blob: 70ca2a582f28d0850ea7ea4873b6d7dab05d4c53 [file] [log] [blame]
# Copyright 2016, VIXL authors
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of ARM Limited nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import itertools
import random
import os.path
from copy import deepcopy
class OperandList(object):
"""
Convenience class representing a list of operand objects. It can be viewed is
an iterator over operand objects.
Attributes:
operand_list
"""
def __init__(self, operand_list):
self.operand_list = operand_list
def __iter__(self):
return iter(self.operand_list)
def unwrap(self):
"""
Return a list of `Operand` objects, unwrapping `OperandWrapper` objects into
`Operand` objects. For example:
~~~
Condition, Register, Operand(Register, Shift, Register)
~~~
Unwraps to:
~~~
Condition, Register, Register, Shift, Register
~~~
"""
return itertools.chain(*self.operand_list)
def ExcludeVariants(self, type_name, variant_to_exclude):
"""
Remove variants in `variant_to_exclude` from operands with type `type_name`.
"""
# Find the list of operand with type `type_name`.
relevant_operands = filter(lambda operand: operand.type_name == type_name,
self)
for operand in relevant_operands:
# Remove the intersection of the existing variants and variants we do not
# want.
for variant in set(operand.variants) & set(variant_to_exclude):
operand.variants.remove(variant)
def GetNames(self):
"""
Return the list of all `Operand` names, excluding `OperandWrapper` objects.
"""
return [operand.name for operand in self.unwrap()]
class InputList(object):
"""
Convevience class representing a list of input objects.
This class is an iterator over input objects.
Attributes:
inputs
"""
def __init__(self, inputs):
self.inputs = inputs
def __iter__(self):
return iter(self.inputs)
def GetNames(self):
"""
Return the list of input names.
"""
return [input.name for input in self]
class TestCase(object):
"""
Object representation of a test case, as described in JSON. This object is
used to build sets of operands and inputs that will be used by the generator
to produce C++ arrays.
Attributes:
name Name of the test case, it is used to name the array to
produce.
seed Seed value to use for reproducable random generation.
operand_names List of operand names this test case covers.
input_names List of input names this test case covers.
operand_filter Python expression as a string to filter out operands.
input_filter Python expression as a string to filter out inputs.
operand_limit Optional limit of the number of operands to generate.
input_limit Optional limit of the number of inputs to generate.
it_condition If not None, an IT instruction needs to be generated for the
instruction under test to be valid. This member is a string
template indicating the name of the condition operand, to be
used with "format". For example, it will most likely have
the value "{cond}".
"""
# Declare functions that will be callable from Python expressions in
# `self.operand_filter`.
operand_filter_runtime = {
'register_is_low': lambda register:
register in ["r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"]
}
def __init__(self, name, seed, operand_names, input_names, operand_filter,
input_filter, operand_limit, input_limit, it_condition):
self.name = name
self.seed = seed
self.operand_names = operand_names
self.input_names = input_names
self.operand_filter = operand_filter
self.input_filter = input_filter
self.operand_limit = operand_limit
self.input_limit = input_limit
self.it_condition = it_condition
def GenerateOperands(self, operand_types):
"""
Generate a list of tuples, each tuple describing what operands to pass to an
instruction to encode it. We use this to generate operand definitions.
The algorithm used is a simple product of all operand variants. To limit
what we generate, we choose to apply the product only on operands with their
name in the `self.operand_names` list.
Additionally, we use the Python expression in `self.operand_filter` to
filter out tuples we do not want.
Argument:
operand_types The `OperandList` object that describe the form of the
instruction to generate code for.
"""
# Build a list of all possible variants as a list of tuples. If the
# operand's name is not in `self.operand_names`, then we restrict the list
# to contain default variant. Each tuple in the list has the form
# `(name, [variant1, variant2, ...])`. For example:
#
# [
# ('cond', ['al', 'ne', 'eq', ...]), # All condition variants.
# ('rd', ['r0', 'r1', ...]), # All register variants.
# ('rn', ['r0']) # Default register variant (r0).
# ...
# ]
variants = [
[(operand_type.name, variant) for variant in operand_type.variants]
if operand_type.name in self.operand_names
else [(operand_type.name, operand_type.default)]
for operand_type in operand_types.unwrap()
]
lambda_string = "lambda {args}: {expression}".format(
args=",".join(operand_types.GetNames()),
expression=self.operand_filter)
filter_lambda = eval(lambda_string, self.operand_filter_runtime)
def BuildOperandDefinition(operands):
"""
Take a list of tuples describing the operands and build a definition from
it. A definition is a tuple with a list of variants and a
`expect_instruction_before` string.
