new range fall before the current position in the array
if (hi < ranges[i].begin) {
// optional optimization: concatenate appending ranges? - may not be worthwhile.
if (hi == (ranges[i].begin - 1)) {
ranges[i].begin = lo;
return;
}
ranges.insert(i, CharacterRange(lo, hi));
return;
}
// Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
// If the new range start at or before the end of the last range, then the overlap (if it starts one after the
// end of the last range they concatenate, which is just as good.
if (lo <= (ranges[i].end + 1)) {
// found an intersect! we'll replace this entry in the array.
ranges[i].begin = std::min(ranges[i].begin, lo);
ranges[i].end = std::max(ranges[i].end, hi);
// now check if the new range can subsume any subsequent ranges.
unsigned next = i+1;
// each iteration of the loop we will either remove something from the list, or break the loop.
while (next < ranges.size()) {
if (ranges[next].begin <= (ranges[i].end + 1)) {
// the next entry now overlaps / concatenates this one.
ranges[i].end = std::max(ranges[i].end, ranges[next].end);
ranges.remove(next);
} else
break;
}
return;
}
}
// CharacterRange comes after all existing ranges.
ranges.append(CharacterRange(lo, hi));
}
bool m_isCaseInsensitive;
Vector<UChar> m_matches;
Vector<CharacterRange> m_ranges;
Vector<UChar> m_matchesUnicode;
Vector<CharacterRange> m_rangesUnicode;
};
struct BeginCharHelper {
BeginCharHelper(Vector<BeginChar>* beginChars, bool isCaseInsensitive = false)
: m_beginChars(beginChars)
, m_isCaseInsensitive(isCaseInsensitive)
{}
void addBeginChar(BeginChar beginChar, Vector<TermChain>* hotTerms, QuantifierType quantityType, unsigned quantityCount)
{
if (quantityType == QuantifierFixedCount && quantityCount > 1) {
// We duplicate the first found character if the quantity of the term is more than one. eg.: /a{3}/
beginChar.value |= beginChar.value << 16;
beginChar.mask |= beginChar.mask << 16;
addCharacter(beginChar);
} else if (quantityType == QuantifierFixedCount && quantityCount == 1 && hotTerms->size())
// In case of characters with fixed quantifier we should check the next character as well.
linkHotTerms(beginChar, hotTerms);
else
// In case of greedy matching the next character checking is unnecessary therefore we just store
// the first character.
addCharacter(beginChar);
}
// Merge two following BeginChars in the vector to reduce the number of character checks.
void merge(unsigned size)
{
for (unsigned i = 0; i < size; i++) {
BeginChar* curr = &m_beginChars->at(i);
BeginChar* next = &m_beginChars->at(i + 1);
// If the current and the next size of value is different we should skip the merge process
// because the 16bit and 32bit values are unmergable.
if (curr->value <= 0xFFFF && next->value > 0xFFFF)
continue;
unsigned diff = curr->value ^ next->value;
curr->mask |= diff;
curr->value |= curr->mask;
m_beginChars->remove(i + 1);
size--;
}
}
private:
void addCharacter(BeginChar beginChar)
{
unsigned pos = 0;
unsigned range = m_beginChars->size();
// binary chop, find position to insert char.
while (range) {
unsigned index = range >> 1;
int val = m_beginChars->at(pos+index).value - beginChar.value;
if (!val)
return;
if (val < 0)
range = index;
else {
pos += (index+1);
range -= (index+1);
}
}
if (pos == m_beginChars->size())
m_beginChars->append(beginChar);
else
m_beginChars->insert(pos, beginChar);
}
// Create BeginChar objects by appending each terms from a hotTerms vector to an existing BeginChar object.
void linkHotTerms(BeginChar beginChar, Vector<TermChain>* hotTerms)
{
for (unsigned i = 0; i < hotTerms->size(); i++) {
PatternTerm hotTerm = hotTerms->at(i).term;
ASSERT(hotTerm.type == PatternTerm::TypePatternCharacter);
UChar characterNext = hotTerm.patternCharacter;
// Append a character to an existing BeginChar object.
