blob: 1c43f7a4ba2fd3501969bb2af03e9c3526b063f4 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "bootstrapper.h"
#include "builtins.h"
#include "ic-inl.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Support macros for defining builtins in C.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
// BUILTIN_END
//
// In the body of the builtin function, the variable 'receiver' is visible.
// The arguments can be accessed through:
//
// BUILTIN_ARG(0): Receiver (also available as 'receiver')
// BUILTIN_ARG(1): First argument
// ...
// BUILTIN_ARG(n): Last argument
//
// and they evaluate to undefined values if too few arguments were
// passed to the builtin function invocation.
//
// __argc__ is the number of arguments including the receiver.
// ----------------------------------------------------------------------------
// TODO(1238487): We should consider passing whether or not the
// builtin was invoked as a constructor as part of the
// arguments. Maybe we also want to pass the called function?
#define BUILTIN(name) \
static Object* Builtin_##name(int __argc__, Object** __argv__) { \
Handle<Object> receiver(&__argv__[0]);
// Use an inline function to avoid evaluating the index (n) more than
// once in the BUILTIN_ARG macro.
static inline Object* __builtin_arg__(int n, int argc, Object** argv) {
ASSERT(n >= 0);
return (argc > n) ? argv[-n] : Heap::undefined_value();
}
// NOTE: Argument 0 is the receiver. The first 'real' argument is
// argument 1 - BUILTIN_ARG(1).
#define BUILTIN_ARG(n) (__builtin_arg__(n, __argc__, __argv__))
#define BUILTIN_END \
return Heap::undefined_value(); \
}
// TODO(1238487): Get rid of this function that determines if the
// builtin is called as a constructor. This may be a somewhat slow
// operation due to the stack frame iteration.
static inline bool CalledAsConstructor() {
StackFrameIterator it;
ASSERT(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
return frame->is_construct();
}
// ----------------------------------------------------------------------------
Handle<Code> Builtins::GetCode(JavaScript id, bool* resolved) {
Code* code = Builtins::builtin(Builtins::Illegal);
*resolved = false;
if (Top::context() != NULL) {
Object* object = Top::builtins()->javascript_builtin(id);
if (object->IsJSFunction()) {
Handle<JSFunction> function(JSFunction::cast(object));
// Make sure the number of parameters match the formal parameter count.
ASSERT(function->shared()->formal_parameter_count() ==
Builtins::GetArgumentsCount(id));
if (function->is_compiled() || CompileLazy(function, CLEAR_EXCEPTION)) {
code = function->code();
*resolved = true;
}
}
}
return Handle<Code>(code);
}
BUILTIN(Illegal) {
UNREACHABLE();
}
BUILTIN_END
BUILTIN(EmptyFunction) {
}
BUILTIN_END
BUILTIN(ArrayCode) {
JSArray* array;
if (CalledAsConstructor()) {
array = JSArray::cast(*receiver);
} else {
// Allocate the JS Array
JSFunction* constructor =
Top::context()->global_context()->array_function();
Object* obj = Heap::AllocateJSObject(constructor);
if (obj->IsFailure()) return obj;
array = JSArray::cast(obj);
}
// 'array' now contains the JSArray we should initialize.
// Optimize the case where there is one argument and the argument is a
// small smi.
if (__argc__ == 2) {
Object* obj = BUILTIN_ARG(1);
if (obj->IsSmi()) {
int len = Smi::cast(obj)->value();
if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) {
Object* obj = Heap::AllocateFixedArrayWithHoles(len);
if (obj->IsFailure()) return obj;
array->SetContent(FixedArray::cast(obj));
return array;
}
}
// Take the argument as the length.
obj = array->Initialize(0);
if (obj->IsFailure()) return obj;
if (__argc__ == 2) return array->SetElementsLength(BUILTIN_ARG(1));
}
// Optimize the case where there are no parameters passed.
if (__argc__ == 1) return array->Initialize(4);
// Take the arguments as elements.