For example, we are turning this:
[
('cond', 'ne'),
('rd', 'r0'),
('rn', 'r1'),
('rm', 'r0)
[
Into:
(['ne', 'r0', 'r1', 'r0'], "It ne;")
"""
return (
# Build a list of operands by only keeping the second element of each
# tuple.
[operand[1] for operand in operands],
# The next field is a boolean indicating if the test case needs to
# generate an IT instruction.
"true" if self.it_condition else "false",
# If so, what condition should it be?
self.it_condition.format(**dict(operands)) if self.it_condition else "al"
)
# Build and return a list of operand definitions by computing the product of
# all variants and filtering them with `filter_lambda`.
#
# Operand definitions consist of a list with a list of variants and an
# optional `expect_instruction_before` string. For example:
#
# [
# (['al', 'r0', 'r1', 'r2'], ""),
# (['ne', 'r0', 'r1', 'r0'], "It ne;"),
# ...
# ]
#
# Here, the filtered product of variants builds a list of lists of tuples, as such:
#
# [
# [('cond', 'al'), ('rd', 'r0'), ('rn', 'r1'), ('rn', 'r2')]
# [('cond', 'ne'), ('rd', 'r0'), ('rn', 'r1'), ('rn', 'r0')],
# ...
# ]
#
# We then pass them to `BuildOperandDefinition` to produce the expected form
# out of it.
result = [
BuildOperandDefinition(operands)
for operands in itertools.product(*variants)
if filter_lambda(**dict(operands))
]
if self.operand_limit is None:
return result
else:
# Use a fixed seed to randomly choose a limited set of operands.
random.seed(self.seed)
return random.sample(result, self.operand_limit)
def GenerateInputs(self, input_types):
"""
Generate a list of tuples, each tuple describing what input to pass to an
instruction at runtime. We use this to generate input definitions.
The algorithm used is a simple product of all input values. To limit what
we generate, we choose to apply the product only on inputs with their name
in the `self.input_names` list.
Additionally, we use the Python expression in `self.input_filter` to filter
out tuples we do not want.
Argument:
input_types The `InputList` object describing the list of inputs the
instruction can take.
"""
# Build a list of all possible values as a list of lists. If the input's
# name is not in `self.input_names`, then we restrict the list to the
# default value.
values = [
input_type.values
if input_type.name in self.input_names else [input_type.default]
for input_type in input_types
]
lambda_string = "lambda {args}: {expression}".format(
args=", ".join(input_types.GetNames()),
expression=self.input_filter)
filter_lambda = eval(lambda_string)
# Build and return a list of input definitions, such as
# [('NoFlag', '0xffffffff', 0xabababab'), ...] for example.
result = [
input_definition
for input_definition in itertools.product(*values)
if filter_lambda(*input_definition)
]
if self.input_limit is None:
return result
else:
# Use a fixed seed to randomly choose a limited set of inputs.
random.seed(self.seed)
return random.sample(result, self.input_limit)
class Generator(object):
"""
A `Generator` object contains all information needed to generate a test file.
Each method will return a string used to fill a variable in a template.
Attributes:
test_name Name of the test inferred from the name of the configuration
file. It has the following form: `type-op1-op2-op3-isa`.
test_type Type of the test, extracted from test_name.
mnemonics List of instruction mnemonics.
operands `OperandList` object.
inputs `InputList` object.
test_cases List of `TestCase` objects.
"""
def __init__(self, test_name, test_isa, test_type, mnemonics, operands,
inputs, test_cases):
self.test_name = test_name
self.test_isa = test_isa
self.test_type = test_type
self.mnemonics = mnemonics
self.inputs = inputs
self.test_cases = test_cases
# A simulator test cannot easily make use of the PC and SP registers.
if self.test_type == "simulator":
# We need to explicitely create our own deep copy the operands before we
# can modify them.
self.operands = deepcopy(operands)
self.operands.ExcludeVariants("Register", ["r13", "r15"])
else:
self.operands = operands
def MnemonicToMethodName(self, mnemonic):
if self.test_type in ["simulator", "macro-assembler"]:
# Return a MacroAssembler method name
return mnemonic.capitalize()
else:
# Return an Assembler method name
method_name = mnemonic.lower()
return "and_" if method_name == "and" else method_name
def InstructionListDeclaration(self):
"""
~~~
M(Adc) \
M(Adcs) \
M(Add) \
M(Adds) \
M(And) \
...
~~~
"""
return "".join([
"M({}) \\\n".format(self.MnemonicToMethodName(mnemonic))
for mnemonic in self.mnemonics
])
def OperandDeclarations(self):
"""
~~~
Condition cond;
Register rd;
Register rn;
...
