blob: f169bd63f264e393368f1be68fca97696baa953e [file] [log] [blame]
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cmath>
#include "a64/assembler-a64.h"
namespace vixl {
// CPURegList utilities.
CPURegister CPURegList::PopLowestIndex() {
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountTrailingZeros(list_, kRegListSizeInBits);
VIXL_ASSERT((1 << index) & list_);
Remove(index);
return CPURegister(index, size_, type_);
}
CPURegister CPURegList::PopHighestIndex() {
VIXL_ASSERT(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountLeadingZeros(list_, kRegListSizeInBits);
index = kRegListSizeInBits - 1 - index;
VIXL_ASSERT((1 << index) & list_);
Remove(index);
return CPURegister(index, size_, type_);
}
bool CPURegList::IsValid() const {
if ((type_ == CPURegister::kRegister) ||
(type_ == CPURegister::kFPRegister)) {
bool is_valid = true;
// Try to create a CPURegister for each element in the list.
for (int i = 0; i < kRegListSizeInBits; i++) {
if (((list_ >> i) & 1) != 0) {
is_valid &= CPURegister(i, size_, type_).IsValid();
}
}
return is_valid;
} else if (type_ == CPURegister::kNoRegister) {
// We can't use IsEmpty here because that asserts IsValid().
return list_ == 0;
} else {
return false;
}
}
void CPURegList::RemoveCalleeSaved() {
if (type() == CPURegister::kRegister) {
Remove(GetCalleeSaved(RegisterSizeInBits()));
} else if (type() == CPURegister::kFPRegister) {
Remove(GetCalleeSavedFP(RegisterSizeInBits()));
} else {
VIXL_ASSERT(type() == CPURegister::kNoRegister);
VIXL_ASSERT(IsEmpty());
// The list must already be empty, so do nothing.
}
}
CPURegList CPURegList::GetCalleeSaved(unsigned size) {
return CPURegList(CPURegister::kRegister, size, 19, 29);
}
CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
return CPURegList(CPURegister::kFPRegister, size, 8, 15);
}
CPURegList CPURegList::GetCallerSaved(unsigned size) {
// Registers x0-x18 and lr (x30) are caller-saved.
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
list.Combine(lr);
return list;
}
CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
// Registers d0-d7 and d16-d31 are caller-saved.
CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
return list;
}
const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved();
const CPURegList kCalleeSavedFP = CPURegList::GetCalleeSavedFP();
const CPURegList kCallerSaved = CPURegList::GetCallerSaved();
const CPURegList kCallerSavedFP = CPURegList::GetCallerSavedFP();
// Registers.
#define WREG(n) w##n,
const Register Register::wregisters[] = {
REGISTER_CODE_LIST(WREG)
};
#undef WREG
#define XREG(n) x##n,
const Register Register::xregisters[] = {
REGISTER_CODE_LIST(XREG)
};
#undef XREG
#define SREG(n) s##n,
const FPRegister FPRegister::sregisters[] = {
REGISTER_CODE_LIST(SREG)
};
#undef SREG
#define DREG(n) d##n,
const FPRegister FPRegister::dregisters[] = {
REGISTER_CODE_LIST(DREG)
};
#undef DREG
const Register& Register::WRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return wsp;
} else {
VIXL_ASSERT(code < kNumberOfRegisters);
return wregisters[code];
}
}
const Register& Register::XRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return sp;
} else {
VIXL_ASSERT(code < kNumberOfRegisters);
return xregisters[code];
}
}
const FPRegister& FPRegister::SRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfFPRegisters);
return sregisters[code];
}
const FPRegister& FPRegister::DRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfFPRegisters);
return dregisters[code];
}
const Register& CPURegister::W() const {
VIXL_ASSERT(IsValidRegister());
return Register::WRegFromCode(code_);
}
const Register& CPURegister::X() const {
VIXL_ASSERT(IsValidRegister());
return Register::XRegFromCode(code_);
}
const FPRegister& CPURegister::S() const {
VIXL_ASSERT(IsValidFPRegister());
return FPRegister::SRegFromCode(code_);
}
const FPRegister& CPURegister::D() const {
VIXL_ASSERT(IsValidFPRegister());
return FPRegister::DRegFromCode(code_);
}
// Operand.
Operand::Operand(int64_t immediate)
: immediate_(immediate),
reg_(NoReg),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {}
Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
: reg_(reg),
shift_(shift),
extend_(NO_EXTEND),
shift_amount_(shift_amount) {
VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
VIXL_ASSERT(!reg.IsSP());
}
Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
: reg_(reg),
shift_(NO_SHIFT),
extend_(extend),
shift_amount_(shift_amount) {
VIXL_ASSERT(reg.IsValid());
VIXL_ASSERT(shift_amount <= 4);
VIXL_ASSERT(!reg.IsSP());
// Extend modes SXTX and UXTX require a 64-bit register.
VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
}
bool Operand::IsImmediate() const {
return reg_.Is(NoReg);
}
bool Operand::IsShiftedRegister() const {
return reg_.IsValid() && (shift_ != NO_SHIFT);
}
bool Operand::IsExtendedRegister() const {
return reg_.IsValid() && (extend_ != NO_EXTEND);
}
bool Operand::IsZero() const {
if (IsImmediate()) {
return immediate() == 0;
} else {
return reg().IsZero();
}
}
Operand Operand::ToExtendedRegister() const {
VIXL_ASSERT(IsShiftedRegister());
VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
}
// MemOperand
MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
: base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
}
MemOperand::MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(!regoffset.IsSP());
VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
// SXTX extend mode requires a 64-bit offset register.
VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX));
}
MemOperand::MemOperand(Register base,
Register regoffset,
Shift shift,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
VIXL_ASSERT(shift == LSL);
}
MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
: base_(base), regoffset_(NoReg), addrmode_(addrmode) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
if (offset.IsImmediate()) {
offset_ = offset.immediate();
} else if (offset.IsShiftedRegister()) {
VIXL_ASSERT(addrmode == Offset);
regoffset_ = offset.reg();
shift_= offset.shift();
shift_amount_ = offset.shift_amount();
extend_ = NO_EXTEND;
offset_ = 0;
// These assertions match those in the shifted-register constructor.
VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
VIXL_ASSERT(shift_ == LSL);
} else {
VIXL_ASSERT(offset.IsExtendedRegister());
VIXL_ASSERT(addrmode == Offset);
regoffset_ = offset.reg();
extend_ = offset.extend();
shift_amount_ = offset.shift_amount();
shift_= NO_SHIFT;
offset_ = 0;
// These assertions match those in the extended-register constructor.
VIXL_ASSERT(!regoffset_.IsSP());
VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
}
}
bool MemOperand::IsImmediateOffset() const {
return (addrmode_ == Offset) && regoffset_.Is(NoReg);
}
bool MemOperand::IsRegisterOffset() const {
return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
}
bool MemOperand::IsPreIndex() const {
return addrmode_ == PreIndex;
}
bool MemOperand::IsPostIndex() const {
return addrmode_ == PostIndex;
}
// Assembler
Assembler::Assembler(byte* buffer, size_t capacity,
PositionIndependentCodeOption pic)
: pic_(pic) {
#ifdef DEBUG
buffer_monitor_ = 0;
#endif
buffer_ = new CodeBuffer(buffer, capacity);
}
Assembler::Assembler(size_t capacity, PositionIndependentCodeOption pic)
: pic_(pic) {
#ifdef DEBUG
buffer_monitor_ = 0;
#endif
buffer_ = new CodeBuffer(capacity);
}
Assembler::~Assembler() {
VIXL_ASSERT(buffer_monitor_ == 0);
delete buffer_;
}
void Assembler::Reset() {
buffer_->Reset();
}
void Assembler::FinalizeCode() {
buffer_->SetClean();
}
void Assembler::bind(Label* label) {
BindToOffset(label, buffer_->CursorOffset());
}
void Assembler::BindToOffset(Label* label, ptrdiff_t offset) {
VIXL_ASSERT((offset >= 0) && (offset <= buffer_->CursorOffset()));
VIXL_ASSERT(offset % kInstructionSize == 0);
label->Bind(offset);
while (label->IsLinked()) {
Instruction* link =
GetOffsetAddress<Instruction*>(label->GetAndRemoveNextLink());
link->SetImmPCOffsetTarget(GetLabelAddress<Instruction*>(label));
}
}
// A common implementation for the LinkAndGet<Type>OffsetTo helpers.
//
// The offset is calculated by aligning the PC and label addresses down to a
// multiple of 1 << element_shift, then calculating the (scaled) offset between
// them. This matches the semantics of adrp, for example.
template <int element_shift>
ptrdiff_t Assembler::LinkAndGetOffsetTo(Label* label) {
VIXL_STATIC_ASSERT(element_shift < (sizeof(ptrdiff_t) * 8));
if (label->IsBound()) {
uintptr_t pc_offset = GetCursorAddress<uintptr_t>() >> element_shift;
uintptr_t label_offset =
GetLabelAddress<uintptr_t>(label) >> element_shift;
return label_offset - pc_offset;
} else {
label->AddLink(buffer_->CursorOffset());
return 0;
}
}
ptrdiff_t Assembler::LinkAndGetByteOffsetTo(Label* label) {
return LinkAndGetOffsetTo<0>(label);
}
ptrdiff_t Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
return LinkAndGetOffsetTo<kInstructionSizeLog2>(label);
}
ptrdiff_t Assembler::LinkAndGetPageOffsetTo(Label* label) {
return LinkAndGetOffsetTo<kPageSizeLog2>(label);
}
void Assembler::place(RawLiteral* literal) {
VIXL_ASSERT(!literal->IsPlaced());
// Patch instructions using this literal.
