blob: b049c420cb66648f6f2785be8b152d1869a95791 [file] [log] [blame]
// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_AARCH64_SIMULATOR_AARCH64_H_
#define VIXL_AARCH64_SIMULATOR_AARCH64_H_
#include <vector>
#include "../globals-vixl.h"
#include "../utils-vixl.h"
#include "cpu-features.h"
#include "abi-aarch64.h"
#include "cpu-features-auditor-aarch64.h"
#include "disasm-aarch64.h"
#include "instructions-aarch64.h"
#include "simulator-constants-aarch64.h"
#ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
// These are only used for the ABI feature, and depend on checks performed for
// it.
#ifdef VIXL_HAS_ABI_SUPPORT
#include <tuple>
#if __cplusplus >= 201402L
// Required for `std::index_sequence`
#include <utility>
#endif
#endif
namespace vixl {
namespace aarch64 {
// Representation of memory, with typed getters and setters for access.
class Memory {
public:
template <typename T>
static T AddressUntag(T address) {
// Cast the address using a C-style cast. A reinterpret_cast would be
// appropriate, but it can't cast one integral type to another.
uint64_t bits = (uint64_t)address;
return (T)(bits & ~kAddressTagMask);
}
template <typename T, typename A>
static T Read(A address) {
T value;
address = AddressUntag(address);
VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8) ||
(sizeof(value) == 16));
memcpy(&value, reinterpret_cast<const char*>(address), sizeof(value));
return value;
}
template <typename A>
static uint64_t Read(int size_in_bytes, A address) {
switch (size_in_bytes) {
case 1:
return Read<uint8_t>(address);
case 2:
return Read<uint16_t>(address);
case 4:
return Read<uint32_t>(address);
case 8:
return Read<uint64_t>(address);
}
VIXL_UNREACHABLE();
return 0;
}
template <typename T, typename A>
static void Write(A address, T value) {
address = AddressUntag(address);
VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8) ||
(sizeof(value) == 16));
memcpy(reinterpret_cast<char*>(address), &value, sizeof(value));
}
};
// Represent a register (r0-r31, v0-v31, z0-z31, p0-p15).
template <unsigned kMaxSizeInBits>
class SimRegisterBase {
public:
static const unsigned kMaxSizeInBytes = kMaxSizeInBits / kBitsPerByte;
VIXL_STATIC_ASSERT((kMaxSizeInBytes * kBitsPerByte) == kMaxSizeInBits);
SimRegisterBase() : size_in_bytes_(kMaxSizeInBytes) { Clear(); }
unsigned GetSizeInBits() const { return size_in_bytes_ * kBitsPerByte; }
unsigned GetSizeInBytes() const { return size_in_bytes_; }
void SetSizeInBytes(unsigned size_in_bytes) {
VIXL_ASSERT(size_in_bytes <= kMaxSizeInBytes);
size_in_bytes_ = size_in_bytes;
}
void SetSizeInBits(unsigned size_in_bits) {
VIXL_ASSERT(size_in_bits <= kMaxSizeInBits);
VIXL_ASSERT((size_in_bits % kBitsPerByte) == 0);
SetSizeInBytes(size_in_bits / kBitsPerByte);
}
// Write the specified value. The value is zero-extended if necessary.
template <typename T>
void Write(T new_value) {
// All AArch64 registers are zero-extending.
if (sizeof(new_value) < GetSizeInBytes()) Clear();
WriteLane(new_value, 0);
NotifyRegisterWrite();
}
template <typename T>
VIXL_DEPRECATED("Write", void Set(T new_value)) {
Write(new_value);
}
void Clear() {
memset(value_, 0, kMaxSizeInBytes);
NotifyRegisterWrite();
}
// Insert a typed value into a register, leaving the rest of the register
// unchanged. The lane parameter indicates where in the register the value
// should be inserted, in the range [ 0, sizeof(value_) / sizeof(T) ), where
// 0 represents the least significant bits.
template <typename T>
void Insert(int lane, T new_value) {
WriteLane(new_value, lane);
NotifyRegisterWrite();
}
// Get the value as the specified type. The value is truncated if necessary.
template <typename T>
T Get() const {
return GetLane<T>(0);
}
// Get the lane value as the specified type. The value is truncated if
// necessary.
template <typename T>
T GetLane(int lane) const {
T result;
ReadLane(&result, lane);
return result;
}
template <typename T>
VIXL_DEPRECATED("GetLane", T Get(int lane) const) {
return GetLane(lane);
}
// Get the value of a specific bit, indexed from the least-significant bit of
// lane 0.
bool GetBit(int bit) const {
int bit_in_byte = bit % (sizeof(value_[0]) * kBitsPerByte);
int byte = bit / (sizeof(value_[0]) * kBitsPerByte);
return ((value_[byte] >> bit_in_byte) & 1) != 0;
}
// Return a pointer to the raw, underlying byte array.
const uint8_t* GetBytes() const { return value_; }
// TODO: Make this return a map of updated bytes, so that we can highlight
// updated lanes for load-and-insert. (That never happens for scalar code, but
// NEON has some instructions that can update individual lanes.)
bool WrittenSinceLastLog() const { return written_since_last_log_; }
void NotifyRegisterLogged() { written_since_last_log_ = false; }
protected:
uint8_t value_[kMaxSizeInBytes];
unsigned size_in_bytes_;
// Helpers to aid with register tracing.
bool written_since_last_log_;
void NotifyRegisterWrite() { written_since_last_log_ = true; }
private:
template <typename T>
void ReadLane(T* dst, int lane) const {
VIXL_ASSERT(lane >= 0);
VIXL_ASSERT((sizeof(*dst) + (lane * sizeof(*dst))) <= GetSizeInBytes());
memcpy(dst, &value_[lane * sizeof(*dst)], sizeof(*dst));
}
template <typename T>
void WriteLane(T src, int lane) {
VIXL_ASSERT(lane >= 0);
VIXL_ASSERT((sizeof(src) + (lane * sizeof(src))) <= GetSizeInBytes());
memcpy(&value_[lane * sizeof(src)], &src, sizeof(src));
}
// The default ReadLane and WriteLane methods assume what we are copying is
// "trivially copyable" by using memcpy. We have to provide alternative
// implementations for SimFloat16 which cannot be copied this way.
void ReadLane(vixl::internal::SimFloat16* dst, int lane) const {
uint16_t rawbits;
ReadLane(&rawbits, lane);
*dst = RawbitsToFloat16(rawbits);
}
void WriteLane(vixl::internal::SimFloat16 src, int lane) {
WriteLane(Float16ToRawbits(src), lane);
}
};
typedef SimRegisterBase<kXRegSize> SimRegister; // r0-r31
typedef SimRegisterBase<kPRegMaxSize> SimPRegister; // p0-p15
// FFR has the same format as a predicate register.
typedef SimPRegister SimFFRRegister;
// v0-v31 and z0-z31
class SimVRegister : public SimRegisterBase<kZRegMaxSize> {
public:
SimVRegister() : SimRegisterBase<kZRegMaxSize>(), accessed_as_z_(false) {}
void NotifyAccessAsZ() { accessed_as_z_ = true; }
void NotifyRegisterLogged() {
SimRegisterBase<kZRegMaxSize>::NotifyRegisterLogged();
accessed_as_z_ = false;
}
bool AccessedAsZSinceLastLog() const { return accessed_as_z_; }
private:
bool accessed_as_z_;
};
// Representation of a SVE predicate register.
class LogicPRegister {
public:
inline LogicPRegister(
SimPRegister& other) // NOLINT(runtime/references)(runtime/explicit)
: register_(other) {}
// Set a conveniently-sized block to 16 bits as the minimum predicate length
// is 16 bits and allow to be increased to multiples of 16 bits.
typedef uint16_t ChunkType;
// Assign a bit into the end positon of the specified lane.