int number_of_elements = __argc__ - 1;
Smi* len = Smi::FromInt(number_of_elements);
Object* obj = Heap::AllocateFixedArrayWithHoles(len->value());
if (obj->IsFailure()) return obj;
FixedArray* elms = FixedArray::cast(obj);
WriteBarrierMode mode = elms->GetWriteBarrierMode();
// Fill in the content
for (int index = 0; index < number_of_elements; index++) {
elms->set(index, BUILTIN_ARG(index+1), mode);
}
// Set length and elements on the array.
array->set_elements(FixedArray::cast(obj));
array->set_length(len, SKIP_WRITE_BARRIER);
return array;
}
BUILTIN_END
BUILTIN(ArrayPush) {
JSArray* array = JSArray::cast(*receiver);
ASSERT(array->HasFastElements());
// Make sure we have space for the elements.
int len = Smi::cast(array->length())->value();
// Set new length.
int new_length = len + __argc__ - 1;
FixedArray* elms = FixedArray::cast(array->elements());
if (new_length <= elms->length()) {
// Backing storage has extra space for the provided values.
for (int index = 0; index < __argc__ - 1; index++) {
elms->set(index + len, BUILTIN_ARG(index+1));
}
} else {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Object* obj = Heap::AllocateFixedArrayWithHoles(capacity);
if (obj->IsFailure()) return obj;
FixedArray* new_elms = FixedArray::cast(obj);
WriteBarrierMode mode = new_elms->GetWriteBarrierMode();
// Fill out the new array with old elements.
for (int i = 0; i < len; i++) new_elms->set(i, elms->get(i), mode);
// Add the provided values.
for (int index = 0; index < __argc__ - 1; index++) {
new_elms->set(index + len, BUILTIN_ARG(index+1), mode);
}
// Set the new backing storage.
array->set_elements(new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length), SKIP_WRITE_BARRIER);
return array->length();
}
BUILTIN_END
BUILTIN(ArrayPop) {
JSArray* array = JSArray::cast(*receiver);
ASSERT(array->HasFastElements());
Object* undefined = Heap::undefined_value();
int len = Smi::cast(array->length())->value();
if (len == 0) return undefined;
// Get top element
FixedArray* elms = FixedArray::cast(array->elements());
Object* top = elms->get(len - 1);
// Set the length.
array->set_length(Smi::FromInt(len - 1), SKIP_WRITE_BARRIER);
if (!top->IsTheHole()) {
// Delete the top element.
elms->set_the_hole(len - 1);
return top;
}
// Remember to check the prototype chain.
JSFunction* array_function =
Top::context()->global_context()->array_function();
JSObject* prototype = JSObject::cast(array_function->prototype());
top = prototype->GetElement(len - 1);
return top;
}
BUILTIN_END
// -----------------------------------------------------------------------------
//
// Returns the holder JSObject if the function can legally be called
// with this receiver. Returns Heap::null_value() if the call is
// illegal. Any arguments that don't fit the expected type is
// overwritten with undefined. Arguments that do fit the expected
// type is overwritten with the object in the prototype chain that
// actually has that type.
static inline Object* TypeCheck(int argc,
Object** argv,
FunctionTemplateInfo* info) {
Object* recv = argv[0];
Object* sig_obj = info->signature();
if (sig_obj->IsUndefined()) return recv;
SignatureInfo* sig = SignatureInfo::cast(sig_obj);
// If necessary, check the receiver
Object* recv_type = sig->receiver();
Object* holder = recv;
if (!recv_type->IsUndefined()) {
for (; holder != Heap::null_value(); holder = holder->GetPrototype()) {
if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) {
break;
}
}
if (holder == Heap::null_value()) return holder;
}
Object* args_obj = sig->args();
// If there is no argument signature we're done
if (args_obj->IsUndefined()) return holder;
FixedArray* args = FixedArray::cast(args_obj);
int length = args->length();
if (argc <= length) length = argc - 1;
for (int i = 0; i < length; i++) {
Object* argtype = args->get(i);
if (argtype->IsUndefined()) continue;
Object** arg = &argv[-1 - i];
Object* current = *arg;
for (; current != Heap::null_value(); current = current->GetPrototype()) {
if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) {
*arg = current;
break;
}
}
if (current == Heap::null_value()) *arg = Heap::undefined_value();
}
return holder;
}
BUILTIN(HandleApiCall) {
HandleScope scope;
bool is_construct = CalledAsConstructor();
// TODO(1238487): This is not nice. We need to get rid of this
// kludgy behavior and start handling API calls in a more direct
// way - maybe compile specialized stubs lazily?.