if (literal->IsUsed()) {
Instruction* target = GetCursorAddress<Instruction*>();
ptrdiff_t offset = literal->last_use();
while (offset != 0) {
Instruction* ldr = GetOffsetAddress<Instruction*>(offset);
offset = ldr->ImmLLiteral();
ldr->SetImmLLiteral(target);
}
}
// "bind" the literal.
literal->set_offset(CursorOffset());
// Copy the data into the pool.
if (literal->size() == kXRegSizeInBytes) {
dc64(literal->raw_value64());
} else {
VIXL_ASSERT(literal->size() == kWRegSizeInBytes);
dc32(literal->raw_value32());
}
}
ptrdiff_t Assembler::LinkAndGetWordOffsetTo(RawLiteral* literal) {
VIXL_ASSERT(IsWordAligned(CursorOffset()));
if (literal->IsPlaced()) {
// The literal is "behind", the offset will be negative.
VIXL_ASSERT((literal->offset() - CursorOffset()) <= 0);
return (literal->offset() - CursorOffset()) >> kLiteralEntrySizeLog2;
}
ptrdiff_t offset = 0;
// Link all uses together.
if (literal->IsUsed()) {
offset = (literal->last_use() - CursorOffset()) >> kLiteralEntrySizeLog2;
}
literal->set_last_use(CursorOffset());
return offset;
}
// Code generation.
void Assembler::br(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(BR | Rn(xn));
}
void Assembler::blr(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(BLR | Rn(xn));
}
void Assembler::ret(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(RET | Rn(xn));
}
void Assembler::b(int imm26) {
Emit(B | ImmUncondBranch(imm26));
}
void Assembler::b(int imm19, Condition cond) {
Emit(B_cond | ImmCondBranch(imm19) | cond);
}
void Assembler::b(Label* label) {
b(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::b(Label* label, Condition cond) {
b(LinkAndGetInstructionOffsetTo(label), cond);
}
void Assembler::bl(int imm26) {
Emit(BL | ImmUncondBranch(imm26));
}
void Assembler::bl(Label* label) {
bl(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbz(const Register& rt,
int imm19) {
Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbz(const Register& rt,
Label* label) {
cbz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbnz(const Register& rt,
int imm19) {
Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbnz(const Register& rt,
Label* label) {
cbnz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
int imm14) {
VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
Label* label) {
tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
int imm14) {
VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
Label* label) {
tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::adr(const Register& rd, int imm21) {
VIXL_ASSERT(rd.Is64Bits());
Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
}
void Assembler::adr(const Register& rd, Label* label) {
adr(rd, LinkAndGetByteOffsetTo(label));
}
void Assembler::adrp(const Register& rd, int imm21) {
VIXL_ASSERT(rd.Is64Bits());
Emit(ADRP | ImmPCRelAddress(imm21) | Rd(rd));
}
void Assembler::adrp(const Register& rd, Label* label) {
VIXL_ASSERT(AllowPageOffsetDependentCode());
adrp(rd, LinkAndGetPageOffsetTo(label));
}
void Assembler::add(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, ADD);
}
void Assembler::adds(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, ADD);
}
void Assembler::cmn(const Register& rn,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
adds(zr, rn, operand);
}
void Assembler::sub(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, SUB);
}
void Assembler::subs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, SUB);
}
void Assembler::cmp(const Register& rn, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
subs(zr, rn, operand);
}
void Assembler::neg(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sub(rd, zr, operand);
}
void Assembler::negs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
subs(rd, zr, operand);
}
void Assembler::adc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
}
void Assembler::adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
}
void Assembler::sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
}
void Assembler::sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
}
void Assembler::ngc(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbc(rd, zr, operand);
}
void Assembler::ngcs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbcs(rd, zr, operand);
}
// Logical instructions.
void Assembler::and_(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, AND);
}
void Assembler::ands(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ANDS);
}
void Assembler::tst(const Register& rn,
const Operand& operand) {
ands(AppropriateZeroRegFor(rn), rn, operand);
}
void Assembler::bic(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BIC);
}
void Assembler::bics(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BICS);
}
void Assembler::orr(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORR);
}
void Assembler::orn(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORN);
}
void Assembler::eor(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EOR);
}
void Assembler::eon(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EON);
}
void Assembler::lslv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::lsrv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::asrv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rorv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
}
// Bitfield operations.
