blob: 5b6b9b4a811bd82152b700145aa3983a6942b4ca [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#import "DragLatencyController.h"
#import <dispatch/dispatch.h>
#import <math.h>
#import <numeric>
#import <vector>
#import "UIAlertView+Extensions.h"
#import "WALTAppDelegate.h"
#import "WALTClient.h"
#import "WALTLogger.h"
#import "WALTTouch.h"
static const NSTimeInterval kGoalpostFrequency = 0.55; // TODO(pquinn): User-configurable settings.
static const NSUInteger kMinTouchEvents = 100;
static const NSUInteger kMinLaserEvents = 8;
static const char kWALTLaserTag = 'L';
@interface WALTLaserEvent : NSObject
@property (assign) NSTimeInterval t;
@property (assign) int value;
@end
@implementation WALTLaserEvent
@end
/** Linear interpolation between x0 and x1 at alpha. */
template <typename T>
static T Lerp(const T& x0, const T& x1, double alpha) {
NSCAssert(alpha >= 0 && alpha <= 1, @"alpha must be between 0 and 1 (%f)", alpha);
return ((1 - alpha) * x0) + (alpha * x1);
}
/** Linear interpolation of (xp, yp) at x. */
template <typename S, typename T>
static std::vector<T> Interpolate(const std::vector<S>& x,
const std::vector<S>& xp,
const std::vector<T>& yp) {
NSCAssert(xp.size(), @"xp must contain at least one value.");
NSCAssert(xp.size() == yp.size(), @"xp and yp must have matching lengths.");
std::vector<T> y;
y.reserve(x.size());
size_t i = 0; // Index into x.
for (; i < x.size() && x[i] < xp.front(); ++i) {
y.push_back(yp.front()); // Pad out y with yp.front() for x values before xp.front().
}
size_t ip = 0; // Index into xp/yp.
for (; ip < xp.size() && i < x.size(); ++i) {
while (ip < xp.size() && xp[ip] <= x[i]) { // Find an xp[ip] greater than x[i].
++ip;
}
if (ip >= xp.size()) {
break; // Ran out of values.
}
const double alpha = (x[i] - xp[ip - 1]) / static_cast<double>(xp[ip] - xp[ip - 1]);
y.push_back(Lerp(yp[ip - 1], yp[ip], alpha));
}
for (; i < x.size(); ++i) {
y.push_back(yp.back()); // Pad out y with yp.back() for values after xp.back().
}
return y;
}
/** Extracts the values of y where the corresponding value in x is equal to value. */
template <typename S, typename T>
static std::vector<S> Extract(const std::vector<T>& x, const std::vector<S>& y, const T& value) {
NSCAssert(x.size() == y.size(), @"x and y must have matching lengths.");
std::vector<S> extracted;
for (size_t i = 0; i < x.size(); ++i) {
if (x[i] == value) {
extracted.push_back(y[i]);
}
}
return extracted;
}
/** Returns the standard deviation of the values in x. */
template <typename T>
static T StandardDeviation(const std::vector<T>& x) {
NSCAssert(x.size() > 0, @"x must have at least one value.");
const T sum = std::accumulate(x.begin(), x.end(), T{});
const T mean = sum / x.size();
const T ss = std::accumulate(x.begin(), x.end(), T{}, ^(T accum, T value){
return accum + ((value - mean) * (value - mean));
});
return sqrt(ss / (x.size() - 1));
}
/** Returns the index of the smallest value in x. */
template <typename T>
static size_t ArgMin(const std::vector<T>& x) {
NSCAssert(x.size() > 0, @"x must have at least one value.");
size_t imin = 0;
for (size_t i = 1; i < x.size(); ++i) {
if (x[i] < x[imin]) {
imin = i;
}
}
return imin;
}
/**
* Finds a positive time value that shifting laserTs by will minimise the standard deviation of
* interpolated touchYs.