// The bit is zero-extended if necessary.
void SetActive(VectorFormat vform, int lane_index, bool value) {
int psize = LaneSizeInBytesFromFormat(vform);
int bit_index = lane_index * psize;
int byte_index = bit_index / kBitsPerByte;
int bit_offset = bit_index % kBitsPerByte;
uint8_t byte = register_.GetLane<uint8_t>(byte_index);
register_.Insert(byte_index, ZeroExtend(byte, bit_offset, psize, value));
}
bool IsActive(VectorFormat vform, int lane_index) const {
int psize = LaneSizeInBytesFromFormat(vform);
int bit_index = lane_index * psize;
int byte_index = bit_index / kBitsPerByte;
int bit_offset = bit_index % kBitsPerByte;
uint8_t byte = register_.GetLane<uint8_t>(byte_index);
return ExtractBit(byte, bit_offset);
}
// The accessors for bulk processing.
int GetChunkCount() const {
VIXL_ASSERT((register_.GetSizeInBytes() % sizeof(ChunkType)) == 0);
return register_.GetSizeInBytes() / sizeof(ChunkType);
}
ChunkType GetChunk(int lane) const { return GetActiveMask<ChunkType>(lane); }
void SetChunk(int lane, ChunkType new_value) {
SetActiveMask(lane, new_value);
}
void SetAllBits() {
int chunk_size = sizeof(ChunkType) * kBitsPerByte;
ChunkType bits = GetUintMask(chunk_size);
for (int lane = 0;
lane < (static_cast<int>(register_.GetSizeInBits() / chunk_size));
lane++) {
SetChunk(lane, bits);
}
}
template <typename T>
T GetActiveMask(int lane) const {
return register_.GetLane<T>(lane);
}
template <typename T>
void SetActiveMask(int lane, T new_value) {
register_.Insert<T>(lane, new_value);
}
void Clear() { register_.Clear(); }
bool Aliases(const LogicPRegister& other) const {
return &register_ == &other.register_;
}
private:
// The bit assignment is zero-extended to fill the size of predicate element.
uint8_t ZeroExtend(uint8_t byte, int index, int psize, bool value) {
VIXL_ASSERT(index >= 0);
VIXL_ASSERT(index + psize <= kBitsPerByte);
int bits = value ? 1 : 0;
switch (psize) {
case 1:
AssignBit(byte, index, bits);
break;
case 2:
AssignBits(byte, index, 0x03, bits);
break;
case 4:
AssignBits(byte, index, 0x0f, bits);
break;
case 8:
AssignBits(byte, index, 0xff, bits);
break;
default:
VIXL_UNREACHABLE();
return 0;
}
return byte;
}
SimPRegister& register_;
};
// Representation of a vector register, with typed getters and setters for lanes
// and additional information to represent lane state.
class LogicVRegister {
public:
inline LogicVRegister(
SimVRegister& other) // NOLINT(runtime/references)(runtime/explicit)
: register_(other) {
for (size_t i = 0; i < ArrayLength(saturated_); i++) {
saturated_[i] = kNotSaturated;
}
for (size_t i = 0; i < ArrayLength(round_); i++) {
round_[i] = 0;
}
}
int64_t Int(VectorFormat vform, int index) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
int64_t element;
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
element = register_.GetLane<int8_t>(index);
break;
case 16:
element = register_.GetLane<int16_t>(index);
break;
case 32:
element = register_.GetLane<int32_t>(index);
break;
case 64:
element = register_.GetLane<int64_t>(index);
break;
default:
VIXL_UNREACHABLE();
return 0;
}
return element;
}
uint64_t Uint(VectorFormat vform, int index) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
uint64_t element;
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
element = register_.GetLane<uint8_t>(index);
break;
case 16:
element = register_.GetLane<uint16_t>(index);
break;
case 32:
element = register_.GetLane<uint32_t>(index);
break;
case 64:
element = register_.GetLane<uint64_t>(index);
break;
default:
VIXL_UNREACHABLE();
return 0;
}
return element;
}
uint64_t UintLeftJustified(VectorFormat vform, int index) const {
return Uint(vform, index) << (64 - LaneSizeInBitsFromFormat(vform));
}
int64_t IntLeftJustified(VectorFormat vform, int index) const {
uint64_t value = UintLeftJustified(vform, index);
int64_t result;
memcpy(&result, &value, sizeof(result));
return result;
}
void SetInt(VectorFormat vform, int index, int64_t value) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
register_.Insert(index, static_cast<int8_t>(value));
break;
case 16:
register_.Insert(index, static_cast<int16_t>(value));
break;
case 32:
register_.Insert(index, static_cast<int32_t>(value));
break;
case 64:
register_.Insert(index, static_cast<int64_t>(value));
break;
default:
VIXL_UNREACHABLE();
return;
}
}
void SetIntArray(VectorFormat vform, const int64_t* src) const {
ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
SetInt(vform, i, src[i]);
}
}
void SetUint(VectorFormat vform, int index, uint64_t value) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
register_.Insert(index, static_cast<uint8_t>(value));
break;
case 16:
register_.Insert(index, static_cast<uint16_t>(value));
break;
case 32:
register_.Insert(index, static_cast<uint32_t>(value));
break;
case 64:
register_.Insert(index, static_cast<uint64_t>(value));
break;
default:
VIXL_UNREACHABLE();
return;
}
}
void SetUintArray(VectorFormat vform, const uint64_t* src) const {
ClearForWrite(vform);
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
SetUint(vform, i, src[i]);
}
}
void ReadIntFromMem(VectorFormat vform,
unsigned msize_in_bits,
int index,
uint64_t addr) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
int64_t value;
switch (msize_in_bits) {
case 8:
value = Memory::Read<int8_t>(addr);
break;
case 16:
value = Memory::Read<int16_t>(addr);
break;
case 32:
value = Memory::Read<int32_t>(addr);
break;
case 64:
value = Memory::Read<int64_t>(addr);
break;
default:
VIXL_UNREACHABLE();
return;
}
unsigned esize_in_bits = LaneSizeInBitsFromFormat(vform);
VIXL_ASSERT(esize_in_bits >= msize_in_bits);
switch (esize_in_bits) {
case 8:
register_.Insert(index, static_cast<int8_t>(value));
break;
case 16:
register_.Insert(index, static_cast<int16_t>(value));
break;
case 32:
register_.Insert(index, static_cast<int32_t>(value));
break;
case 64:
register_.Insert(index, static_cast<int64_t>(value));
break;
default:
VIXL_UNREACHABLE();
return;
}
}
void ReadUintFromMem(VectorFormat vform,
unsigned msize_in_bits,
int index,
uint64_t addr) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
uint64_t value;
switch (msize_in_bits) {
case 8:
value = Memory::Read<uint8_t>(addr);
break;
case 16:
value = Memory::Read<uint16_t>(addr);
break;
case 32:
value = Memory::Read<uint32_t>(addr);
break;
case 64:
value = Memory::Read<uint64_t>(addr);
break;
default:
VIXL_UNREACHABLE();
return;
}
unsigned esize_in_bits = LaneSizeInBitsFromFormat(vform);
VIXL_ASSERT(esize_in_bits >= msize_in_bits);
switch (esize_in_bits) {
case 8:
register_.Insert(index, static_cast<uint8_t>(value));
break;
case 16:
register_.Insert(index, static_cast<uint16_t>(value));
break;
case 32:
register_.Insert(index, static_cast<uint32_t>(value));
break;
case 64:
register_.Insert(index, static_cast<uint64_t>(value));
break;
default:
VIXL_UNREACHABLE();
return;
}
}
void ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
register_.Insert(index, Memory::Read<uint8_t>(addr));
break;
case 16:
register_.Insert(index, Memory::Read<uint16_t>(addr));
break;
case 32:
register_.Insert(index, Memory::Read<uint32_t>(addr));
break;
case 64:
register_.Insert(index, Memory::Read<uint64_t>(addr));
break;
default:
VIXL_UNREACHABLE();
return;
}
}
void WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
uint64_t value = Uint(vform, index);
switch (LaneSizeInBitsFromFormat(vform)) {
case 8:
Memory::Write(addr, static_cast<uint8_t>(value));
break;
case 16:
Memory::Write(addr, static_cast<uint16_t>(value));
break;
case 32:
Memory::Write(addr, static_cast<uint32_t>(value));
break;
case 64:
Memory::Write(addr, value);
break;
}
}
template <typename T>
T Float(int index) const {
return register_.GetLane<T>(index);
}
template <typename T>
void SetFloat(int index, T value) const {
register_.Insert(index, value);
}
template <typename T>
void SetFloat(VectorFormat vform, int index, T value) const {
if (IsSVEFormat(vform)) register_.NotifyAccessAsZ();
register_.Insert(index, value);
}
// When setting a result in a register larger than the result itself, the top
// bits of the register must be cleared.