void Assembler::bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.size() == rn.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | BFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | SBFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.size() == rn.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | UBFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSEL);
}
void Assembler::csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINC);
}
void Assembler::csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINV);
}
void Assembler::csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSNEG);
}
void Assembler::cset(const Register &rd, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinc(rd, zr, zr, InvertCondition(cond));
}
void Assembler::csetm(const Register &rd, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinv(rd, zr, zr, InvertCondition(cond));
}
void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csinc(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csinv(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csneg(rd, rn, rn, InvertCondition(cond));
}
void Assembler::ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
}
void Assembler::ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMN);
}
void Assembler::ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMP);
}
void Assembler::DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op) {
Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
}
void Assembler::mul(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
}
void Assembler::madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DataProcessing3Source(rd, rn, rm, ra, MADD);
}
void Assembler::mneg(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
}
void Assembler::msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DataProcessing3Source(rd, rn, rm, ra, MSUB);
}
void Assembler::umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
}
void Assembler::smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
}
void Assembler::umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
}
void Assembler::smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
}
void Assembler::smull(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
}
void Assembler::sdiv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::smulh(const Register& xd,
const Register& xn,
const Register& xm) {
VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
}
void Assembler::udiv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rbit(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, RBIT);
}
void Assembler::rev16(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, REV16);
}
void Assembler::rev32(const Register& rd,
const Register& rn) {
VIXL_ASSERT(rd.Is64Bits());
DataProcessing1Source(rd, rn, REV);
}
void Assembler::rev(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
}
void Assembler::clz(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLZ);
}
void Assembler::cls(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLS);
}
void Assembler::ldp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
}
void Assembler::stp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
}
void Assembler::ldpsw(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.Is64Bits());
LoadStorePair(rt, rt2, src, LDPSW_x);
}
void Assembler::LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op) {
// 'rt' and 'rt2' can only be aliased for stores.
VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(addr.offset(), CalcLSPairDataSize(op));
Instr addrmodeop;
if (addr.IsImmediateOffset()) {
addrmodeop = LoadStorePairOffsetFixed;
} else {
VIXL_ASSERT(addr.offset() != 0);
if (addr.IsPreIndex()) {
addrmodeop = LoadStorePairPreIndexFixed;
} else {
VIXL_ASSERT(addr.IsPostIndex());
addrmodeop = LoadStorePairPostIndexFixed;
}
}
Emit(addrmodeop | memop);
}
void Assembler::ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePairNonTemporal(rt, rt2, src,
LoadPairNonTemporalOpFor(rt, rt2));
}
void Assembler::stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePairNonTemporal(rt, rt2, dst,
StorePairNonTemporalOpFor(rt, rt2));
}
void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairNonTemporalOp op) {
VIXL_ASSERT(!rt.Is(rt2));
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
VIXL_ASSERT(addr.IsImmediateOffset());
LSDataSize size = CalcLSPairDataSize(
static_cast<LoadStorePairOp>(op & LoadStorePairMask));
Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(addr.offset(), size));
}
// Memory instructions.
void Assembler::ldrb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRB_w, option);
}
void Assembler::strb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, STRB_w, option);
}
void Assembler::ldrsb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
}
void Assembler::ldrh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRH_w, option);
}
void Assembler::strh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, STRH_w, option);
}
void Assembler::ldrsh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
}
void Assembler::ldr(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LoadOpFor(rt), option);
}
void Assembler::str(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, StoreOpFor(rt), option);
}
void Assembler::ldrsw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(rt.Is64Bits());
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRSW_x, option);
}
void Assembler::ldurb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRB_w, option);
}
void Assembler::sturb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, STRB_w, option);
}
void Assembler::ldursb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
}
void Assembler::ldurh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRH_w, option);
}
void Assembler::sturh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, STRH_w, option);
}
void Assembler::ldursh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
}
void Assembler::ldur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LoadOpFor(rt), option);
}
void Assembler::stur(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, StoreOpFor(rt), option);
}
void Assembler::ldursw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(rt.Is64Bits());
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRSW_x, option);
}
void Assembler::ldrsw(const Register& rt, RawLiteral* literal) {
VIXL_ASSERT(rt.Is64Bits());
VIXL_ASSERT(literal->size() == kWRegSizeInBytes);
ldrsw(rt, LinkAndGetWordOffsetTo(literal));
}
void Assembler::ldr(const CPURegister& rt, RawLiteral* literal) {
VIXL_ASSERT(literal->size() == static_cast<size_t>(rt.SizeInBytes()));
ldr(rt, LinkAndGetWordOffsetTo(literal));
}
void Assembler::ldrsw(const Register& rt, int imm19) {
Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt));
}
void Assembler::ldr(const CPURegister& rt, int imm19) {
LoadLiteralOp op = LoadLiteralOpFor(rt);
Emit(op | ImmLLiteral(imm19) | Rt(rt));
}
// Exclusive-access instructions.