*/
static NSTimeInterval FindBestShift(const std::vector<NSTimeInterval>& laserTs,
const std::vector<NSTimeInterval>& touchTs,
const std::vector<CGFloat>& touchYs) {
NSCAssert(laserTs.size() > 0, @"laserTs must have at least one value.");
NSCAssert(touchTs.size() == touchYs.size(), @"touchTs and touchYs must have matching lengths.");
const NSTimeInterval kSearchCoverage = 0.15;
const int kSteps = 1500;
const NSTimeInterval kShiftStep = kSearchCoverage / kSteps;
std::vector<NSTimeInterval> deviations;
deviations.reserve(kSteps);
std::vector<NSTimeInterval> ts(laserTs.size());
for (int i = 0; i < kSteps; ++i) {
for (size_t j = 0; j < laserTs.size(); ++j) {
ts[j] = laserTs[j] + (kShiftStep * i);
}
std::vector<CGFloat> laserYs = Interpolate(ts, touchTs, touchYs);
deviations.push_back(StandardDeviation(laserYs));
}
return ArgMin(deviations) * kShiftStep;
}
@interface DragLatencyController ()
- (void)updateCountDisplay;
- (void)processEvent:(UIEvent *)event;
- (void)receiveTriggers:(id)context;
- (void)stopReceiver;
@end
@implementation DragLatencyController {
WALTClient *_client;
WALTLogger *_logger;
NSMutableArray<WALTTouch *> *_touchEvents;
NSMutableArray<WALTLaserEvent *> *_laserEvents;
NSThread *_triggerReceiver;
dispatch_semaphore_t _receiverComplete;
}
- (void)dealloc {
[self stopReceiver];
}
- (void)viewDidLoad {
[super viewDidLoad];
_client = ((WALTAppDelegate *)[UIApplication sharedApplication].delegate).client;
_logger = [WALTLogger sessionLogger];
}
- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
[self updateCountDisplay];
[_logger appendString:@"DRAGLATENCY\n"];
}
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
[self processEvent:event];
}
- (void)touchesMoved:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
[self processEvent:event];
}
- (void)touchesEnded:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
[self processEvent:event];
}
- (void)processEvent:(UIEvent *)event {
// TODO(pquinn): Pull out coalesced touches.
WALTTouch *touch = [[WALTTouch alloc] initWithEvent:event];
[_touchEvents addObject:touch];
[_logger appendFormat:@"TOUCH\t%.3f\t%.2f\t%.2f\n",
touch.kernelTime, touch.location.x, touch.location.y];
[self updateCountDisplay];
}
- (void)updateCountDisplay {
NSString *counts = [NSString stringWithFormat:@"N ✛ %lu ⇄ %lu",
(unsigned long)_laserEvents.count, (unsigned long)_touchEvents.count];
self.countLabel.text = counts;
}
- (IBAction)start:(id)sender {
[self reset:sender];
self.goalpostView.hidden = NO;
self.statusLabel.text = @"";
[UIView beginAnimations:@"Goalpost" context:NULL];
[UIView setAnimationDuration:kGoalpostFrequency];
[UIView setAnimationBeginsFromCurrentState:NO];
[UIView setAnimationRepeatCount:FLT_MAX];
[UIView setAnimationRepeatAutoreverses:YES];
self.goalpostView.transform =
CGAffineTransformMakeTranslation(0.0, -CGRectGetHeight(self.view.frame) + 300);
[UIView commitAnimations];
_receiverComplete = dispatch_semaphore_create(0);
_triggerReceiver = [[NSThread alloc] initWithTarget:self
selector:@selector(receiveTriggers:)
object:nil];
[_triggerReceiver start];
}
- (IBAction)reset:(id)sender {
[self stopReceiver];
self.goalpostView.transform = CGAffineTransformMakeTranslation(0.0, 0.0);
self.goalpostView.hidden = YES;
_touchEvents = [[NSMutableArray<WALTTouch *> alloc] init];
_laserEvents = [[NSMutableArray<WALTLaserEvent *> alloc] init];
[self updateCountDisplay];
NSError *error = nil;
if (![_client syncClocksWithError:&error]) {
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"WALT Connection Error" error:error];
[alert show];
}
[_logger appendString:@"RESET\n"];
}
- (void)receiveTriggers:(id)context {
// Turn on laser change notifications.
