blob: b8effcf5a158adec29e4717069ee81399e62ed65 [file] [log] [blame]
/* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
* Copyright (C) 2015-2016 Google Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and/or associated documentation files (the "Materials"), to
* deal in the Materials without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Materials, and to permit persons to whom the Materials
* are furnished to do so, subject to the following conditions:
*
* The above copyright notice(s) and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
*
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE
* USE OR OTHER DEALINGS IN THE MATERIALS
*
* Author: Tobin Ehlis <tobine@google.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "vulkan/vulkan.h"
#include "vk_loader_platform.h"
#include <vector>
#include <unordered_map>
#include "vulkan/vk_layer.h"
#include "vk_layer_config.h"
#include "vk_layer_table.h"
#include "vk_layer_data.h"
#include "vk_layer_logging.h"
#include "vk_layer_extension_utils.h"
#include "vk_safe_struct.h"
#include "vk_layer_utils.h"
struct layer_data {
bool wsi_enabled;
layer_data() : wsi_enabled(false){};
};
struct instExts {
bool wsi_enabled;
bool xlib_enabled;
bool xcb_enabled;
bool wayland_enabled;
bool mir_enabled;
bool android_enabled;
bool win32_enabled;
};
static std::unordered_map<void *, struct instExts> instanceExtMap;
static std::unordered_map<void *, layer_data *> layer_data_map;
static device_table_map unique_objects_device_table_map;
static instance_table_map unique_objects_instance_table_map;
// Structure to wrap returned non-dispatchable objects to guarantee they have unique handles
// address of struct will be used as the unique handle
struct VkUniqueObject {
uint64_t actualObject;
};
// Handle CreateInstance
static void createInstanceRegisterExtensions(const VkInstanceCreateInfo *pCreateInfo, VkInstance instance) {
uint32_t i;
VkLayerInstanceDispatchTable *pDisp = get_dispatch_table(unique_objects_instance_table_map, instance);
PFN_vkGetInstanceProcAddr gpa = pDisp->GetInstanceProcAddr;
pDisp->DestroySurfaceKHR = (PFN_vkDestroySurfaceKHR)gpa(instance, "vkDestroySurfaceKHR");
pDisp->GetPhysicalDeviceSurfaceSupportKHR =
(PFN_vkGetPhysicalDeviceSurfaceSupportKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceSupportKHR");
pDisp->GetPhysicalDeviceSurfaceCapabilitiesKHR =
(PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR");
pDisp->GetPhysicalDeviceSurfaceFormatsKHR =
(PFN_vkGetPhysicalDeviceSurfaceFormatsKHR)gpa(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR");
pDisp->GetPhysicalDeviceSurfacePresentModesKHR =
(PFN_vkGetPhysicalDeviceSurfacePresentModesKHR)gpa(instance, "vkGetPhysicalDeviceSurfacePresentModesKHR");
#ifdef VK_USE_PLATFORM_WIN32_KHR
pDisp->CreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)gpa(instance, "vkCreateWin32SurfaceKHR");
pDisp->GetPhysicalDeviceWin32PresentationSupportKHR =
(PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceWin32PresentationSupportKHR");
#endif // VK_USE_PLATFORM_WIN32_KHR
#ifdef VK_USE_PLATFORM_XCB_KHR
pDisp->CreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR)gpa(instance, "vkCreateXcbSurfaceKHR");
pDisp->GetPhysicalDeviceXcbPresentationSupportKHR =
(PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceXcbPresentationSupportKHR");
#endif // VK_USE_PLATFORM_XCB_KHR
#ifdef VK_USE_PLATFORM_XLIB_KHR
pDisp->CreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR)gpa(instance, "vkCreateXlibSurfaceKHR");
pDisp->GetPhysicalDeviceXlibPresentationSupportKHR =
(PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceXlibPresentationSupportKHR");
#endif // VK_USE_PLATFORM_XLIB_KHR
#ifdef VK_USE_PLATFORM_MIR_KHR
pDisp->CreateMirSurfaceKHR = (PFN_vkCreateMirSurfaceKHR)gpa(instance, "vkCreateMirSurfaceKHR");
pDisp->GetPhysicalDeviceMirPresentationSupportKHR =
(PFN_vkGetPhysicalDeviceMirPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceMirPresentationSupportKHR");
#endif // VK_USE_PLATFORM_MIR_KHR
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