void Assembler::stxrb(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stxrh(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stxr(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldxrb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldxrh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldxr(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::stxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
}
void Assembler::ldxp(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w;
Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
}
void Assembler::stlxrb(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlxrh(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlxr(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldaxrb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldaxrh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldaxr(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::stlxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
}
void Assembler::ldaxp(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w;
Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
}
void Assembler::stlrb(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlrh(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlr(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldarb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldarh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldar(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::mov(const Register& rd, const Register& rm) {
// Moves involving the stack pointer are encoded as add immediate with
// second operand of zero. Otherwise, orr with first operand zr is
// used.
if (rd.IsSP() || rm.IsSP()) {
add(rd, rm, 0);
} else {
orr(rd, AppropriateZeroRegFor(rd), rm);
}
}
void Assembler::mvn(const Register& rd, const Operand& operand) {
orn(rd, AppropriateZeroRegFor(rd), operand);
}
void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
VIXL_ASSERT(rt.Is64Bits());
Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
}
void Assembler::msr(SystemRegister sysreg, const Register& rt) {
VIXL_ASSERT(rt.Is64Bits());
Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
}
void Assembler::hint(SystemHint code) {
Emit(HINT | ImmHint(code) | Rt(xzr));
}
void Assembler::clrex(int imm4) {
Emit(CLREX | CRm(imm4));
}
void Assembler::dmb(BarrierDomain domain, BarrierType type) {
Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::dsb(BarrierDomain domain, BarrierType type) {
Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::isb() {
Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
}
void Assembler::fmov(const FPRegister& fd, double imm) {
VIXL_ASSERT(fd.Is64Bits());
VIXL_ASSERT(IsImmFP64(imm));
Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
}
void Assembler::fmov(const FPRegister& fd, float imm) {
VIXL_ASSERT(fd.Is32Bits());
VIXL_ASSERT(IsImmFP32(imm));
Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
}
void Assembler::fmov(const Register& rd, const FPRegister& fn) {
VIXL_ASSERT(rd.size() == fn.size());
FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
Emit(op | Rd(rd) | Rn(fn));
}
void Assembler::fmov(const FPRegister& fd, const Register& rn) {
VIXL_ASSERT(fd.size() == rn.size());
FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
Emit(op | Rd(fd) | Rn(rn));
}
void Assembler::fmov(const FPRegister& fd, const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
}
void Assembler::fadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FADD);
}
void Assembler::fsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FSUB);
}
void Assembler::fmul(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMUL);
}
void Assembler::fmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
}
void Assembler::fmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
}
void Assembler::fnmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
}
void Assembler::fnmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
}
void Assembler::fdiv(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FDIV);
}
void Assembler::fmax(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMAX);
}
void Assembler::fmaxnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMAXNM);
}
void Assembler::fmin(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMIN);
}
void Assembler::fminnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMINNM);
}
void Assembler::fabs(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FABS);
}
void Assembler::fneg(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FNEG);
}
void Assembler::fsqrt(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FSQRT);
}
void Assembler::frinta(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FRINTA);
}
void Assembler::frintm(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FRINTM);
}
void Assembler::frintn(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FRINTN);
}
void Assembler::frintz(const FPRegister& fd,
const FPRegister& fn) {
VIXL_ASSERT(fd.size() == fn.size());
FPDataProcessing1Source(fd, fn, FRINTZ);
}
void Assembler::fcmp(const FPRegister& fn,
const FPRegister& fm) {
VIXL_ASSERT(fn.size() == fm.size());
Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
}
void Assembler::fcmp(const FPRegister& fn,
double value) {
USE(value);
// Although the fcmp instruction can strictly only take an immediate value of
// +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
// affect the result of the comparison.
VIXL_ASSERT(value == 0.0);
Emit(FPType(fn) | FCMP_zero | Rn(fn));
}
void Assembler::fccmp(const FPRegister& fn,
const FPRegister& fm,
StatusFlags nzcv,
Condition cond) {
VIXL_ASSERT(fn.size() == fm.size());
Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
}
void Assembler::fcsel(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
Condition cond) {
VIXL_ASSERT(fd.size() == fn.size());
VIXL_ASSERT(fd.size() == fm.size());
Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
}
void Assembler::FPConvertToInt(const Register& rd,
const FPRegister& fn,
FPIntegerConvertOp op) {
Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
}
void Assembler::fcvt(const FPRegister& fd,
const FPRegister& fn) {
if (fd.Is64Bits()) {
// Convert float to double.
VIXL_ASSERT(fn.Is32Bits());
FPDataProcessing1Source(fd, fn, FCVT_ds);
} else {
// Convert double to float.