if (characterNext <= 0x7f) {
unsigned mask = 0;
if (m_isCaseInsensitive && isASCIIAlpha(characterNext)) {
mask = 32;
characterNext = toASCIILower(characterNext);
}
addCharacter(BeginChar(beginChar.value | (characterNext << 16), beginChar.mask | (mask << 16)));
} else {
UChar upper, lower;
if (m_isCaseInsensitive && ((upper = Unicode::toUpper(characterNext)) != (lower = Unicode::toLower(characterNext)))) {
addCharacter(BeginChar(beginChar.value | (upper << 16), beginChar.mask));
addCharacter(BeginChar(beginChar.value | (lower << 16), beginChar.mask));
} else
addCharacter(BeginChar(beginChar.value | (characterNext << 16), beginChar.mask));
}
}
}
Vector<BeginChar>* m_beginChars;
bool m_isCaseInsensitive;
};
class YarrPatternConstructor {
public:
YarrPatternConstructor(YarrPattern& pattern)
: m_pattern(pattern)
, m_characterClassConstructor(pattern.m_ignoreCase)
, m_beginCharHelper(&pattern.m_beginChars, pattern.m_ignoreCase)
, m_invertParentheticalAssertion(false)
{
m_pattern.m_body = new PatternDisjunction();
m_alternative = m_pattern.m_body->addNewAlternative();
m_pattern.m_disjunctions.append(m_pattern.m_body);
}
~YarrPatternConstructor()
{
}
void reset()
{
m_pattern.reset();
m_characterClassConstructor.reset();
m_pattern.m_body = new PatternDisjunction();
m_alternative = m_pattern.m_body->addNewAlternative();
m_pattern.m_disjunctions.append(m_pattern.m_body);
}
void assertionBOL()
{
if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) {
m_alternative->m_startsWithBOL = true;
m_alternative->m_containsBOL = true;
m_pattern.m_containsBOL = true;
}
m_alternative->m_terms.append(PatternTerm::BOL());
}
void assertionEOL()
{
m_alternative->m_terms.append(PatternTerm::EOL());
}
void assertionWordBoundary(bool invert)
{
m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
}
void atomPatternCharacter(UChar ch)
{
// We handle case-insensitive checking of unicode characters which do have both
// cases by handling them as if they were defined using a CharacterClass.
if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) {
atomCharacterClassBegin();
atomCharacterClassAtom(ch);
atomCharacterClassEnd();
} else
m_alternative->m_terms.append(PatternTerm(ch));
}
void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
{
switch (classID) {
case DigitClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
break;
case SpaceClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
break;
case WordClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
break;
case NewlineClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
break;
}
}
void atomCharacterClassBegin(bool invert = false)
{
m_invertCharacterClass = invert;
}
void atomCharacterClassAtom(UChar ch)
{
m_characterClassConstructor.putChar(ch);
}
void atomCharacterClassRange(UChar begin, UChar end)
{
m_characterClassConstructor.putRange(begin, end);
}
void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
{
ASSERT(classID != NewlineClassID);
switch (classID) {
case DigitClassID:
m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
break;
case SpaceClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
break;
case WordClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
break;
default:
ASSERT_NOT_REACHED();
}
}
void atomCharacterClassEnd()
{
CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
m_pattern.m_userCharacterClasses.append(newCharacterClass);
m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
}
void atomParenthesesSubpatternBegin(bool capture = true)
{
unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
if (capture)
m_pattern.m_numSubpatterns++;
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture, false));
m_alternative = parenthesesDisjunction->addNewAlternative();
}
void atomParentheticalAssertionBegin(bool invert = false)
{
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, false, invert));
m_alternative = parenthesesDisjunction->addNewAlternative();
m_invertParentheticalAssertion = invert;
}
void atomParenthesesEnd()
{
ASSERT(m_alternative->m_parent);
ASSERT(m_alternative->m_parent->m_parent);
PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
m_alternative = m_alternative->m_parent->m_parent;
PatternTerm& lastTerm = m_alternative->lastTerm();
unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
unsigned numBOLAnchoredAlts = 0;
bool containsEmptyAlternative = false;
for (unsigned i = 0; i < numParenAlternatives; i++) {
if (!parenthesesDisjunction->m_alternatives[i]->m_terms.size() && numParenAlternatives > 1) {
PatternAlternative* altToRemove = parenthesesDisjunction->m_alternatives[i];
parenthesesDisjunction->m_alternatives.remove(i);
delete altToRemove;
--numParenAlternatives;
containsEmptyAlternative = true;
continue;
}
// Bubble up BOL flags
if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
numBOLAnchoredAlts++;
}
if (numBOLAnchoredAlts) {
m_alternative->m_containsBOL = true;
// If all the alternatives in parens start with BOL, then so does this one
if (numBOLAnchoredAlts == numParenAlternatives)
m_alternative->m_startsWithBOL = true;
}
lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
m_invertParentheticalAssertion = false;
if (containsEmptyAlternative) {
// Backup and remove the current disjunction's alternatives.
