blob: 5f9fe275884b5a997fadb88e76e218f430a60879 [file] [log] [blame]
/*
* Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Timer.h"
#include "SharedTimer.h"
#include "ThreadGlobalData.h"
#include "ThreadTimers.h"
#include <limits.h>
#include <limits>
#include <math.h>
#include <wtf/CurrentTime.h>
#include <wtf/HashSet.h>
#include <wtf/Vector.h>
using namespace std;
namespace WebCore {
// Timers are stored in a heap data structure, used to implement a priority queue.
// This allows us to efficiently determine which timer needs to fire the soonest.
// Then we set a single shared system timer to fire at that time.
//
// When a timer's "next fire time" changes, we need to move it around in the priority queue.
// Simple accessors to thread-specific data.
static Vector<TimerBase*>& timerHeap()
{
return threadGlobalData().threadTimers().timerHeap();
}
// Class to represent elements in the heap when calling the standard library heap algorithms.
// Maintains the m_heapIndex value in the timers themselves, which allows us to do efficient
// modification of the heap.
class TimerHeapElement {
public:
explicit TimerHeapElement(int i)
: m_index(i)
, m_timer(timerHeap()[m_index])
{
checkConsistency();
}
TimerHeapElement(const TimerHeapElement&);
TimerHeapElement& operator=(const TimerHeapElement&);
TimerBase* timer() const { return m_timer; }
void checkConsistency() const
{
ASSERT(m_index >= 0);
ASSERT(m_index < static_cast<int>(timerHeap().size()));
}
private:
TimerHeapElement();
int m_index;
TimerBase* m_timer;
};
inline TimerHeapElement::TimerHeapElement(const TimerHeapElement& o)
: m_index(-1), m_timer(o.timer())
{
}
inline TimerHeapElement& TimerHeapElement::operator=(const TimerHeapElement& o)
{
TimerBase* t = o.timer();
m_timer = t;
if (m_index != -1) {
checkConsistency();
timerHeap()[m_index] = t;
t->m_heapIndex = m_index;
}
return *this;
}
inline bool operator<(const TimerHeapElement& a, const TimerHeapElement& b)
{
// The comparisons below are "backwards" because the heap puts the largest
// element first and we want the lowest time to be the first one in the heap.
double aFireTime = a.timer()->m_nextFireTime;
double bFireTime = b.timer()->m_nextFireTime;
if (bFireTime != aFireTime)
return bFireTime < aFireTime;
// We need to look at the difference of the insertion orders instead of comparing the two
// outright in case of overflow.
unsigned difference = a.timer()->m_heapInsertionOrder - b.timer()->m_heapInsertionOrder;
return difference < UINT_MAX / 2;
}
// ----------------
// Class to represent iterators in the heap when calling the standard library heap algorithms.
// Returns TimerHeapElement for elements in the heap rather than the TimerBase pointers themselves.
class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerHeapElement, int> {
public:
TimerHeapIterator() : m_index(-1) { }
TimerHeapIterator(int i) : m_index(i) { checkConsistency(); }
TimerHeapIterator& operator++() { checkConsistency(); ++m_index; checkConsistency(); return *this; }
TimerHeapIterator operator++(int) { checkConsistency(); checkConsistency(1); return m_index++; }
TimerHeapIterator& operator--() { checkConsistency(); --m_index; checkConsistency(); return *this; }
TimerHeapIterator operator--(int) { checkConsistency(); checkConsistency(-1); return m_index--; }
TimerHeapIterator& operator+=(int i) { checkConsistency(); m_index += i; checkConsistency(); return *this; }
TimerHeapIterator& operator-=(int i) { checkConsistency(); m_index -= i; checkConsistency(); return *this; }
TimerHeapElement operator*() const { return TimerHeapElement(m_index); }
TimerHeapElement operator[](int i) const { return TimerHeapElement(m_index + i); }
int index() const { return m_index; }
void checkConsistency(int offset = 0) const
{
ASSERT_UNUSED(offset, m_index + offset >= 0);