pDisp->CreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR)gpa(instance, "vkCreateWaylandSurfaceKHR");
pDisp->GetPhysicalDeviceWaylandPresentationSupportKHR =
(PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR)gpa(instance, "vkGetPhysicalDeviceWaylandPresentationSupportKHR");
#endif // VK_USE_PLATFORM_WAYLAND_KHR
#ifdef VK_USE_PLATFORM_ANDROID_KHR
pDisp->CreateAndroidSurfaceKHR = (PFN_vkCreateAndroidSurfaceKHR)gpa(instance, "vkCreateAndroidSurfaceKHR");
#endif // VK_USE_PLATFORM_ANDROID_KHR
instanceExtMap[pDisp] = {};
for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].wsi_enabled = true;
#ifdef VK_USE_PLATFORM_XLIB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XLIB_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].xlib_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XCB_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].xcb_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].wayland_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_MIR_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_MIR_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].mir_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_ANDROID_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].android_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WIN32_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].win32_enabled = true;
#endif
}
}
VkResult explicit_CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkInstance *pInstance) {
VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) {
return result;
}
initInstanceTable(*pInstance, fpGetInstanceProcAddr, unique_objects_instance_table_map);
createInstanceRegisterExtensions(pCreateInfo, *pInstance);
return result;
}
// Handle CreateDevice
static void createDeviceRegisterExtensions(const VkDeviceCreateInfo *pCreateInfo, VkDevice device) {
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkLayerDispatchTable *pDisp = get_dispatch_table(unique_objects_device_table_map, device);
PFN_vkGetDeviceProcAddr gpa = pDisp->GetDeviceProcAddr;
pDisp->CreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)gpa(device, "vkCreateSwapchainKHR");
pDisp->DestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)gpa(device, "vkDestroySwapchainKHR");
pDisp->GetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)gpa(device, "vkGetSwapchainImagesKHR");
pDisp->AcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)gpa(device, "vkAcquireNextImageKHR");
pDisp->QueuePresentKHR = (PFN_vkQueuePresentKHR)gpa(device, "vkQueuePresentKHR");
my_device_data->wsi_enabled = false;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0)
my_device_data->wsi_enabled = true;
}
}
VkResult explicit_CreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkDevice *pDevice) {
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (result != VK_SUCCESS) {
return result;
}
// Setup layer's device dispatch table
initDeviceTable(*pDevice, fpGetDeviceProcAddr, unique_objects_device_table_map);
createDeviceRegisterExtensions(pCreateInfo, *pDevice);
return result;
}
VkResult explicit_QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
// UNWRAP USES:
// 0 : fence,VkFence
if (VK_NULL_HANDLE != fence) {
fence = (VkFence)((VkUniqueObject *)fence)->actualObject;
}
// waitSemaphoreCount : pSubmits[submitCount]->pWaitSemaphores,VkSemaphore
std::vector<VkSemaphore> original_pWaitSemaphores = {};
// signalSemaphoreCount : pSubmits[submitCount]->pSignalSemaphores,VkSemaphore
std::vector<VkSemaphore> original_pSignalSemaphores = {};
if (pSubmits) {
for (uint32_t index0 = 0; index0 < submitCount; ++index0) {
if (pSubmits[index0].pWaitSemaphores) {
for (uint32_t index1 = 0; index1 < pSubmits[index0].waitSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pSubmits[index0].pWaitSemaphores);
original_pWaitSemaphores.push_back(pSubmits[index0].pWaitSemaphores[index1]);
*(ppSemaphore[index1]) =
(VkSemaphore)((VkUniqueObject *)pSubmits[index0].pWaitSemaphores[index1])->actualObject;
}
}
if (pSubmits[index0].pSignalSemaphores) {