void ClearForWrite(VectorFormat vform) const {
// SVE destinations write whole registers, so we have nothing to clear.
if (IsSVEFormat(vform)) return;
unsigned size = RegisterSizeInBytesFromFormat(vform);
for (unsigned i = size; i < register_.GetSizeInBytes(); i++) {
SetUint(kFormat16B, i, 0);
}
}
// Saturation state for each lane of a vector.
enum Saturation {
kNotSaturated = 0,
kSignedSatPositive = 1 << 0,
kSignedSatNegative = 1 << 1,
kSignedSatMask = kSignedSatPositive | kSignedSatNegative,
kSignedSatUndefined = kSignedSatMask,
kUnsignedSatPositive = 1 << 2,
kUnsignedSatNegative = 1 << 3,
kUnsignedSatMask = kUnsignedSatPositive | kUnsignedSatNegative,
kUnsignedSatUndefined = kUnsignedSatMask
};
// Getters for saturation state.
Saturation GetSignedSaturation(int index) {
return static_cast<Saturation>(saturated_[index] & kSignedSatMask);
}
Saturation GetUnsignedSaturation(int index) {
return static_cast<Saturation>(saturated_[index] & kUnsignedSatMask);
}
// Setters for saturation state.
void ClearSat(int index) { saturated_[index] = kNotSaturated; }
void SetSignedSat(int index, bool positive) {
SetSatFlag(index, positive ? kSignedSatPositive : kSignedSatNegative);
}
void SetUnsignedSat(int index, bool positive) {
SetSatFlag(index, positive ? kUnsignedSatPositive : kUnsignedSatNegative);
}
void SetSatFlag(int index, Saturation sat) {
saturated_[index] = static_cast<Saturation>(saturated_[index] | sat);
VIXL_ASSERT((sat & kUnsignedSatMask) != kUnsignedSatUndefined);
VIXL_ASSERT((sat & kSignedSatMask) != kSignedSatUndefined);
}
// Saturate lanes of a vector based on saturation state.
LogicVRegister& SignedSaturate(VectorFormat vform) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
Saturation sat = GetSignedSaturation(i);
if (sat == kSignedSatPositive) {
SetInt(vform, i, MaxIntFromFormat(vform));
} else if (sat == kSignedSatNegative) {
SetInt(vform, i, MinIntFromFormat(vform));
}
}
return *this;
}
LogicVRegister& UnsignedSaturate(VectorFormat vform) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
Saturation sat = GetUnsignedSaturation(i);
if (sat == kUnsignedSatPositive) {
SetUint(vform, i, MaxUintFromFormat(vform));
} else if (sat == kUnsignedSatNegative) {
SetUint(vform, i, 0);
}
}
return *this;
}
// Getter for rounding state.
bool GetRounding(int index) { return round_[index]; }
// Setter for rounding state.
void SetRounding(int index, bool round) { round_[index] = round; }
// Round lanes of a vector based on rounding state.
LogicVRegister& Round(VectorFormat vform) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
SetUint(vform, i, Uint(vform, i) + (GetRounding(i) ? 1 : 0));
}
return *this;
}
// Unsigned halve lanes of a vector, and use the saturation state to set the
// top bit.
LogicVRegister& Uhalve(VectorFormat vform) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
uint64_t val = Uint(vform, i);
SetRounding(i, (val & 1) == 1);
val >>= 1;
if (GetUnsignedSaturation(i) != kNotSaturated) {
// If the operation causes unsigned saturation, the bit shifted into the
// most significant bit must be set.
val |= (MaxUintFromFormat(vform) >> 1) + 1;
}
SetInt(vform, i, val);
}
return *this;
}
// Signed halve lanes of a vector, and use the carry state to set the top bit.
LogicVRegister& Halve(VectorFormat vform) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
int64_t val = Int(vform, i);
SetRounding(i, (val & 1) == 1);
val >>= 1;
if (GetSignedSaturation(i) != kNotSaturated) {
// If the operation causes signed saturation, the sign bit must be
// inverted.
val ^= (MaxUintFromFormat(vform) >> 1) + 1;
}
SetInt(vform, i, val);
}
return *this;
}
int LaneCountFromFormat(VectorFormat vform) const {
if (IsSVEFormat(vform)) {
return register_.GetSizeInBits() / LaneSizeInBitsFromFormat(vform);
} else {
return vixl::aarch64::LaneCountFromFormat(vform);
}
}
private:
SimVRegister& register_;
// Allocate one saturation state entry per lane; largest register is type Q,
// and lanes can be a minimum of one byte wide.
Saturation saturated_[kZRegMaxSizeInBytes];
// Allocate one rounding state entry per lane.
bool round_[kZRegMaxSizeInBytes];
};
// Represent an SVE addressing mode and abstract per-lane address generation to
// make iteration easy.
//
// Contiguous accesses are described with a simple base address, the memory
// occupied by each lane (`SetMsizeInBytesLog2()`) and the number of elements in
// each struct (`SetRegCount()`).
//
// Scatter-gather accesses also require a SimVRegister and information about how
// to extract lanes from it.
class LogicSVEAddressVector {
public:
// scalar-plus-scalar
// scalar-plus-immediate
explicit LogicSVEAddressVector(uint64_t base)
: base_(base),
msize_in_bytes_log2_(kUnknownMsizeInBytesLog2),
reg_count_(1),
vector_(NULL),
vector_form_(kFormatUndefined),
vector_mod_(NO_SVE_OFFSET_MODIFIER),
vector_shift_(0) {}
// scalar-plus-vector
// vector-plus-immediate
// `base` should be the constant used for each element. That is, the value
// of `xn`, or `#<imm>`.
// `vector` should be the SimVRegister with offsets for each element. The
// vector format must be specified; SVE scatter/gather accesses typically
// support both 32-bit and 64-bit addressing.
//
// `mod` and `shift` correspond to the modifiers applied to each element in
// scalar-plus-vector forms, such as those used for unpacking and
// sign-extension. They are not used for vector-plus-immediate.
LogicSVEAddressVector(uint64_t base,
const SimVRegister* vector,
VectorFormat vform,
SVEOffsetModifier mod = NO_SVE_OFFSET_MODIFIER,
int shift = 0)
: base_(base),
msize_in_bytes_log2_(kUnknownMsizeInBytesLog2),
reg_count_(1),
vector_(vector),
vector_form_(vform),
vector_mod_(mod),
vector_shift_(shift) {}
// Set `msize` -- the memory occupied by each lane -- for address
// calculations.
void SetMsizeInBytesLog2(int msize_in_bytes_log2) {
VIXL_ASSERT(msize_in_bytes_log2 >= static_cast<int>(kBRegSizeInBytesLog2));
VIXL_ASSERT(msize_in_bytes_log2 <= static_cast<int>(kDRegSizeInBytesLog2));
msize_in_bytes_log2_ = msize_in_bytes_log2;
}
bool HasMsize() const {
return msize_in_bytes_log2_ != kUnknownMsizeInBytesLog2;
}
int GetMsizeInBytesLog2() const {
VIXL_ASSERT(HasMsize());
return msize_in_bytes_log2_;
}
int GetMsizeInBitsLog2() const {
return GetMsizeInBytesLog2() + kBitsPerByteLog2;
}
int GetMsizeInBytes() const { return 1 << GetMsizeInBytesLog2(); }
int GetMsizeInBits() const { return 1 << GetMsizeInBitsLog2(); }
void SetRegCount(int reg_count) {
VIXL_ASSERT(reg_count >= 1); // E.g. ld1/st1
VIXL_ASSERT(reg_count <= 4); // E.g. ld4/st4
reg_count_ = reg_count;
}
int GetRegCount() const { return reg_count_; }
// Full per-element address calculation for structured accesses.