Handle<JSFunction> function =
Handle<JSFunction>(JSFunction::cast(Builtins::builtin_passed_function));
if (is_construct) {
Handle<FunctionTemplateInfo> desc =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(function->shared()->function_data()));
bool pending_exception = false;
Factory::ConfigureInstance(desc, Handle<JSObject>::cast(receiver),
&pending_exception);
ASSERT(Top::has_pending_exception() == pending_exception);
if (pending_exception) return Failure::Exception();
}
FunctionTemplateInfo* fun_data =
FunctionTemplateInfo::cast(function->shared()->function_data());
Object* raw_holder = TypeCheck(__argc__, __argv__, fun_data);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
Handle<Object> obj =
Factory::NewTypeError("illegal_invocation", HandleVector(&function, 1));
return Top::Throw(*obj);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::InvocationCallback callback =
v8::ToCData<v8::InvocationCallback>(callback_obj);
Object* data_obj = call_data->data();
Object* result;
v8::Local<v8::Object> self =
v8::Utils::ToLocal(Handle<JSObject>::cast(receiver));
Handle<Object> data_handle(data_obj);
v8::Local<v8::Value> data = v8::Utils::ToLocal(data_handle);
ASSERT(raw_holder->IsJSObject());
v8::Local<v8::Function> callee = v8::Utils::ToLocal(function);
Handle<JSObject> holder_handle(JSObject::cast(raw_holder));
v8::Local<v8::Object> holder = v8::Utils::ToLocal(holder_handle);
LOG(ApiObjectAccess("call", JSObject::cast(*receiver)));
v8::Arguments args = v8::ImplementationUtilities::NewArguments(
data,
holder,
callee,
is_construct,
reinterpret_cast<void**>(__argv__ - 1),
__argc__ - 1);
v8::Handle<v8::Value> value;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
value = callback(args);
}
if (value.IsEmpty()) {
result = Heap::undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
}
RETURN_IF_SCHEDULED_EXCEPTION();
if (!is_construct || result->IsJSObject()) return result;
}
return *receiver;
}
BUILTIN_END
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
static Object* HandleApiCallAsFunctionOrConstructor(bool is_construct_call,
int __argc__,
Object** __argv__) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
ASSERT(!CalledAsConstructor());
Handle<Object> receiver(&__argv__[0]);
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
ASSERT(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
Object* template_info = constructor->shared()->function_data();
Object* handler =
FunctionTemplateInfo::cast(template_info)->instance_call_handler();
ASSERT(!handler->IsUndefined());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::InvocationCallback callback =
v8::ToCData<v8::InvocationCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* data_obj = call_data->data();
Object* result;
{ HandleScope scope;
v8::Local<v8::Object> self =
v8::Utils::ToLocal(Handle<JSObject>::cast(receiver));
Handle<Object> data_handle(data_obj);
v8::Local<v8::Value> data = v8::Utils::ToLocal(data_handle);
Handle<JSFunction> callee_handle(constructor);
v8::Local<v8::Function> callee = v8::Utils::ToLocal(callee_handle);
LOG(ApiObjectAccess("call non-function", JSObject::cast(*receiver)));
v8::Arguments args = v8::ImplementationUtilities::NewArguments(
data,
self,
callee,
is_construct_call,
reinterpret_cast<void**>(__argv__ - 1),
__argc__ - 1);
v8::Handle<v8::Value> value;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
value = callback(args);
}
if (value.IsEmpty()) {
result = Heap::undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
}
}
// Check for exceptions and return result.