Vector<PatternAlternative*> alternatives;
alternatives.append(parenthesesDisjunction->m_alternatives);
parenthesesDisjunction->m_alternatives.clear();
PatternAlternative* alternative = parenthesesDisjunction->addNewAlternative();
// Insert a new non-capturing parentheses.
unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
PatternDisjunction* newDisjunction = new PatternDisjunction(alternative);
m_pattern.m_disjunctions.append(newDisjunction);
alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, newDisjunction, false, false));
newDisjunction->m_alternatives.append(alternatives);
// Set the quantifier of the new parentheses to '?' and set the inherited properties.
PatternTerm& disjunctionTerm = alternative->lastTerm();
disjunctionTerm.quantify(1, QuantifierGreedy);
disjunctionTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
alternative->m_containsBOL = m_alternative->m_containsBOL;
alternative->m_startsWithBOL = m_alternative->m_startsWithBOL;
}
}
void atomBackReference(unsigned subpatternId)
{
ASSERT(subpatternId);
m_pattern.m_containsBackreferences = true;
m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
if (subpatternId > m_pattern.m_numSubpatterns) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
PatternAlternative* currentAlternative = m_alternative;
ASSERT(currentAlternative);
// Note to self: if we waited until the AST was baked, we could also remove forwards refs
while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
PatternTerm& term = currentAlternative->lastTerm();
ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
}
m_alternative->m_terms.append(PatternTerm(subpatternId));
}
// deep copy the argument disjunction. If filterStartsWithBOL is true,
// skip alternatives with m_startsWithBOL set true.
PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
{
PatternDisjunction* newDisjunction = 0;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
if (!newDisjunction) {
newDisjunction = new PatternDisjunction();
newDisjunction->m_parent = disjunction->m_parent;
}
PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
}
}
if (newDisjunction)
m_pattern.m_disjunctions.append(newDisjunction);
return newDisjunction;
}
PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
{
if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
return PatternTerm(term);
PatternTerm termCopy = term;
termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
return termCopy;
}
void quantifyAtom(unsigned min, unsigned max, bool greedy)
{
ASSERT(min <= max);
ASSERT(m_alternative->m_terms.size());
if (!max) {
m_alternative->removeLastTerm();
return;
}
PatternTerm& term = m_alternative->lastTerm();
ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
// For any assertion with a zero minimum, not matching is valid and has no effect,
// remove it. Otherwise, we need to match as least once, but there is no point
// matching more than once, so remove the quantifier. It is not entirely clear
// from the spec whether or not this behavior is correct, but I believe this
// matches Firefox. :-/
if (term.type == PatternTerm::TypeParentheticalAssertion) {
if (!min)
m_alternative->removeLastTerm();
return;
}
if (min == 0)
term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
else if (min == max)
term.quantify(min, QuantifierFixedCount);
else {
term.quantify(min, QuantifierFixedCount);
m_alternative->m_terms.append(copyTerm(term));
// NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
m_alternative->lastTerm().parentheses.isCopy = true;
}
}
void disjunction()
{
m_alternative = m_alternative->m_parent->addNewAlternative();
}
unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
{
alternative->m_hasFixedSize = true;
unsigned currentInputPosition = initialInputPosition;
for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
PatternTerm& term = alternative->m_terms[i];
switch (term.type) {
case PatternTerm::TypeAssertionBOL:
case PatternTerm::TypeAssertionEOL:
case PatternTerm::TypeAssertionWordBoundary:
term.inputPosition = currentInputPosition;
break;
case PatternTerm::TypeBackReference:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeForwardReference:
break;
case PatternTerm::TypePatternCharacter:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeCharacterClass:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeParenthesesSubpattern:
// Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
term.frameLocation = currentCallFrameSize;
if (term.quantityCount == 1 && !term.parentheses.isCopy) {
if (term.quantityType != QuantifierFixedCount)
currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
// If quantity is fixed, then pre-check its minimum size.