//
// Note that the register number argument (`reg`) is zero-based.
uint64_t GetElementAddress(int lane, int reg) const {
VIXL_ASSERT(reg < GetRegCount());
// Individual structures are always contiguous in memory, so this
// implementation works for both contiguous and scatter-gather addressing.
return GetStructAddress(lane) + (reg * GetMsizeInBytes());
}
// Full per-struct address calculation for structured accesses.
uint64_t GetStructAddress(int lane) const;
bool IsContiguous() const { return vector_ == NULL; }
bool IsScatterGather() const { return !IsContiguous(); }
private:
uint64_t base_;
int msize_in_bytes_log2_;
int reg_count_;
const SimVRegister* vector_;
VectorFormat vector_form_;
SVEOffsetModifier vector_mod_;
int vector_shift_;
static const int kUnknownMsizeInBytesLog2 = -1;
};
// The proper way to initialize a simulated system register (such as NZCV) is as
// follows:
// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
class SimSystemRegister {
public:
// The default constructor represents a register which has no writable bits.
// It is not possible to set its value to anything other than 0.
SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) {}
uint32_t GetRawValue() const { return value_; }
VIXL_DEPRECATED("GetRawValue", uint32_t RawValue() const) {
return GetRawValue();
}
void SetRawValue(uint32_t new_value) {
value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
}
uint32_t ExtractBits(int msb, int lsb) const {
return ExtractUnsignedBitfield32(msb, lsb, value_);
}
VIXL_DEPRECATED("ExtractBits", uint32_t Bits(int msb, int lsb) const) {
return ExtractBits(msb, lsb);
}
int32_t ExtractSignedBits(int msb, int lsb) const {
return ExtractSignedBitfield32(msb, lsb, value_);
}
VIXL_DEPRECATED("ExtractSignedBits",
int32_t SignedBits(int msb, int lsb) const) {
return ExtractSignedBits(msb, lsb);
}
void SetBits(int msb, int lsb, uint32_t bits);
// Default system register values.
static SimSystemRegister DefaultValueFor(SystemRegister id);
#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
uint32_t Get##Name() const { return this->Func(HighBit, LowBit); } \
VIXL_DEPRECATED("Get" #Name, uint32_t Name() const) { return Get##Name(); } \
void Set##Name(uint32_t bits) { SetBits(HighBit, LowBit, bits); }
#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
#undef DEFINE_ZERO_BITS
#undef DEFINE_GETTER
protected:
// Most system registers only implement a few of the bits in the word. Other
// bits are "read-as-zero, write-ignored". The write_ignore_mask argument
// describes the bits which are not modifiable.
SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
: value_(value), write_ignore_mask_(write_ignore_mask) {}
uint32_t value_;
uint32_t write_ignore_mask_;
};
class SimExclusiveLocalMonitor {
public:
SimExclusiveLocalMonitor() : kSkipClearProbability(8), seed_(0x87654321) {
Clear();
}
// Clear the exclusive monitor (like clrex).
void Clear() {
address_ = 0;
size_ = 0;
}
// Clear the exclusive monitor most of the time.
void MaybeClear() {
if ((seed_ % kSkipClearProbability) != 0) {
Clear();
}
// Advance seed_ using a simple linear congruential generator.
seed_ = (seed_ * 48271) % 2147483647;
}
// Mark the address range for exclusive access (like load-exclusive).
void MarkExclusive(uint64_t address, size_t size) {
address_ = address;
size_ = size;
}
// Return true if the address range is marked (like store-exclusive).
// This helper doesn't implicitly clear the monitor.
bool IsExclusive(uint64_t address, size_t size) {
VIXL_ASSERT(size > 0);
// Be pedantic: Require both the address and the size to match.
return (size == size_) && (address == address_);
}
private:
uint64_t address_;
size_t size_;
const int kSkipClearProbability;
uint32_t seed_;
};
// We can't accurate simulate the global monitor since it depends on external
// influences. Instead, this implementation occasionally causes accesses to
// fail, according to kPassProbability.
class SimExclusiveGlobalMonitor {
public:
SimExclusiveGlobalMonitor() : kPassProbability(8), seed_(0x87654321) {}
bool IsExclusive(uint64_t address, size_t size) {
USE(address, size);
bool pass = (seed_ % kPassProbability) != 0;
// Advance seed_ using a simple linear congruential generator.
seed_ = (seed_ * 48271) % 2147483647;
return pass;
}
private:
const int kPassProbability;
uint32_t seed_;
};
class Simulator : public DecoderVisitor {
public:
explicit Simulator(Decoder* decoder, FILE* stream = stdout);
~Simulator();
void ResetState();
// Run the simulator.
virtual void Run();
void RunFrom(const Instruction* first);
#if defined(VIXL_HAS_ABI_SUPPORT) && __cplusplus >= 201103L && \
(defined(__clang__) || GCC_VERSION_OR_NEWER(4, 9, 1))
// Templated `RunFrom` version taking care of passing arguments and returning
// the result value.
// This allows code like:
// int32_t res = simulator.RunFrom<int32_t, int32_t>(GenerateCode(),
// 0x123);
// It requires VIXL's ABI features, and C++11 or greater.
// Also, the initialisation of tuples is incorrect in GCC before 4.9.1:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51253
template <typename R, typename... P>
R RunFrom(const Instruction* code, P... arguments) {
return RunFromStructHelper<R, P...>::Wrapper(this, code, arguments...);
}
template <typename R, typename... P>
struct RunFromStructHelper {
static R Wrapper(Simulator* simulator,
const Instruction* code,
P... arguments) {
ABI abi;
std::tuple<P...> unused_tuple{
// TODO: We currently do not support arguments passed on the stack. We
// could do so by using `WriteGenericOperand()` here, but may need to
// add features to handle situations where the stack is or is not set
// up.
(simulator->WriteCPURegister(abi.GetNextParameterGenericOperand<P>()
.GetCPURegister(),
arguments),
arguments)...};
simulator->RunFrom(code);
return simulator->ReadGenericOperand<R>(abi.GetReturnGenericOperand<R>());
}
};
// Partial specialization when the return type is `void`.
template <typename... P>
struct RunFromStructHelper<void, P...> {
static void Wrapper(Simulator* simulator,
const Instruction* code,
P... arguments) {
ABI abi;
std::tuple<P...> unused_tuple{
// TODO: We currently do not support arguments passed on the stack. We
// could do so by using `WriteGenericOperand()` here, but may need to
// add features to handle situations where the stack is or is not set
// up.