RETURN_IF_SCHEDULED_EXCEPTION();
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(false, __argc__, __argv__);
}
BUILTIN_END
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(true, __argc__, __argv__);
}
BUILTIN_END
// TODO(1238487): This is a nasty hack. We need to improve the way we
// call builtins considerable to get rid of this and the hairy macros
// in builtins.cc.
Object* Builtins::builtin_passed_function;
static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) {
LoadIC::GenerateArrayLength(masm);
}
static void Generate_LoadIC_StringLength(MacroAssembler* masm) {
LoadIC::GenerateStringLength(masm);
}
static void Generate_LoadIC_FunctionPrototype(MacroAssembler* masm) {
LoadIC::GenerateFunctionPrototype(masm);
}
static void Generate_LoadIC_Initialize(MacroAssembler* masm) {
LoadIC::GenerateInitialize(masm);
}
static void Generate_LoadIC_PreMonomorphic(MacroAssembler* masm) {
LoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Megamorphic(MacroAssembler* masm) {
LoadIC::GenerateMegamorphic(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
KeyedLoadIC::GenerateGeneric(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_Initialize(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_ExtendStorage(MacroAssembler* masm) {
StoreIC::GenerateExtendStorage(masm);
}
static void Generate_StoreIC_Megamorphic(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm);
}
static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm);
}
static void Generate_KeyedStoreIC_ExtendStorage(MacroAssembler* masm) {
KeyedStoreIC::GenerateExtendStorage(masm);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_ConstructCall_DebugBreak(MacroAssembler* masm) {
Debug::GenerateConstructCallDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreak(masm);
}
static void Generate_Return_DebugBreakEntry(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreakEntry(masm);
}
static void Generate_StubNoRegisters_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStubNoRegistersDebugBreak(masm);
}
#endif
Object* Builtins::builtins_[builtin_count] = { NULL, };
const char* Builtins::names_[builtin_count] = { NULL, };
#define DEF_ENUM_C(name) FUNCTION_ADDR(Builtin_##name),
Address Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
static bool is_initialized = false;
void Builtins::Setup(bool create_heap_objects) {
ASSERT(!is_initialized);
// Create a scope for the handles in the builtins.
HandleScope scope;
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
};
#define DEF_FUNCTION_PTR_C(name) \
{ FUNCTION_ADDR(Generate_Adaptor), \
FUNCTION_ADDR(Builtin_##name), \
#name, \
c_##name, \
Code::ComputeFlags(Code::BUILTIN) \
},
#define DEF_FUNCTION_PTR_A(name, kind, state) \
{ FUNCTION_ADDR(Generate_##name), \
NULL, \
#name, \
name, \
Code::ComputeFlags(Code::kind, NOT_IN_LOOP, state) \
},
// Define array of pointers to generators and C builtin functions.
static BuiltinDesc functions[] = {
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
// Terminator:
{ NULL, NULL, NULL, builtin_count, static_cast<Code::Flags>(0) }
};
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects.
byte buffer[4*KB];
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(buffer, sizeof buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
g(&masm, functions[i].name);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Object* code;
{
// During startup it's OK to always allocate and defer GC to later.
// This simplifies things because we don't need to retry.
AlwaysAllocateScope __scope__;
code = Heap::CreateCode(desc, NULL, flags, masm.CodeObject());
if (code->IsFailure()) {
v8::internal::V8::FatalProcessOutOfMemory("CreateCode");
}
}
// Add any unresolved jumps or calls to the fixup list in the
// bootstrapper.
Bootstrapper::AddFixup(Code::cast(code), &masm);
// Log the event and add the code to the builtins array.
LOG(CodeCreateEvent("Builtin", Code::cast(code), functions[i].s_name));
builtins_[i] = code;
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
PrintF("Builtin: %s\n", functions[i].s_name);
Code::cast(code)->Disassemble(functions[i].s_name);
PrintF("\n");
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
is_initialized = true;
}
void Builtins::TearDown() {
is_initialized = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
if (is_initialized) { // may be called during initialization (disassembler!)
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
} } // namespace v8::internal