NSError *error = nil;
if (![_client sendCommand:WALTLaserOnCommand error:&error]) {
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"WALT Connection Error" error:error];
[alert show];
dispatch_semaphore_signal(_receiverComplete);
return;
}
NSData *response = [_client readResponseWithTimeout:kWALTReadTimeout];
if (![_client checkResponse:response forCommand:WALTLaserOnCommand]) {
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"WALT Response Error"
message:@"Failed to start laser probe."
delegate:nil
cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];
[alert show];
dispatch_semaphore_signal(_receiverComplete);
return;
}
while (!NSThread.currentThread.isCancelled) {
WALTTrigger response = [_client readTriggerWithTimeout:kWALTReadTimeout];
if (response.tag == kWALTLaserTag) {
WALTLaserEvent *event = [[WALTLaserEvent alloc] init];
event.t = response.t;
event.value = response.value;
[_laserEvents addObject:event];
[_logger appendFormat:@"LASER\t%.3f\t%d\n", event.t, event.value];
} else if (response.tag != '\0') { // Don't fail for timeout errors.
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"WALT Response Error"
message:@"Failed to read laser probe."
delegate:nil
cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];
[alert show];
}
}
// Turn off laser change notifications.
[_client sendCommand:WALTLaserOffCommand error:nil];
[_client readResponseWithTimeout:kWALTReadTimeout];
dispatch_semaphore_signal(_receiverComplete);
}
- (void)stopReceiver {
// TODO(pquinn): This will deadlock if called in rapid succession -- there is a small delay
// between dispatch_semaphore_signal() and -[NSThread isExecuting] changing.
// Unfortunately, NSThread is not joinable...
if (_triggerReceiver.isExecuting) {
[_triggerReceiver cancel];
dispatch_semaphore_wait(_receiverComplete, DISPATCH_TIME_FOREVER);
}
}
- (IBAction)computeStatistics:(id)sender {
if (_touchEvents.count < kMinTouchEvents) {
self.statusLabel.text =
[NSString stringWithFormat:@"Too few touch events (%lu/%lu).",
(unsigned long)_touchEvents.count, (unsigned long)kMinTouchEvents];
[self reset:sender];
return;
}
// Timestamps are reset to be relative to t0 to make the output easier to read.
const NSTimeInterval t0 = _touchEvents.firstObject.kernelTime;
const NSTimeInterval tF = _touchEvents.lastObject.kernelTime;
std::vector<NSTimeInterval> ft(_touchEvents.count);
std::vector<CGFloat> fy(_touchEvents.count);
for (NSUInteger i = 0; i < _touchEvents.count; ++i) {
ft[i] = _touchEvents[i].kernelTime - t0;
fy[i] = _touchEvents[i].location.y;
}
// Remove laser events that have a timestamp outside [t0, tF].
[_laserEvents filterUsingPredicate:[NSPredicate predicateWithBlock:
^BOOL(WALTLaserEvent *evaluatedObject, NSDictionary<NSString *, id> *bindings) {
return evaluatedObject.t >= t0 && evaluatedObject.t <= tF;
}]];
if (_laserEvents.count < kMinLaserEvents) {
self.statusLabel.text =
[NSString stringWithFormat:@"Too few laser events (%lu/%lu).",
(unsigned long)_laserEvents.count, (unsigned long)kMinLaserEvents];
[self reset:sender];
return;
}
if (_laserEvents.firstObject.value != 0) {
self.statusLabel.text = @"First laser crossing was not into the beam.";
[self reset:sender];
return;
}
std::vector<NSTimeInterval> lt(_laserEvents.count);
std::vector<int> lv(_laserEvents.count);
for (NSUInteger i = 0; i < _laserEvents.count; ++i) {
lt[i] = _laserEvents[i].t - t0;
lv[i] = _laserEvents[i].value;
}
// Calculate interpolated touch y positions at each laser event.
std::vector<CGFloat> ly = Interpolate(lt, ft, fy);
// Labels for each laser event to denote those above/below the beam.
// The actual side is irrelevant, but events on the same side should have the same label. The
// vector will look like [0, 1, 1, 0, 0, 1, 1, 0, 0, ...].
std::vector<int> sideLabels(lt.size());
for (size_t i = 0; i < lt.size(); ++i) {
sideLabels[i] = ((i + 1) / 2) % 2;
}
NSTimeInterval averageBestShift = 0;
for (int side = 0; side < 2; ++side) {
std::vector<NSTimeInterval> lts = Extract(sideLabels, lt, side);
NSTimeInterval bestShift = FindBestShift(lts, ft, fy);
averageBestShift += bestShift / 2;
}
self.statusLabel.text = [NSString stringWithFormat:@"%.3f s", averageBestShift];
[self reset:sender];
}
@end