(simulator->WriteCPURegister(abi.GetNextParameterGenericOperand<P>()
.GetCPURegister(),
arguments),
arguments)...};
simulator->RunFrom(code);
}
};
#endif
// Execution ends when the PC hits this address.
static const Instruction* kEndOfSimAddress;
// Simulation helpers.
const Instruction* ReadPc() const { return pc_; }
VIXL_DEPRECATED("ReadPc", const Instruction* pc() const) { return ReadPc(); }
enum BranchLogMode { LogBranches, NoBranchLog };
void WritePc(const Instruction* new_pc,
BranchLogMode log_mode = LogBranches) {
if (log_mode == LogBranches) LogTakenBranch(new_pc);
pc_ = Memory::AddressUntag(new_pc);
pc_modified_ = true;
}
VIXL_DEPRECATED("WritePc", void set_pc(const Instruction* new_pc)) {
return WritePc(new_pc);
}
void IncrementPc() {
if (!pc_modified_) {
pc_ = pc_->GetNextInstruction();
}
}
VIXL_DEPRECATED("IncrementPc", void increment_pc()) { IncrementPc(); }
BType ReadBType() const { return btype_; }
void WriteNextBType(BType btype) { next_btype_ = btype; }
void UpdateBType() {
btype_ = next_btype_;
next_btype_ = DefaultBType;
}
// Helper function to determine BType for branches.
BType GetBTypeFromInstruction(const Instruction* instr) const;
bool PcIsInGuardedPage() const { return guard_pages_; }
void SetGuardedPages(bool guard_pages) { guard_pages_ = guard_pages; }
void ExecuteInstruction() {
// The program counter should always be aligned.
VIXL_ASSERT(IsWordAligned(pc_));
pc_modified_ = false;
if (movprfx_ != NULL) {
VIXL_CHECK(pc_->CanTakeSVEMovprfx(movprfx_));
movprfx_ = NULL;
}
// On guarded pages, if BType is not zero, take an exception on any
// instruction other than BTI, PACI[AB]SP, HLT or BRK.
if (PcIsInGuardedPage() && (ReadBType() != DefaultBType)) {
if (pc_->IsPAuth()) {
Instr i = pc_->Mask(SystemPAuthMask);
if ((i != PACIASP) && (i != PACIBSP)) {
VIXL_ABORT_WITH_MSG(
"Executing non-BTI instruction with wrong BType.");
}
} else if (!pc_->IsBti() && !pc_->IsException()) {
VIXL_ABORT_WITH_MSG("Executing non-BTI instruction with wrong BType.");
}
}
// decoder_->Decode(...) triggers at least the following visitors:
// 1. The CPUFeaturesAuditor (`cpu_features_auditor_`).
// 2. The PrintDisassembler (`print_disasm_`), if enabled.
// 3. The Simulator (`this`).
// User can add additional visitors at any point, but the Simulator requires
// that the ordering above is preserved.
decoder_->Decode(pc_);
IncrementPc();
LogAllWrittenRegisters();
UpdateBType();
VIXL_CHECK(cpu_features_auditor_.InstructionIsAvailable());
}
// Declare all Visitor functions.
#define DECLARE(A) \
virtual void Visit##A(const Instruction* instr) VIXL_OVERRIDE;
VISITOR_LIST_THAT_RETURN(DECLARE)
#undef DECLARE
virtual void Visit(Metadata* metadata,
const Instruction* instr) VIXL_OVERRIDE;
#define DECLARE(A) \
VIXL_NO_RETURN virtual void Visit##A(const Instruction* instr) VIXL_OVERRIDE;
VISITOR_LIST_THAT_DONT_RETURN(DECLARE)
#undef DECLARE
void Simulate_PdT_PgZ_ZnT_ZmT(const Instruction* instr);
void Simulate_PdT_Rn_Rm(const Instruction* instr);
void Simulate_PdT_Xn_Xm(const Instruction* instr);
void Simulate_ZdB_Zn1B_Zn2B_imm(const Instruction* instr);
void Simulate_ZdB_ZnB_ZmB(const Instruction* instr);
void Simulate_ZdD_PgM_ZnS(const Instruction* instr);
void Simulate_ZdD_ZnD_ZmD_imm(const Instruction* instr);
void Simulate_ZdH_PgM_ZnS(const Instruction* instr);
void Simulate_ZdH_ZnH_ZmH_imm(const Instruction* instr);
void Simulate_ZdS_PgM_ZnD(const Instruction* instr);
void Simulate_ZdS_PgM_ZnH(const Instruction* instr);
void Simulate_ZdS_PgM_ZnS(const Instruction* instr);
void Simulate_ZdS_ZnH_ZmH_imm(const Instruction* instr);
void Simulate_ZdS_ZnS_ZmS_imm(const Instruction* instr);
void Simulate_ZdT_PgM_ZnT(const Instruction* instr);
void Simulate_ZdT_PgZ_ZnT_ZmT(const Instruction* instr);
void Simulate_ZdT_Pg_Zn1T_Zn2T(const Instruction* instr);
void Simulate_ZdT_Zn1T_Zn2T_ZmT(const Instruction* instr);
void Simulate_ZdT_ZnT_ZmT(const Instruction* instr);
void Simulate_ZdT_ZnT_ZmTb(const Instruction* instr);
void Simulate_ZdT_ZnT_const(const Instruction* instr);
void Simulate_ZdaD_ZnD_ZmD_imm(const Instruction* instr);
void Simulate_ZdaD_ZnH_ZmH_imm_const(const Instruction* instr);
void Simulate_ZdaD_ZnS_ZmS_imm(const Instruction* instr);
void Simulate_ZdaH_ZnH_ZmH_imm(const Instruction* instr);
void Simulate_ZdaH_ZnH_ZmH_imm_const(const Instruction* instr);
void Simulate_ZdaS_ZnB_ZmB_imm_const(const Instruction* instr);
void Simulate_ZdaS_ZnH_ZmH(const Instruction* instr);
void Simulate_ZdaS_ZnH_ZmH_imm(const Instruction* instr);
void Simulate_ZdaS_ZnS_ZmS_imm(const Instruction* instr);
void Simulate_ZdaS_ZnS_ZmS_imm_const(const Instruction* instr);
void Simulate_ZdaT_PgM_ZnTb(const Instruction* instr);
void Simulate_ZdaT_ZnT_ZmT(const Instruction* instr);
void Simulate_ZdaT_ZnT_ZmT_const(const Instruction* instr);
void Simulate_ZdaT_ZnT_const(const Instruction* instr);
void Simulate_ZdaT_ZnTb_ZmTb(const Instruction* instr);
void Simulate_ZdaT_ZnTb_ZmTb_const(const Instruction* instr);
void Simulate_ZdnD_ZdnD_ZmD_ZkD(const Instruction* instr);
void Simulate_ZdnT_PgM_ZdnT_ZmT(const Instruction* instr);
void Simulate_ZdnT_PgM_ZdnT_const(const Instruction* instr);
void Simulate_ZdnT_ZdnT_ZmT_const(const Instruction* instr);
void Simulate_ZtD_PgZ_ZnD_Xm(const Instruction* instr);
void Simulate_ZtD_Pg_ZnD_Xm(const Instruction* instr);
void Simulate_ZtS_PgZ_ZnS_Xm(const Instruction* instr);
void Simulate_ZtS_Pg_ZnS_Xm(const Instruction* instr);
void SimulateSVEHalvingAddSub(const Instruction* instr);
void SimulateSVESaturatingArithmetic(const Instruction* instr);
void SimulateSVEIntArithPair(const Instruction* instr);
void SimulateSVENarrow(const Instruction* instr);
void SimulateSVEInterleavedArithLong(const Instruction* instr);
void SimulateSVEShiftLeftImm(const Instruction* instr);
void SimulateSVEAddSubCarry(const Instruction* instr);
void SimulateSVEAddSubHigh(const Instruction* instr);
void SimulateSVEIntMulLongVec(const Instruction* instr);
void SimulateSVESaturatingIntMulLongIdx(const Instruction* instr);
void SimulateSVEExclusiveOrRotate(const Instruction* instr);
// Integer register accessors.