for (uint32_t index1 = 0; index1 < pSubmits[index0].signalSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pSubmits[index0].pSignalSemaphores);
original_pSignalSemaphores.push_back(pSubmits[index0].pSignalSemaphores[index1]);
*(ppSemaphore[index1]) =
(VkSemaphore)((VkUniqueObject *)pSubmits[index0].pSignalSemaphores[index1])->actualObject;
}
}
}
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, queue)->QueueSubmit(queue, submitCount, pSubmits, fence);
if (pSubmits) {
for (uint32_t index0 = 0; index0 < submitCount; ++index0) {
if (pSubmits[index0].pWaitSemaphores) {
for (uint32_t index1 = 0; index1 < pSubmits[index0].waitSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pSubmits[index0].pWaitSemaphores);
*(ppSemaphore[index1]) = original_pWaitSemaphores[index1];
}
}
if (pSubmits[index0].pSignalSemaphores) {
for (uint32_t index1 = 0; index1 < pSubmits[index0].signalSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pSubmits[index0].pSignalSemaphores);
*(ppSemaphore[index1]) = original_pSignalSemaphores[index1];
}
}
}
}
return result;
}
VkResult explicit_QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo, VkFence fence) {
// UNWRAP USES:
// 0 : pBindInfo[bindInfoCount]->pBufferBinds[bufferBindCount]->buffer,VkBuffer,
// pBindInfo[bindInfoCount]->pBufferBinds[bufferBindCount]->pBinds[bindCount]->memory,VkDeviceMemory,
// pBindInfo[bindInfoCount]->pImageOpaqueBinds[imageOpaqueBindCount]->image,VkImage,
// pBindInfo[bindInfoCount]->pImageOpaqueBinds[imageOpaqueBindCount]->pBinds[bindCount]->memory,VkDeviceMemory,
// pBindInfo[bindInfoCount]->pImageBinds[imageBindCount]->image,VkImage,
// pBindInfo[bindInfoCount]->pImageBinds[imageBindCount]->pBinds[bindCount]->memory,VkDeviceMemory
std::vector<VkBuffer> original_buffer = {};
std::vector<VkDeviceMemory> original_memory1 = {};
std::vector<VkImage> original_image1 = {};
std::vector<VkDeviceMemory> original_memory2 = {};
std::vector<VkImage> original_image2 = {};
std::vector<VkDeviceMemory> original_memory3 = {};
std::vector<VkSemaphore> original_pWaitSemaphores = {};
std::vector<VkSemaphore> original_pSignalSemaphores = {};
if (pBindInfo) {
for (uint32_t index0 = 0; index0 < bindInfoCount; ++index0) {
if (pBindInfo[index0].pBufferBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].bufferBindCount; ++index1) {
if (pBindInfo[index0].pBufferBinds[index1].buffer) {
VkBuffer *pBuffer = (VkBuffer *)&(pBindInfo[index0].pBufferBinds[index1].buffer);
original_buffer.push_back(pBindInfo[index0].pBufferBinds[index1].buffer);
*(pBuffer) = (VkBuffer)((VkUniqueObject *)pBindInfo[index0].pBufferBinds[index1].buffer)->actualObject;
}
if (pBindInfo[index0].pBufferBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pBufferBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
original_memory1.push_back(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) =
(VkDeviceMemory)((VkUniqueObject *)pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory)
->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pImageOpaqueBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].imageOpaqueBindCount; ++index1) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].image) {
VkImage *pImage = (VkImage *)&(pBindInfo[index0].pImageOpaqueBinds[index1].image);
original_image1.push_back(pBindInfo[index0].pImageOpaqueBinds[index1].image);
*(pImage) = (VkImage)((VkUniqueObject *)pBindInfo[index0].pImageOpaqueBinds[index1].image)->actualObject;
}
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pImageOpaqueBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
original_memory2.push_back(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) =
(VkDeviceMemory)(
(VkUniqueObject *)pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory)
->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pImageBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].imageBindCount; ++index1) {
if (pBindInfo[index0].pImageBinds[index1].image) {
VkImage *pImage = (VkImage *)&(pBindInfo[index0].pImageBinds[index1].image);