if (term.quantityType == QuantifierFixedCount)
currentInputPosition += term.parentheses.disjunction->m_minimumSize;
term.inputPosition = currentInputPosition;
} else if (term.parentheses.isTerminal) {
currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
term.inputPosition = currentInputPosition;
} else {
term.inputPosition = currentInputPosition;
setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition);
currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
}
// Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeParentheticalAssertion:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition);
break;
}
}
alternative->m_minimumSize = currentInputPosition - initialInputPosition;
return currentCallFrameSize;
}
unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
{
if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;
unsigned minimumInputSize = UINT_MAX;
unsigned maximumCallFrameSize = 0;
bool hasFixedSize = true;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
minimumInputSize = min(minimumInputSize, alternative->m_minimumSize);
maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize);
hasFixedSize &= alternative->m_hasFixedSize;
}
ASSERT(minimumInputSize != UINT_MAX);
ASSERT(maximumCallFrameSize >= initialCallFrameSize);
disjunction->m_hasFixedSize = hasFixedSize;
disjunction->m_minimumSize = minimumInputSize;
disjunction->m_callFrameSize = maximumCallFrameSize;
return maximumCallFrameSize;
}
void setupOffsets()
{
setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
}
// This optimization identifies sets of parentheses that we will never need to backtrack.
// In these cases we do not need to store state from prior iterations.
// We can presently avoid backtracking for:
// * where the parens are at the end of the regular expression (last term in any of the
// alternatives of the main body disjunction).
// * where the parens are non-capturing, and quantified unbounded greedy (*).
// * where the parens do not contain any capturing subpatterns.
void checkForTerminalParentheses()
{
// This check is much too crude; should be just checking whether the candidate
// node contains nested capturing subpatterns, not the whole expression!
if (m_pattern.m_numSubpatterns)
return;
Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
for (size_t i = 0; i < alternatives.size(); ++i) {
Vector<PatternTerm>& terms = alternatives[i]->m_terms;
if (terms.size()) {
PatternTerm& term = terms.last();
if (term.type == PatternTerm::TypeParenthesesSubpattern
&& term.quantityType == QuantifierGreedy
&& term.quantityCount == quantifyInfinite
&& !term.capture())
term.parentheses.isTerminal = true;
}
}
}
void optimizeBOL()
{
// Look for expressions containing beginning of line (^) anchoring and unroll them.
// e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
// This code relies on the parsing code tagging alternatives with m_containsBOL and
// m_startsWithBOL and rolling those up to containing alternatives.
// At this point, this is only valid for non-multiline expressions.
PatternDisjunction* disjunction = m_pattern.m_body;
if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
return;
PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);
// Set alternatives in disjunction to "onceThrough"
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
disjunction->m_alternatives[alt]->setOnceThrough();
if (loopDisjunction) {
// Move alternatives from loopDisjunction to disjunction
for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt]);
loopDisjunction->m_alternatives.clear();
}
}
// This function collects the terms which are potentially matching the first number of depth characters in the result.
// If this function returns false then it found at least one term which makes the beginning character
// look-up optimization inefficient.
bool setupDisjunctionBeginTerms(PatternDisjunction* disjunction, Vector<TermChain>* beginTerms, unsigned depth)
{
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
if (!setupAlternativeBeginTerms(alternative, beginTerms, 0, depth))
return false;
}
return true;
}
bool setupAlternativeBeginTerms(PatternAlternative* alternative, Vector<TermChain>* beginTerms, unsigned termIndex, unsigned depth)
{
bool checkNext = true;
unsigned numTerms = alternative->m_terms.size();
while (checkNext && termIndex < numTerms) {
PatternTerm term = alternative->m_terms[termIndex];
checkNext = false;
switch (term.type) {
case PatternTerm::TypeAssertionBOL:
case PatternTerm::TypeAssertionEOL:
case PatternTerm::TypeAssertionWordBoundary:
return false;
case PatternTerm::TypeBackReference:
case PatternTerm::TypeForwardReference:
return false;
case PatternTerm::TypePatternCharacter:
if (termIndex != numTerms - 1) {
beginTerms->append(TermChain(term));
termIndex++;
checkNext = true;
} else if (term.quantityType == QuantifierFixedCount) {
beginTerms->append(TermChain(term));
if (depth < 2 && termIndex < numTerms - 1 && term.quantityCount == 1)
if (!setupAlternativeBeginTerms(alternative, &beginTerms->last().hotTerms, termIndex + 1, depth + 1))
return false;
}
break;
case PatternTerm::TypeCharacterClass:
return false;
case PatternTerm::TypeParentheticalAssertion:
if (term.invert())
return false;
case PatternTerm::TypeParenthesesSubpattern:
if (term.quantityType != QuantifierFixedCount) {
if (termIndex == numTerms - 1)
break;
termIndex++;
checkNext = true;
}
if (!setupDisjunctionBeginTerms(term.parentheses.disjunction, beginTerms, depth))
return false;
break;
}
}
return true;
}
void setupBeginChars()
{
Vector<TermChain> beginTerms;
bool containsFixedCharacter = false;
if ((!m_pattern.m_body->m_hasFixedSize || m_pattern.m_body->m_alternatives.size() > 1)
&& setupDisjunctionBeginTerms(m_pattern.m_body, &beginTerms, 0)) {
unsigned size = beginTerms.size();
// If we haven't collected any terms we should abort the preparation of beginning character look-up optimization.