// Basic accessor: Read the register as the specified type.
template <typename T>
T ReadRegister(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
VIXL_ASSERT(
code < kNumberOfRegisters ||
((r31mode == Reg31IsZeroRegister) && (code == kSPRegInternalCode)));
if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
T result;
memset(&result, 0, sizeof(result));
return result;
}
if ((r31mode == Reg31IsZeroRegister) && (code == kSPRegInternalCode)) {
code = 31;
}
return registers_[code].Get<T>();
}
template <typename T>
VIXL_DEPRECATED("ReadRegister",
T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister)
const) {
return ReadRegister<T>(code, r31mode);
}
// Common specialized accessors for the ReadRegister() template.
int32_t ReadWRegister(unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const {
return ReadRegister<int32_t>(code, r31mode);
}
VIXL_DEPRECATED("ReadWRegister",
int32_t wreg(unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const) {
return ReadWRegister(code, r31mode);
}
int64_t ReadXRegister(unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const {
return ReadRegister<int64_t>(code, r31mode);
}
VIXL_DEPRECATED("ReadXRegister",
int64_t xreg(unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const) {
return ReadXRegister(code, r31mode);
}
SimPRegister& ReadPRegister(unsigned code) {
VIXL_ASSERT(code < kNumberOfPRegisters);
return pregisters_[code];
}
SimFFRRegister& ReadFFR() { return ffr_register_; }
// As above, with parameterized size and return type. The value is
// either zero-extended or truncated to fit, as required.
template <typename T>
T ReadRegister(unsigned size,
unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const {
uint64_t raw;
switch (size) {
case kWRegSize:
raw = ReadRegister<uint32_t>(code, r31mode);
break;
case kXRegSize:
raw = ReadRegister<uint64_t>(code, r31mode);
break;
default:
VIXL_UNREACHABLE();
return 0;
}
T result;
VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(raw));
// Copy the result and truncate to fit. This assumes a little-endian host.
memcpy(&result, &raw, sizeof(result));
return result;
}
template <typename T>
VIXL_DEPRECATED("ReadRegister",
T reg(unsigned size,
unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const) {
return ReadRegister<T>(size, code, r31mode);
}
// Use int64_t by default if T is not specified.
int64_t ReadRegister(unsigned size,
unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const {
return ReadRegister<int64_t>(size, code, r31mode);
}
VIXL_DEPRECATED("ReadRegister",
int64_t reg(unsigned size,
unsigned code,
Reg31Mode r31mode = Reg31IsZeroRegister) const) {
return ReadRegister(size, code, r31mode);
}
enum RegLogMode { LogRegWrites, NoRegLog };
// Write 'value' into an integer register. The value is zero-extended. This
// behaviour matches AArch64 register writes.
//
// SP may be specified in one of two ways:
// - (code == kSPRegInternalCode) && (r31mode == Reg31IsZeroRegister)
// - (code == 31) && (r31mode == Reg31IsStackPointer)
template <typename T>
void WriteRegister(unsigned code,
T value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister) {
if (sizeof(T) < kWRegSizeInBytes) {
// We use a C-style cast on purpose here.
// Since we do not have access to 'constepxr if', the casts in this `if`
// must be valid even if we know the code will never be executed, in
// particular when `T` is a pointer type.
int64_t tmp_64bit = (int64_t)value;
int32_t tmp_32bit = static_cast<int32_t>(tmp_64bit);
WriteRegister<int32_t>(code, tmp_32bit, log_mode, r31mode);
return;
}
VIXL_ASSERT((sizeof(T) == kWRegSizeInBytes) ||
(sizeof(T) == kXRegSizeInBytes));
VIXL_ASSERT(
(code < kNumberOfRegisters) ||
((r31mode == Reg31IsZeroRegister) && (code == kSPRegInternalCode)));
if (code == 31) {
if (r31mode == Reg31IsZeroRegister) {
// Discard writes to the zero register.
return;
} else {
code = kSPRegInternalCode;
}
}
// registers_[31] is the stack pointer.
VIXL_STATIC_ASSERT((kSPRegInternalCode % kNumberOfRegisters) == 31);
registers_[code % kNumberOfRegisters].Write(value);
if (log_mode == LogRegWrites) {
LogRegister(code, GetPrintRegisterFormatForSize(sizeof(T)));
}
}
template <typename T>
VIXL_DEPRECATED("WriteRegister",
void set_reg(unsigned code,
T value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister)) {
WriteRegister<T>(code, value, log_mode, r31mode);
}
// Common specialized accessors for the set_reg() template.
void WriteWRegister(unsigned code,
int32_t value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister) {
WriteRegister(code, value, log_mode, r31mode);
}
VIXL_DEPRECATED("WriteWRegister",
void set_wreg(unsigned code,
int32_t value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister)) {
WriteWRegister(code, value, log_mode, r31mode);
}
void WriteXRegister(unsigned code,
int64_t value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister) {
WriteRegister(code, value, log_mode, r31mode);
}
VIXL_DEPRECATED("WriteXRegister",
void set_xreg(unsigned code,
int64_t value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister)) {
WriteXRegister(code, value, log_mode, r31mode);
}
// As above, with parameterized size and type. The value is either
// zero-extended or truncated to fit, as required.
template <typename T>
void WriteRegister(unsigned size,
unsigned code,
T value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister) {
// Zero-extend the input.
uint64_t raw = 0;
VIXL_STATIC_ASSERT(sizeof(value) <= sizeof(raw));
memcpy(&raw, &value, sizeof(value));
// Write (and possibly truncate) the value.
switch (size) {
case kWRegSize:
WriteRegister(code, static_cast<uint32_t>(raw), log_mode, r31mode);
break;
case kXRegSize:
WriteRegister(code, raw, log_mode, r31mode);
break;
default:
VIXL_UNREACHABLE();
return;
}
}
template <typename T>
VIXL_DEPRECATED("WriteRegister",
void set_reg(unsigned size,
unsigned code,
T value,
RegLogMode log_mode = LogRegWrites,
Reg31Mode r31mode = Reg31IsZeroRegister)) {
WriteRegister(size, code, value, log_mode, r31mode);
}
// Common specialized accessors for the set_reg() template.
// Commonly-used special cases.
template <typename T>
void WriteLr(T value) {
WriteRegister(kLinkRegCode, value);
}
template <typename T>
VIXL_DEPRECATED("WriteLr", void set_lr(T value)) {
WriteLr(value);
}
template <typename T>
void WriteSp(T value) {
WriteRegister(31, value, LogRegWrites, Reg31IsStackPointer);
}
template <typename T>
VIXL_DEPRECATED("WriteSp", void set_sp(T value)) {
WriteSp(value);
}
// Vector register accessors.
// These are equivalent to the integer register accessors, but for vector
// registers.
// A structure for representing a 128-bit Q register.
struct qreg_t {
uint8_t val[kQRegSizeInBytes];
};
// A structure for representing a SVE Z register.
struct zreg_t {
uint8_t val[kZRegMaxSizeInBytes];
};
// Basic accessor: read the register as the specified type.
template <typename T>
T ReadVRegister(unsigned code) const {
VIXL_STATIC_ASSERT(
(sizeof(T) == kBRegSizeInBytes) || (sizeof(T) == kHRegSizeInBytes) ||
(sizeof(T) == kSRegSizeInBytes) || (sizeof(T) == kDRegSizeInBytes) ||
(sizeof(T) == kQRegSizeInBytes));
VIXL_ASSERT(code < kNumberOfVRegisters);
return vregisters_[code].Get<T>();
}
template <typename T>
VIXL_DEPRECATED("ReadVRegister", T vreg(unsigned code) const) {
return ReadVRegister<T>(code);
}
// Common specialized accessors for the vreg() template.