VIXL_ASSERT(fn.Is64Bits());
FPDataProcessing1Source(fd, fn, FCVT_sd);
}
}
void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTAU);
}
void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTAS);
}
void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTMU);
}
void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTMS);
}
void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTNU);
}
void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTNS);
}
void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTZU);
}
void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTZS);
}
void Assembler::scvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits) {
if (fbits == 0) {
Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
} else {
Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(fd));
}
}
void Assembler::ucvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits) {
if (fbits == 0) {
Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
} else {
Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(fd));
}
}
// Note:
// Below, a difference in case for the same letter indicates a
// negated bit.
// If b is 1, then B is 0.
Instr Assembler::ImmFP32(float imm) {
VIXL_ASSERT(IsImmFP32(imm));
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = float_to_rawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}
Instr Assembler::ImmFP64(double imm) {
VIXL_ASSERT(IsImmFP64(imm));
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = double_to_rawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}
// Code generation helpers.
void Assembler::MoveWide(const Register& rd,
uint64_t imm,
int shift,
MoveWideImmediateOp mov_op) {
// Ignore the top 32 bits of an immediate if we're moving to a W register.
if (rd.Is32Bits()) {
// Check that the top 32 bits are zero (a positive 32-bit number) or top
// 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
VIXL_ASSERT(((imm >> kWRegSize) == 0) ||
((imm >> (kWRegSize - 1)) == 0x1ffffffff));
imm &= kWRegMask;
}
if (shift >= 0) {
// Explicit shift specified.
VIXL_ASSERT((shift == 0) || (shift == 16) ||
(shift == 32) || (shift == 48));
VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
shift /= 16;
} else {
// Calculate a new immediate and shift combination to encode the immediate
// argument.
shift = 0;
if ((imm & UINT64_C(0xffffffffffff0000)) == 0) {
// Nothing to do.
} else if ((imm & UINT64_C(0xffffffff0000ffff)) == 0) {
imm >>= 16;
shift = 1;
} else if ((imm & UINT64_C(0xffff0000ffffffff)) == 0) {
VIXL_ASSERT(rd.Is64Bits());
imm >>= 32;
shift = 2;
} else if ((imm & UINT64_C(0x0000ffffffffffff)) == 0) {
VIXL_ASSERT(rd.Is64Bits());
imm >>= 48;
shift = 3;
}
}
VIXL_ASSERT(is_uint16(imm));
Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
}
void Assembler::AddSub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op) {
VIXL_ASSERT(rd.size() == rn.size());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
VIXL_ASSERT(IsImmAddSub(immediate));
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
ImmAddSub(immediate) | dest_reg | RnSP(rn));
} else if (operand.IsShiftedRegister()) {
VIXL_ASSERT(operand.reg().size() == rd.size());
VIXL_ASSERT(operand.shift() != ROR);
// For instructions of the form:
// add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
// add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
// add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
// adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
// or their 64-bit register equivalents, convert the operand from shifted to
// extended register mode, and emit an add/sub extended instruction.
if (rn.IsSP() || rd.IsSP()) {
VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags)));
DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
AddSubExtendedFixed | op);
} else {
DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
}
} else {
VIXL_ASSERT(operand.IsExtendedRegister());
DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
}
}
void Assembler::AddSubWithCarry(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == operand.reg().size());
VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
}
void Assembler::hlt(int code) {
VIXL_ASSERT(is_uint16(code));
Emit(HLT | ImmException(code));
}
void Assembler::brk(int code) {
VIXL_ASSERT(is_uint16(code));
Emit(BRK | ImmException(code));
}
// TODO(all): The third parameter should be passed by reference but gcc 4.8.2
// reports a bogus uninitialised warning then.
void Assembler::Logical(const Register& rd,
const Register& rn,
const Operand operand,
LogicalOp op) {
VIXL_ASSERT(rd.size() == rn.size());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
unsigned reg_size = rd.size();
VIXL_ASSERT(immediate != 0);
VIXL_ASSERT(immediate != -1);
VIXL_ASSERT(rd.Is64Bits() || is_uint32(immediate));
// If the operation is NOT, invert the operation and immediate.
if ((op & NOT) == NOT) {
op = static_cast<LogicalOp>(op & ~NOT);
immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
}
unsigned n, imm_s, imm_r;
if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
// Immediate can be encoded in the instruction.
LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
} else {
// This case is handled in the macro assembler.