original_image2.push_back(pBindInfo[index0].pImageBinds[index1].image);
*(pImage) = (VkImage)((VkUniqueObject *)pBindInfo[index0].pImageBinds[index1].image)->actualObject;
}
if (pBindInfo[index0].pImageBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pImageBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
original_memory3.push_back(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) =
(VkDeviceMemory)((VkUniqueObject *)pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory)
->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pWaitSemaphores) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].waitSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pBindInfo[index0].pWaitSemaphores);
original_pWaitSemaphores.push_back(pBindInfo[index0].pWaitSemaphores[index1]);
*(ppSemaphore[index1]) =
(VkSemaphore)((VkUniqueObject *)pBindInfo[index0].pWaitSemaphores[index1])->actualObject;
}
}
if (pBindInfo[index0].pSignalSemaphores) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].signalSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pBindInfo[index0].pSignalSemaphores);
original_pSignalSemaphores.push_back(pBindInfo[index0].pSignalSemaphores[index1]);
*(ppSemaphore[index1]) =
(VkSemaphore)((VkUniqueObject *)pBindInfo[index0].pSignalSemaphores[index1])->actualObject;
}
}
}
}
if (VK_NULL_HANDLE != fence) {
fence = (VkFence)((VkUniqueObject *)fence)->actualObject;
}
VkResult result =
get_dispatch_table(unique_objects_device_table_map, queue)->QueueBindSparse(queue, bindInfoCount, pBindInfo, fence);
if (pBindInfo) {
for (uint32_t index0 = 0; index0 < bindInfoCount; ++index0) {
if (pBindInfo[index0].pBufferBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].bufferBindCount; ++index1) {
if (pBindInfo[index0].pBufferBinds[index1].buffer) {
VkBuffer *pBuffer = (VkBuffer *)&(pBindInfo[index0].pBufferBinds[index1].buffer);
*(pBuffer) = original_buffer[index1];
}
if (pBindInfo[index0].pBufferBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pBufferBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory1[index2];
}
}
}
}
}
if (pBindInfo[index0].pImageOpaqueBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].imageOpaqueBindCount; ++index1) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].image) {
VkImage *pImage = (VkImage *)&(pBindInfo[index0].pImageOpaqueBinds[index1].image);
*(pImage) = original_image1[index1];
}
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pImageOpaqueBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory2[index2];
}
}
}
}
}
if (pBindInfo[index0].pImageBinds) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].imageBindCount; ++index1) {
if (pBindInfo[index0].pImageBinds[index1].image) {
VkImage *pImage = (VkImage *)&(pBindInfo[index0].pImageBinds[index1].image);
*(pImage) = original_image2[index1];
}
if (pBindInfo[index0].pImageBinds[index1].pBinds) {
for (uint32_t index2 = 0; index2 < pBindInfo[index0].pImageBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory) {
VkDeviceMemory *pDeviceMemory =
(VkDeviceMemory *)&(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory3[index2];
}
}
}
}
}
if (pBindInfo[index0].pWaitSemaphores) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].waitSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pBindInfo[index0].pWaitSemaphores);
*(ppSemaphore[index1]) = original_pWaitSemaphores[index1];
}
}
if (pBindInfo[index0].pSignalSemaphores) {
for (uint32_t index1 = 0; index1 < pBindInfo[index0].signalSemaphoreCount; ++index1) {
VkSemaphore **ppSemaphore = (VkSemaphore **)&(pBindInfo[index0].pSignalSemaphores);
*(ppSemaphore[index1]) = original_pSignalSemaphores[index1];
}
}
}
}
return result;
}
VkResult explicit_CreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
// STRUCT USES:{'pipelineCache': 'VkPipelineCache', 'pCreateInfos[createInfoCount]': {'stage': {'module': 'VkShaderModule'},
// 'layout': 'VkPipelineLayout', 'basePipelineHandle': 'VkPipeline'}}
// LOCAL DECLS:{'pCreateInfos': 'VkComputePipelineCreateInfo*'}