int8_t ReadBRegister(unsigned code) const {
return ReadVRegister<int8_t>(code);
}
VIXL_DEPRECATED("ReadBRegister", int8_t breg(unsigned code) const) {
return ReadBRegister(code);
}
vixl::internal::SimFloat16 ReadHRegister(unsigned code) const {
return RawbitsToFloat16(ReadHRegisterBits(code));
}
VIXL_DEPRECATED("ReadHRegister", int16_t hreg(unsigned code) const) {
return Float16ToRawbits(ReadHRegister(code));
}
uint16_t ReadHRegisterBits(unsigned code) const {
return ReadVRegister<uint16_t>(code);
}
float ReadSRegister(unsigned code) const {
return ReadVRegister<float>(code);
}
VIXL_DEPRECATED("ReadSRegister", float sreg(unsigned code) const) {
return ReadSRegister(code);
}
uint32_t ReadSRegisterBits(unsigned code) const {
return ReadVRegister<uint32_t>(code);
}
VIXL_DEPRECATED("ReadSRegisterBits",
uint32_t sreg_bits(unsigned code) const) {
return ReadSRegisterBits(code);
}
double ReadDRegister(unsigned code) const {
return ReadVRegister<double>(code);
}
VIXL_DEPRECATED("ReadDRegister", double dreg(unsigned code) const) {
return ReadDRegister(code);
}
uint64_t ReadDRegisterBits(unsigned code) const {
return ReadVRegister<uint64_t>(code);
}
VIXL_DEPRECATED("ReadDRegisterBits",
uint64_t dreg_bits(unsigned code) const) {
return ReadDRegisterBits(code);
}
qreg_t ReadQRegister(unsigned code) const {
return ReadVRegister<qreg_t>(code);
}
VIXL_DEPRECATED("ReadQRegister", qreg_t qreg(unsigned code) const) {
return ReadQRegister(code);
}
// As above, with parameterized size and return type. The value is
// either zero-extended or truncated to fit, as required.
template <typename T>
T ReadVRegister(unsigned size, unsigned code) const {
uint64_t raw = 0;
T result;
switch (size) {
case kSRegSize:
raw = ReadVRegister<uint32_t>(code);
break;
case kDRegSize:
raw = ReadVRegister<uint64_t>(code);
break;
default:
VIXL_UNREACHABLE();
break;
}
VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(raw));
// Copy the result and truncate to fit. This assumes a little-endian host.
memcpy(&result, &raw, sizeof(result));
return result;
}
template <typename T>
VIXL_DEPRECATED("ReadVRegister", T vreg(unsigned size, unsigned code) const) {
return ReadVRegister<T>(size, code);
}
SimVRegister& ReadVRegister(unsigned code) { return vregisters_[code]; }
VIXL_DEPRECATED("ReadVRegister", SimVRegister& vreg(unsigned code)) {
return ReadVRegister(code);
}
// Basic accessor: Write the specified value.
template <typename T>
void WriteVRegister(unsigned code,
T value,
RegLogMode log_mode = LogRegWrites) {
VIXL_STATIC_ASSERT((sizeof(value) == kBRegSizeInBytes) ||
(sizeof(value) == kHRegSizeInBytes) ||
(sizeof(value) == kSRegSizeInBytes) ||
(sizeof(value) == kDRegSizeInBytes) ||
(sizeof(value) == kQRegSizeInBytes) ||
(sizeof(value) == kZRegMaxSizeInBytes));
VIXL_ASSERT(code < kNumberOfVRegisters);
vregisters_[code].Write(value);
if (log_mode == LogRegWrites) {
LogVRegister(code, GetPrintRegisterFormat(value));
}
}
template <typename T>
VIXL_DEPRECATED("WriteVRegister",
void set_vreg(unsigned code,
T value,
RegLogMode log_mode = LogRegWrites)) {
WriteVRegister(code, value, log_mode);
}
// Common specialized accessors for the WriteVRegister() template.
void WriteBRegister(unsigned code,
int8_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteBRegister",
void set_breg(unsigned code,
int8_t value,
RegLogMode log_mode = LogRegWrites)) {
return WriteBRegister(code, value, log_mode);
}
void WriteHRegister(unsigned code,
vixl::internal::SimFloat16 value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, Float16ToRawbits(value), log_mode);
}
void WriteHRegister(unsigned code,
int16_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteHRegister",
void set_hreg(unsigned code,
int16_t value,
RegLogMode log_mode = LogRegWrites)) {
return WriteHRegister(code, value, log_mode);
}
void WriteSRegister(unsigned code,
float value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteSRegister",
void set_sreg(unsigned code,
float value,
RegLogMode log_mode = LogRegWrites)) {
WriteSRegister(code, value, log_mode);
}
void WriteSRegisterBits(unsigned code,
uint32_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteSRegisterBits",
void set_sreg_bits(unsigned code,
uint32_t value,
RegLogMode log_mode = LogRegWrites)) {
WriteSRegisterBits(code, value, log_mode);
}
void WriteDRegister(unsigned code,
double value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteDRegister",
void set_dreg(unsigned code,
double value,
RegLogMode log_mode = LogRegWrites)) {
WriteDRegister(code, value, log_mode);
}
void WriteDRegisterBits(unsigned code,
uint64_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteDRegisterBits",
void set_dreg_bits(unsigned code,
uint64_t value,
RegLogMode log_mode = LogRegWrites)) {
WriteDRegisterBits(code, value, log_mode);
}
void WriteQRegister(unsigned code,
qreg_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
VIXL_DEPRECATED("WriteQRegister",
void set_qreg(unsigned code,
qreg_t value,
RegLogMode log_mode = LogRegWrites)) {
WriteQRegister(code, value, log_mode);
}
void WriteZRegister(unsigned code,
zreg_t value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister(code, value, log_mode);
}
template <typename T>
T ReadRegister(Register reg) const {
return ReadRegister<T>(reg.GetCode(), Reg31IsZeroRegister);
}
template <typename T>
void WriteRegister(Register reg,
T value,
RegLogMode log_mode = LogRegWrites) {
WriteRegister<T>(reg.GetCode(), value, log_mode, Reg31IsZeroRegister);
}
template <typename T>
T ReadVRegister(VRegister vreg) const {
return ReadVRegister<T>(vreg.GetCode());
}
template <typename T>
void WriteVRegister(VRegister vreg,
T value,
RegLogMode log_mode = LogRegWrites) {
WriteVRegister<T>(vreg.GetCode(), value, log_mode);
}
template <typename T>
T ReadCPURegister(CPURegister reg) const {
if (reg.IsVRegister()) {
return ReadVRegister<T>(VRegister(reg));
} else {
return ReadRegister<T>(Register(reg));
}
}
template <typename T>
void WriteCPURegister(CPURegister reg,
T value,
RegLogMode log_mode = LogRegWrites) {
if (reg.IsVRegister()) {
WriteVRegister<T>(VRegister(reg), value, log_mode);
} else {
WriteRegister<T>(Register(reg), value, log_mode);
}
}
uint64_t ComputeMemOperandAddress(const MemOperand& mem_op) const;
template <typename T>
T ReadGenericOperand(GenericOperand operand) const {
if (operand.IsCPURegister()) {
return ReadCPURegister<T>(operand.GetCPURegister());
} else {
VIXL_ASSERT(operand.IsMemOperand());
return Memory::Read<T>(ComputeMemOperandAddress(operand.GetMemOperand()));
}
}
template <typename T>
void WriteGenericOperand(GenericOperand operand,
T value,
RegLogMode log_mode = LogRegWrites) {
if (operand.IsCPURegister()) {
// Outside SIMD, registers are 64-bit or a subset of a 64-bit register. If
// the width of the value to write is smaller than 64 bits, the unused
// bits may contain unrelated values that the code following this write
// needs to handle gracefully.
// Here we fill the unused bits with a predefined pattern to catch issues
// early.