VIXL_UNREACHABLE();
}
} else {
VIXL_ASSERT(operand.IsShiftedRegister());
VIXL_ASSERT(operand.reg().size() == rd.size());
Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
}
}
void Assembler::LogicalImmediate(const Register& rd,
const Register& rn,
unsigned n,
unsigned imm_s,
unsigned imm_r,
LogicalOp op) {
unsigned reg_size = rd.size();
Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
Rn(rn));
}
void Assembler::ConditionalCompare(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op) {
Instr ccmpop;
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
VIXL_ASSERT(IsImmConditionalCompare(immediate));
ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
} else {
VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
}
Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
}
void Assembler::DataProcessing1Source(const Register& rd,
const Register& rn,
DataProcessing1SourceOp op) {
VIXL_ASSERT(rd.size() == rn.size());
Emit(SF(rn) | op | Rn(rn) | Rd(rd));
}
void Assembler::FPDataProcessing1Source(const FPRegister& fd,
const FPRegister& fn,
FPDataProcessing1SourceOp op) {
Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
}
void Assembler::FPDataProcessing2Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
FPDataProcessing2SourceOp op) {
VIXL_ASSERT(fd.size() == fn.size());
VIXL_ASSERT(fd.size() == fm.size());
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
}
void Assembler::FPDataProcessing3Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa,
FPDataProcessing3SourceOp op) {
VIXL_ASSERT(AreSameSizeAndType(fd, fn, fm, fa));
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
}
void Assembler::EmitShift(const Register& rd,
const Register& rn,
Shift shift,
unsigned shift_amount) {
switch (shift) {
case LSL:
lsl(rd, rn, shift_amount);
break;
case LSR:
lsr(rd, rn, shift_amount);
break;
case ASR:
asr(rd, rn, shift_amount);
break;
case ROR:
ror(rd, rn, shift_amount);
break;
default:
VIXL_UNREACHABLE();
}
}
void Assembler::EmitExtendShift(const Register& rd,
const Register& rn,
Extend extend,
unsigned left_shift) {
VIXL_ASSERT(rd.size() >= rn.size());
unsigned reg_size = rd.size();
// Use the correct size of register.
Register rn_ = Register(rn.code(), rd.size());
// Bits extracted are high_bit:0.
unsigned high_bit = (8 << (extend & 0x3)) - 1;
// Number of bits left in the result that are not introduced by the shift.
unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
switch (extend) {
case UXTB:
case UXTH:
case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
case SXTB:
case SXTH:
case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
case UXTX:
case SXTX: {
VIXL_ASSERT(rn.size() == kXRegSize);
// Nothing to extend. Just shift.
lsl(rd, rn_, left_shift);
break;
}
default: VIXL_UNREACHABLE();
}
} else {
// No need to extend as the extended bits would be shifted away.
lsl(rd, rn_, left_shift);
}
}
void Assembler::DataProcShiftedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op) {
VIXL_ASSERT(operand.IsShiftedRegister());
VIXL_ASSERT(rn.Is64Bits() || (rn.Is32Bits() &&
is_uint5(operand.shift_amount())));
Emit(SF(rd) | op | Flags(S) |
ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
Rm(operand.reg()) | Rn(rn) | Rd(rd));
}
void Assembler::DataProcExtendedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op) {
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
dest_reg | RnSP(rn));
}
bool Assembler::IsImmAddSub(int64_t immediate) {
return is_uint12(immediate) ||
(is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
}
void Assembler::LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op,
LoadStoreScalingOption option) {
Instr memop = op | Rt(rt) | RnSP(addr.base());
int64_t offset = addr.offset();
LSDataSize size = CalcLSDataSize(op);
if (addr.IsImmediateOffset()) {
bool prefer_unscaled = (option == PreferUnscaledOffset) ||
(option == RequireUnscaledOffset);
if (prefer_unscaled && IsImmLSUnscaled(offset)) {
// Use the unscaled addressing mode.
Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
return;
}
if ((option != RequireUnscaledOffset) && IsImmLSScaled(offset, size)) {
// Use the scaled addressing mode.
Emit(LoadStoreUnsignedOffsetFixed | memop |
ImmLSUnsigned(offset >> size));
return;
}
if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) {
// Use the unscaled addressing mode.
Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
return;
}
}
// All remaining addressing modes are register-offset, pre-indexed or
// post-indexed modes.
VIXL_ASSERT((option != RequireUnscaledOffset) &&
(option != RequireScaledOffset));
if (addr.IsRegisterOffset()) {
Extend ext = addr.extend();
Shift shift = addr.shift();
unsigned shift_amount = addr.shift_amount();
// LSL is encoded in the option field as UXTX.
if (shift == LSL) {
ext = UXTX;
}
// Shifts are encoded in one bit, indicating a left shift by the memory
// access size.
VIXL_ASSERT((shift_amount == 0) ||
(shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
return;
}
if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) {
Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
return;
}
if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) {
Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
return;
}
// If this point is reached, the MemOperand (addr) cannot be encoded.