safe_VkComputePipelineCreateInfo *local_pCreateInfos = NULL;
if (pCreateInfos) {
local_pCreateInfos = new safe_VkComputePipelineCreateInfo[createInfoCount];
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle =
(VkPipeline)((VkUniqueObject *)pCreateInfos[idx0].basePipelineHandle)->actualObject;
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout = (VkPipelineLayout)((VkUniqueObject *)pCreateInfos[idx0].layout)->actualObject;
}
if (pCreateInfos[idx0].stage.module) {
local_pCreateInfos[idx0].stage.module =
(VkShaderModule)((VkUniqueObject *)pCreateInfos[idx0].stage.module)->actualObject;
}
}
}
if (pipelineCache) {
pipelineCache = (VkPipelineCache)((VkUniqueObject *)pipelineCache)->actualObject;
}
// CODEGEN : file /usr/local/google/home/tobine/vulkan_work/LoaderAndTools/vk-layer-generate.py line #1671
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->CreateComputePipelines(device, pipelineCache, createInfoCount,
(const VkComputePipelineCreateInfo *)local_pCreateInfos, pAllocator, pPipelines);
delete[] local_pCreateInfos;
if (VK_SUCCESS == result) {
VkUniqueObject *pUO = NULL;
for (uint32_t i = 0; i < createInfoCount; ++i) {
pUO = new VkUniqueObject();
pUO->actualObject = (uint64_t)pPipelines[i];
pPipelines[i] = (VkPipeline)pUO;
}
}
return result;
}
VkResult explicit_CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
// STRUCT USES:{'pipelineCache': 'VkPipelineCache', 'pCreateInfos[createInfoCount]': {'layout': 'VkPipelineLayout',
// 'pStages[stageCount]': {'module': 'VkShaderModule'}, 'renderPass': 'VkRenderPass', 'basePipelineHandle': 'VkPipeline'}}
// LOCAL DECLS:{'pCreateInfos': 'VkGraphicsPipelineCreateInfo*'}
safe_VkGraphicsPipelineCreateInfo *local_pCreateInfos = NULL;
if (pCreateInfos) {
local_pCreateInfos = new safe_VkGraphicsPipelineCreateInfo[createInfoCount];
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle =
(VkPipeline)((VkUniqueObject *)pCreateInfos[idx0].basePipelineHandle)->actualObject;
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout = (VkPipelineLayout)((VkUniqueObject *)pCreateInfos[idx0].layout)->actualObject;
}
if (pCreateInfos[idx0].pStages) {
for (uint32_t idx1 = 0; idx1 < pCreateInfos[idx0].stageCount; ++idx1) {
if (pCreateInfos[idx0].pStages[idx1].module) {
local_pCreateInfos[idx0].pStages[idx1].module =
(VkShaderModule)((VkUniqueObject *)pCreateInfos[idx0].pStages[idx1].module)->actualObject;
}
}
}
if (pCreateInfos[idx0].renderPass) {
local_pCreateInfos[idx0].renderPass = (VkRenderPass)((VkUniqueObject *)pCreateInfos[idx0].renderPass)->actualObject;
}
}
}
if (pipelineCache) {
pipelineCache = (VkPipelineCache)((VkUniqueObject *)pipelineCache)->actualObject;
}
// CODEGEN : file /usr/local/google/home/tobine/vulkan_work/LoaderAndTools/vk-layer-generate.py line #1671
VkResult result =
get_dispatch_table(unique_objects_device_table_map, device)
->CreateGraphicsPipelines(device, pipelineCache, createInfoCount,
(const VkGraphicsPipelineCreateInfo *)local_pCreateInfos, pAllocator, pPipelines);
delete[] local_pCreateInfos;
if (VK_SUCCESS == result) {
VkUniqueObject *pUO = NULL;
for (uint32_t i = 0; i < createInfoCount; ++i) {
pUO = new VkUniqueObject();
pUO->actualObject = (uint64_t)pPipelines[i];
pPipelines[i] = (VkPipeline)pUO;
}
}
return result;
}
VkResult explicit_GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount,
VkImage *pSwapchainImages) {
// UNWRAP USES:
// 0 : swapchain,VkSwapchainKHR, pSwapchainImages,VkImage
if (VK_NULL_HANDLE != swapchain) {
swapchain = (VkSwapchainKHR)((VkUniqueObject *)swapchain)->actualObject;
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages);
// TODO : Need to add corresponding code to delete these images
if (VK_SUCCESS == result) {
if ((*pSwapchainImageCount > 0) && pSwapchainImages) {
std::vector<VkUniqueObject *> uniqueImages = {};
for (uint32_t i = 0; i < *pSwapchainImageCount; ++i) {
uniqueImages.push_back(new VkUniqueObject());
uniqueImages[i]->actualObject = (uint64_t)pSwapchainImages[i];
pSwapchainImages[i] = (VkImage)uniqueImages[i];
}
}
}
return result;
}