ASSERT_UNUSED(offset, m_index + offset <= static_cast<int>(timerHeap().size()));
}
private:
int m_index;
};
inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.index() == b.index(); }
inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.index() != b.index(); }
inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.index() < b.index(); }
inline TimerHeapIterator operator+(TimerHeapIterator a, int b) { return a.index() + b; }
inline TimerHeapIterator operator+(int a, TimerHeapIterator b) { return a + b.index(); }
inline TimerHeapIterator operator-(TimerHeapIterator a, int b) { return a.index() - b; }
inline int operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.index() - b.index(); }
// ----------------
TimerBase::TimerBase()
: m_nextFireTime(0)
, m_repeatInterval(0)
, m_heapIndex(-1)
#ifndef NDEBUG
, m_thread(currentThread())
#endif
{
}
TimerBase::~TimerBase()
{
stop();
ASSERT(!inHeap());
}
void TimerBase::start(double nextFireInterval, double repeatInterval)
{
ASSERT(m_thread == currentThread());
m_repeatInterval = repeatInterval;
setNextFireTime(currentTime() + nextFireInterval);
}
void TimerBase::stop()
{
ASSERT(m_thread == currentThread());
m_repeatInterval = 0;
setNextFireTime(0);
ASSERT(m_nextFireTime == 0);
ASSERT(m_repeatInterval == 0);
ASSERT(!inHeap());
}
double TimerBase::nextFireInterval() const
{
ASSERT(isActive());
double current = currentTime();
if (m_nextFireTime < current)
return 0;
return m_nextFireTime - current;
}
inline void TimerBase::checkHeapIndex() const
{
ASSERT(!timerHeap().isEmpty());
ASSERT(m_heapIndex >= 0);
ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
ASSERT(timerHeap()[m_heapIndex] == this);
}
inline void TimerBase::checkConsistency() const
{
// Timers should be in the heap if and only if they have a non-zero next fire time.
ASSERT(inHeap() == (m_nextFireTime != 0));
if (inHeap())
checkHeapIndex();
}
void TimerBase::heapDecreaseKey()
{
ASSERT(m_nextFireTime != 0);
checkHeapIndex();
push_heap(TimerHeapIterator(0), TimerHeapIterator(m_heapIndex + 1));
checkHeapIndex();
}
inline void TimerBase::heapDelete()
{
ASSERT(m_nextFireTime == 0);
heapPop();
timerHeap().removeLast();
m_heapIndex = -1;
}
void TimerBase::heapDeleteMin()
{
ASSERT(m_nextFireTime == 0);
heapPopMin();
timerHeap().removeLast();
m_heapIndex = -1;
}
inline void TimerBase::heapIncreaseKey()
{
ASSERT(m_nextFireTime != 0);
heapPop();
heapDecreaseKey();
}
inline void TimerBase::heapInsert()
{
ASSERT(!inHeap());
timerHeap().append(this);
m_heapIndex = timerHeap().size() - 1;
heapDecreaseKey();
}
inline void TimerBase::heapPop()
{
// Temporarily force this timer to have the minimum key so we can pop it.
double fireTime = m_nextFireTime;
m_nextFireTime = -numeric_limits<double>::infinity();
heapDecreaseKey();
heapPopMin();
m_nextFireTime = fireTime;
}
void TimerBase::heapPopMin()
{
ASSERT(this == timerHeap().first());
checkHeapIndex();
pop_heap(TimerHeapIterator(0), TimerHeapIterator(timerHeap().size()));
checkHeapIndex();
ASSERT(this == timerHeap().last());
}
void TimerBase::setNextFireTime(double newTime)
{
ASSERT(m_thread == currentThread());
// Keep heap valid while changing the next-fire time.
double oldTime = m_nextFireTime;
if (oldTime != newTime) {
m_nextFireTime = newTime;
static unsigned currentHeapInsertionOrder;
m_heapInsertionOrder = currentHeapInsertionOrder++;
bool wasFirstTimerInHeap = m_heapIndex == 0;
if (oldTime == 0)
heapInsert();
else if (newTime == 0)
heapDelete();
else if (newTime < oldTime)
heapDecreaseKey();
else
heapIncreaseKey();
bool isFirstTimerInHeap = m_heapIndex == 0;
if (wasFirstTimerInHeap || isFirstTimerInHeap)
threadGlobalData().threadTimers().updateSharedTimer();
}
checkConsistency();
}
void TimerBase::fireTimersInNestedEventLoop()
{
// Redirect to ThreadTimers.
threadGlobalData().threadTimers().fireTimersInNestedEventLoop();
}
} // namespace WebCore