VIXL_UNREACHABLE();
}
bool Assembler::IsImmLSUnscaled(int64_t offset) {
return is_int9(offset);
}
bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
bool offset_is_size_multiple = (((offset >> size) << size) == offset);
return offset_is_size_multiple && is_uint12(offset >> size);
}
bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
bool offset_is_size_multiple = (((offset >> size) << size) == offset);
return offset_is_size_multiple && is_int7(offset >> size);
}
// Test if a given value can be encoded in the immediate field of a logical
// instruction.
// If it can be encoded, the function returns true, and values pointed to by n,
// imm_s and imm_r are updated with immediates encoded in the format required
// by the corresponding fields in the logical instruction.
// If it can not be encoded, the function returns false, and the values pointed
// to by n, imm_s and imm_r are undefined.
bool Assembler::IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r) {
VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize));
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1) {
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
if (width == kWRegSize) {
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// Avoid making the assumption that the most-significant 32 bits are zero by
// shifting the value left and duplicating it.
value <<= kWRegSize;
value |= value >> kWRegSize;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
uint64_t a = LowestSetBit(value);
uint64_t value_plus_a = value + a;
uint64_t b = LowestSetBit(value_plus_a);
uint64_t value_plus_a_minus_b = value_plus_a - b;
uint64_t c = LowestSetBit(value_plus_a_minus_b);
int d, clz_a, out_n;
uint64_t mask;
if (c != 0) {
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = CountLeadingZeros(a, kXRegSize);
int clz_c = CountLeadingZeros(c, kXRegSize);
d = clz_a - clz_c;
mask = ((UINT64_C(1) << d) - 1);
out_n = 0;
} else {
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0) {
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), for which we just return
// false.
return false;
} else {
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = CountLeadingZeros(a, kXRegSize);
d = 64;
mask = ~UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!IsPowerOf2(d)) {
return false;
}
if (((b - a) & ~mask) != 0) {
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
return false;
}
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
static const uint64_t multipliers[] = {
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
};
uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57];
uint64_t candidate = (b - a) * multiplier;
if (value != candidate) {
// The candidate pattern doesn't match our input value, so fail.
return false;
}
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize);
int s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
int r;
if (negate) {
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
} else {
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) {
*n = out_n;
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
*imm_r = r;
}
return true;
}
bool Assembler::IsImmConditionalCompare(int64_t immediate) {
return is_uint5(immediate);
}
bool Assembler::IsImmFP32(float imm) {
// Valid values will have the form:
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = float_to_rawbits(imm);
// bits[19..0] are cleared.
if ((bits & 0x7ffff) != 0) {
return false;
}
// bits[29..25] are all set or all cleared.
uint32_t b_pattern = (bits >> 16) & 0x3e00;
if (b_pattern != 0 && b_pattern != 0x3e00) {
return false;
}
// bit[30] and bit[29] are opposite.
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
return false;
}
return true;
}
bool Assembler::IsImmFP64(double imm) {
// Valid values will have the form:
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = double_to_rawbits(imm);
// bits[47..0] are cleared.
if ((bits & UINT64_C(0x0000ffffffffffff)) != 0) {
return false;
}
// bits[61..54] are all set or all cleared.
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
return false;
}
// bit[62] and bit[61] are opposite.
if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
return false;
}
return true;
}
LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
VIXL_ASSERT(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDR_x : LDR_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? LDR_d : LDR_s;
}
}
LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDP_x : LDP_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? LDP_d : LDP_s;
}
}
LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
VIXL_ASSERT(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? STR_x : STR_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? STR_d : STR_s;
}
}
LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? STP_x : STP_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? STP_d : STP_s;
}
}
LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDNP_x : LDNP_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? LDNP_d : LDNP_s;
}
}
LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? STNP_x : STNP_w;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? STNP_d : STNP_s;
}
}
LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
} else {
VIXL_ASSERT(rt.IsFPRegister());
return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
}
}
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
int number_of_valid_regs = 0;
int number_of_valid_fpregs = 0;
RegList unique_regs = 0;
RegList unique_fpregs = 0;
const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
if (regs[i].IsRegister()) {
number_of_valid_regs++;
unique_regs |= regs[i].Bit();
} else if (regs[i].IsFPRegister()) {
number_of_valid_fpregs++;
unique_fpregs |= regs[i].Bit();
} else {
VIXL_ASSERT(!regs[i].IsValid());
}
}
int number_of_unique_regs =
CountSetBits(unique_regs, sizeof(unique_regs) * 8);
int number_of_unique_fpregs =
CountSetBits(unique_fpregs, sizeof(unique_fpregs) * 8);
VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs);
VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
return (number_of_valid_regs != number_of_unique_regs) ||
(number_of_valid_fpregs != number_of_unique_fpregs);
}
bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
VIXL_ASSERT(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
return match;
}
} // namespace vixl