~~~
"""
return "".join([operand.Declare() for operand in self.operands])
def InputDeclarations(self):
"""
~~~
uint32_t cond;
uint32_t rd;
uint32_t rn;
...
~~~
"""
return "".join([input.Declare() for input in self.inputs])
def InputDefinitions(self):
"""
~~~
static const Inputs kCondition[] = {{...},{...}, ...};
static const Inputs kRdIsRd[] = {{...},{...}, ...};
...
~~~
"""
def InputDefinition(test_input):
inputs = [
"{{{}}}".format(",".join(input))
for input in test_input.GenerateInputs(self.inputs)
]
return """static const Inputs k{name}[] = {{ {input} }};
""".format(name=test_input.name, input=",".join(inputs))
return "\n".join(map(InputDefinition, self.test_cases))
def TestCaseDefinitions(self):
"""
For simulator tests:
~~~
{{eq, r0, r0, ...},
"eq r0 r0 ...",
"Condition_eq_r0_...",
ARRAY_SIZE(kCondition), kCondition},
...
{{eq, r0, r0, ...},
"eq r0 r0 ...",
"RdIsRd_eq_r0_...",
ARRAY_SIZE(kRdIsRd), kRdIsRn},
...
~~~
For assembler tests:
~~~
{{eq, r0, r0, ...},
"",
"eq r0 r0 ...",
"Condition_eq_r0_...",
...
{{eq, r0, r0, ...},
"",
"eq r0 r0 ...",
"RdIsRd_eq_r0_..."}
...
{{eq, r0, r0, ...},
"It eq",
"eq r0 r0 ...",
"RdIsRd_eq_r0_..."}
...
~~~
"""
def SimulatorTestCaseDefinition(test_case):
test_cases = [
"""{{ {{ {operands} }},
"{operands_description}",
"{identifier}",
ARRAY_SIZE(k{test_case_name}),
k{test_case_name} }}
""".format(operands=",".join(operand),
operands_description=" ".join(operand),
identifier=test_case.name + "_" + "_".join(operand),
test_case_name=test_case.name)
for operand, _, _ in test_case.GenerateOperands(self.operands)
]
return ",\n".join(test_cases)
def AssemblerTestCaseDefinition(test_case):
test_cases = [
"""{{ {{ {operands} }},
{in_it_block},
{it_condition},
"{operands_description}",
"{identifier}" }}
""".format(operands=",".join(operand),
in_it_block=in_it_block,
it_condition=it_condition,
operands_description=" ".join(operand),
identifier="_".join(operand))
for operand, in_it_block, it_condition
in test_case.GenerateOperands(self.operands)
]
return ",\n".join(test_cases)
def MacroAssemblerTestCaseDefinition(test_case):
test_cases = [
"""{{ {{ {operands} }},
"{operands_description}",
"{identifier}" }}
""".format(operands=",".join(operand),
operands_description=", ".join(operand),
identifier="_".join(operand))
for operand, _, _ in test_case.GenerateOperands(self.operands)
]
return ",\n".join(test_cases)
if self.test_type == "simulator":
return ",\n".join(map(SimulatorTestCaseDefinition, self.test_cases))
elif self.test_type == "assembler":
return ",\n".join(map(AssemblerTestCaseDefinition, self.test_cases))
elif self.test_type == "macro-assembler":
return ",\n".join(map(MacroAssemblerTestCaseDefinition, self.test_cases))
else:
raise Exception("Unrecognized test type \"{}\".".format(self.test_type))
def IncludeTraceFiles(self):
"""
~~~
#include "aarch32/traces/sim-...-a32.h"
#include "aarch32/traces/sim-...-a32.h"
...
~~~
"""
operands = "-".join(self.operands.GetNames())
return "".join([
"#include \"aarch32/traces/" + self.GetTraceFileName(mnemonic) + "\"\n"
for mnemonic in self.mnemonics
])
def MacroAssemblerMethodArgs(self):
"""
~~~
Condition cond, Register rd, Register rm, const Operand& immediate
~~~
"""
return ", ".join([
operand.GetArgumentType() + " " + operand.name
for operand in self.operands
])
def MacroAssemblerSetISA(self):
"""
Generate code to set the ISA.
"""
if self.test_isa == "t32":
return "masm.UseT32();"
else:
return "masm.UseA32();"
def CodeInstantiateOperands(self):
"""
~~~
Condition cond = kTests[i].operands.cond;
Register rd = kTests[i].operands.rd;
...