if (!size)
return;
m_pattern.m_containsBeginChars = true;
for (unsigned i = 0; i < size; i++) {
PatternTerm term = beginTerms[i].term;
// We have just collected PatternCharacter terms, other terms are not allowed.
ASSERT(term.type == PatternTerm::TypePatternCharacter);
if (term.quantityType == QuantifierFixedCount)
containsFixedCharacter = true;
UChar character = term.patternCharacter;
unsigned mask = 0;
if (character <= 0x7f) {
if (m_pattern.m_ignoreCase && isASCIIAlpha(character)) {
mask = 32;
character = toASCIILower(character);
}
m_beginCharHelper.addBeginChar(BeginChar(character, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
} else {
UChar upper, lower;
if (m_pattern.m_ignoreCase && ((upper = Unicode::toUpper(character)) != (lower = Unicode::toLower(character)))) {
m_beginCharHelper.addBeginChar(BeginChar(upper, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
m_beginCharHelper.addBeginChar(BeginChar(lower, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
} else
m_beginCharHelper.addBeginChar(BeginChar(character, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
}
}
// If the pattern doesn't contain terms with fixed quantifiers then the beginning character look-up optimization is inefficient.
if (!containsFixedCharacter) {
m_pattern.m_containsBeginChars = false;
return;
}
size = m_pattern.m_beginChars.size();
if (size > 2)
m_beginCharHelper.merge(size - 1);
else if (size <= 1)
m_pattern.m_containsBeginChars = false;
}
}
private:
YarrPattern& m_pattern;
PatternAlternative* m_alternative;
CharacterClassConstructor m_characterClassConstructor;
BeginCharHelper m_beginCharHelper;
bool m_invertCharacterClass;
bool m_invertParentheticalAssertion;
};
const char* YarrPattern::compile(const UString& patternString)
{
YarrPatternConstructor constructor(*this);
if (const char* error = parse(constructor, patternString))
return error;
// If the pattern contains illegal backreferences reset & reparse.
// Quoting Netscape's "What's new in JavaScript 1.2",
// "Note: if the number of left parentheses is less than the number specified
// in \#, the \# is taken as an octal escape as described in the next row."
if (containsIllegalBackReference()) {
unsigned numSubpatterns = m_numSubpatterns;
constructor.reset();
#if !ASSERT_DISABLED
const char* error =
#endif
parse(constructor, patternString, numSubpatterns);
ASSERT(!error);
ASSERT(numSubpatterns == m_numSubpatterns);
}
constructor.checkForTerminalParentheses();
constructor.optimizeBOL();
constructor.setupOffsets();
constructor.setupBeginChars();
return 0;
}
YarrPattern::YarrPattern(const UString& pattern, bool ignoreCase, bool multiline, const char** error)
: m_ignoreCase(ignoreCase)
, m_multiline(multiline)
, m_containsBackreferences(false)
, m_containsBeginChars(false)
, m_containsBOL(false)
, m_numSubpatterns(0)
, m_maxBackReference(0)
, newlineCached(0)
, digitsCached(0)
, spacesCached(0)
, wordcharCached(0)
, nondigitsCached(0)
, nonspacesCached(0)
, nonwordcharCached(0)
{
*error = compile(pattern);
}
} }