~~~
"""
code = "".join([operand.Instantiate() for operand in self.operands])
if self.test_type in ["simulator", "macro-assembler"]:
# Simulator tests need scratch registers to function and uses
# `UseScratchRegisterScope` to dynamically allocate them. We need to
# exclude all register operands from the list of available scratch
# registers.
# MacroAssembler test also need to ensure that they don't try to run tests
# with registers that are scratch registers; the MacroAssembler contains
# assertions to protect against such usage.
excluded_registers = [
"scratch_registers.Exclude({});".format(operand.name)
for operand in self.operands.unwrap()
if operand.type_name == "Register"
]
return code + "\n".join(excluded_registers)
return code
def CodePrologue(self):
"""
~~~
__ Ldr(rn, MemOperand(input_ptr, offsetof(Inputs, rn)));
__ Ldr(rm, MemOperand(input_ptr, offsetof(Inputs, rm)));
...
~~~
"""
return "".join([input.Prologue() for input in self.inputs])
def CodeEpilogue(self):
"""
~~~
__ Str(rn, MemOperand(result_ptr, offsetof(Inputs, rn)));
__ Str(rm, MemOperand(result_ptr, offsetof(Inputs, rm)));
...
~~~
"""
return "".join([input.Epilogue() for input in self.inputs])
def CodeParameterList(self):
"""
~~~
cond, rd, rn, immediate
~~~
"""
return ", ".join([
operand.name
for operand in self.operands
])
def TracePrintOutputs(self):
"""
~~~
printf("0x%08" PRIx32, results[i]->outputs[j].cond);
printf(", ");
printf("0x%08" PRIx32, results[i]->outputs[j].rd);
printf(", ");
...
~~~
"""
return "printf(\", \");".join(
[input.PrintOutput() for input in self.inputs])
def CheckInstantiateResults(self):
"""
~~~
uint32_t cond = results[i]->outputs[j].cond;
uint32_t rd = results[i]->outputs[j].rd;
...
~~~
"""
return "".join([input.InstantiateResult() for input in self.inputs])
def CheckInstantiateInputs(self):
"""
~~~
uint32_t cond_input = kTests[i].inputs[j].cond;
uint32_t rd_input = kTests[i].inputs[j].rd;
...
~~~
"""
return "".join([input.InstantiateInput("_input") for input in self.inputs])
def CheckInstantiateReferences(self):
"""
~~~
uint32_t cond_ref = reference[i].outputs[j].cond;
uint32_t rd_ref = reference[i].outputs[j].rd;
...
~~~
"""
return "".join([input.InstantiateReference("_ref") for input in self.inputs])
def CheckResultsAgainstReferences(self):
"""
~~~
(cond != cond_ref) || (rd != rd_ref) || ...
~~~
"""
return " || ".join([input.Compare("", "!=", "_ref") for input in self.inputs])
def CheckPrintInput(self):
"""
~~~
printf("0x%08" PRIx32, cond_input);
printf(", ");
printf("0x%08" PRIx32, rd_input);
printf(", ");
...
~~~
"""
return "printf(\", \");".join(
[input.PrintInput("_input") for input in self.inputs])
def CheckPrintExpected(self):
"""
~~~
printf("0x%08" PRIx32, cond_ref);
printf(", ");
printf("0x%08" PRIx32, rd_ref);
printf(", ");
...
~~~
"""
return "printf(\", \");".join(
[input.PrintInput("_ref") for input in self.inputs])
def CheckPrintFound(self):
"""
~~~
printf("0x%08" PRIx32, cond);
printf(", ");
printf("0x%08" PRIx32, rd);
printf(", ");
...
~~~
"""
return "printf(\", \");".join(
[input.PrintInput("") for input in self.inputs])
def TestName(self):
"""
~~~
SIMULATOR_COND_RD_RN_RM_...
~~~
"""
return self.test_type.replace("-", "_").upper() + "_" + \
self.test_name.replace("-", "_").upper()
def GetTraceFileName(self, mnemonic):
"""
Return the name of a trace file for a given mnemonic.
"""
return self.test_type + "-" + self.test_name + "-" + \
mnemonic.lower() + ".h"
def WriteEmptyTraces(self, output_directory):
"""
Write out empty trace files so we can compile the new test cases.
"""
for mnemonic in self.mnemonics:
# The MacroAssembler tests have no traces.
if self.test_type == "macro-assembler": continue
with open(os.path.join(output_directory, self.GetTraceFileName(mnemonic)),
"w") as f:
code = "static const TestResult *kReference{} = NULL;\n"
f.write(code.format(self.MnemonicToMethodName(mnemonic)))
def GetIsaGuard(self):
"""
This guard ensure the ISA of the test is enabled.
"""
if 'A32' in self.TestName():
return 'VIXL_INCLUDE_TARGET_A32'
else:
assert 'T32' in self.TestName()
return 'VIXL_INCLUDE_TARGET_T32'