VIXL_ASSERT(operand.GetCPURegister().GetSizeInBits() <= 64);
uint64_t raw = 0xdeadda1adeadda1a;
memcpy(&raw, &value, sizeof(value));
WriteCPURegister(operand.GetCPURegister(), raw, log_mode);
} else {
VIXL_ASSERT(operand.IsMemOperand());
Memory::Write(ComputeMemOperandAddress(operand.GetMemOperand()), value);
}
}
bool ReadN() const { return nzcv_.GetN() != 0; }
VIXL_DEPRECATED("ReadN", bool N() const) { return ReadN(); }
bool ReadZ() const { return nzcv_.GetZ() != 0; }
VIXL_DEPRECATED("ReadZ", bool Z() const) { return ReadZ(); }
bool ReadC() const { return nzcv_.GetC() != 0; }
VIXL_DEPRECATED("ReadC", bool C() const) { return ReadC(); }
bool ReadV() const { return nzcv_.GetV() != 0; }
VIXL_DEPRECATED("ReadV", bool V() const) { return ReadV(); }
SimSystemRegister& ReadNzcv() { return nzcv_; }
VIXL_DEPRECATED("ReadNzcv", SimSystemRegister& nzcv()) { return ReadNzcv(); }
// TODO: Find a way to make the fpcr_ members return the proper types, so
// these accessors are not necessary.
FPRounding ReadRMode() const {
return static_cast<FPRounding>(fpcr_.GetRMode());
}
VIXL_DEPRECATED("ReadRMode", FPRounding RMode()) { return ReadRMode(); }
UseDefaultNaN ReadDN() const {
return fpcr_.GetDN() != 0 ? kUseDefaultNaN : kIgnoreDefaultNaN;
}
VIXL_DEPRECATED("ReadDN", bool DN()) {
return ReadDN() == kUseDefaultNaN ? true : false;
}
SimSystemRegister& ReadFpcr() { return fpcr_; }
VIXL_DEPRECATED("ReadFpcr", SimSystemRegister& fpcr()) { return ReadFpcr(); }
// Specify relevant register formats for Print(V)Register and related helpers.
enum PrintRegisterFormat {
// The lane size.
kPrintRegLaneSizeB = 0 << 0,
kPrintRegLaneSizeH = 1 << 0,
kPrintRegLaneSizeS = 2 << 0,
kPrintRegLaneSizeW = kPrintRegLaneSizeS,
kPrintRegLaneSizeD = 3 << 0,
kPrintRegLaneSizeX = kPrintRegLaneSizeD,
kPrintRegLaneSizeQ = 4 << 0,
kPrintRegLaneSizeUnknown = 5 << 0,
kPrintRegLaneSizeOffset = 0,
kPrintRegLaneSizeMask = 7 << 0,
// The overall register size.
kPrintRegAsScalar = 0,
kPrintRegAsDVector = 1 << 3,
kPrintRegAsQVector = 2 << 3,
kPrintRegAsSVEVector = 3 << 3,
kPrintRegAsVectorMask = 3 << 3,
// Indicate floating-point format lanes. (This flag is only supported for
// S-, H-, and D-sized lanes.)
kPrintRegAsFP = 1 << 5,
// With this flag, print helpers won't check that the upper bits are zero.
// This also forces the register name to be printed with the `reg<msb:0>`
// format.
//
// The flag is supported with any PrintRegisterFormat other than those with
// kPrintRegAsSVEVector.
kPrintRegPartial = 1 << 6,
// Supported combinations.
// These exist so that they can be referred to by name, but also because C++
// does not allow enum types to hold values that aren't explicitly
// enumerated, and we want to be able to combine the above flags.
// Scalar formats.
#define VIXL_DECL_PRINT_REG_SCALAR(size) \
kPrint##size##Reg = kPrintRegLaneSize##size | kPrintRegAsScalar, \
kPrint##size##RegPartial = kPrintRegLaneSize##size | kPrintRegPartial
#define VIXL_DECL_PRINT_REG_SCALAR_FP(size) \
VIXL_DECL_PRINT_REG_SCALAR(size) \
, kPrint##size##RegFP = kPrint##size##Reg | kPrintRegAsFP, \
kPrint##size##RegPartialFP = kPrint##size##RegPartial | kPrintRegAsFP
VIXL_DECL_PRINT_REG_SCALAR(W),
VIXL_DECL_PRINT_REG_SCALAR(X),
VIXL_DECL_PRINT_REG_SCALAR_FP(H),
VIXL_DECL_PRINT_REG_SCALAR_FP(S),
VIXL_DECL_PRINT_REG_SCALAR_FP(D),
VIXL_DECL_PRINT_REG_SCALAR(Q),
#undef VIXL_DECL_PRINT_REG_SCALAR
#undef VIXL_DECL_PRINT_REG_SCALAR_FP
#define VIXL_DECL_PRINT_REG_NEON(count, type, size) \
kPrintReg##count##type = kPrintRegLaneSize##type | kPrintRegAs##size, \
kPrintReg##count##type##Partial = kPrintReg##count##type | kPrintRegPartial
#define VIXL_DECL_PRINT_REG_NEON_FP(count, type, size) \
VIXL_DECL_PRINT_REG_NEON(count, type, size) \
, kPrintReg##count##type##FP = kPrintReg##count##type | kPrintRegAsFP, \
kPrintReg##count##type##PartialFP = \
kPrintReg##count##type##Partial | kPrintRegAsFP
VIXL_DECL_PRINT_REG_NEON(1, B, Scalar),
VIXL_DECL_PRINT_REG_NEON(8, B, DVector),
VIXL_DECL_PRINT_REG_NEON(16, B, QVector),
VIXL_DECL_PRINT_REG_NEON_FP(1, H, Scalar),
VIXL_DECL_PRINT_REG_NEON_FP(4, H, DVector),
VIXL_DECL_PRINT_REG_NEON_FP(8, H, QVector),
VIXL_DECL_PRINT_REG_NEON_FP(1, S, Scalar),
VIXL_DECL_PRINT_REG_NEON_FP(2, S, DVector),
VIXL_DECL_PRINT_REG_NEON_FP(4, S, QVector),
VIXL_DECL_PRINT_REG_NEON_FP(1, D, Scalar),
VIXL_DECL_PRINT_REG_NEON_FP(2, D, QVector),
VIXL_DECL_PRINT_REG_NEON(1, Q, Scalar),
#undef VIXL_DECL_PRINT_REG_NEON
#undef VIXL_DECL_PRINT_REG_NEON_FP
#define VIXL_DECL_PRINT_REG_SVE(type) \
kPrintRegVn##type = kPrintRegLaneSize##type | kPrintRegAsSVEVector, \
kPrintRegVn##type##Partial = kPrintRegVn##type | kPrintRegPartial
#define VIXL_DECL_PRINT_REG_SVE_FP(type) \
VIXL_DECL_PRINT_REG_SVE(type) \
, kPrintRegVn##type##FP = kPrintRegVn##type | kPrintRegAsFP, \
kPrintRegVn##type##PartialFP = kPrintRegVn##type##Partial | kPrintRegAsFP
VIXL_DECL_PRINT_REG_SVE(B),
VIXL_DECL_PRINT_REG_SVE_FP(H),
VIXL_DECL_PRINT_REG_SVE_FP(S),
VIXL_DECL_PRINT_REG_SVE_FP(D),
VIXL_DECL_PRINT_REG_SVE(Q)
#undef VIXL_DECL_PRINT_REG_SVE
#undef VIXL_DECL_PRINT_REG_SVE_FP
};
// Return `format` with the kPrintRegPartial flag set.
PrintRegisterFormat GetPrintRegPartial(PrintRegisterFormat format) {
// Every PrintRegisterFormat has a kPrintRegPartial counterpart, so the
// result of this cast will always be well-defined.
return static_cast<PrintRegisterFormat>(format | kPrintRegPartial);
}
// For SVE formats, return the format of a Q register part of it.
PrintRegisterFormat GetPrintRegAsQChunkOfSVE(PrintRegisterFormat format) {
VIXL_ASSERT((format & kPrintRegAsVectorMask) == kPrintRegAsSVEVector);
// Keep the FP and lane size fields.
int q_format = format & (kPrintRegLaneSizeMask | kPrintRegAsFP);
// The resulting format must always be partial, because we're not formatting
// the whole Z register.
q_format |= (kPrintRegAsQVector | kPrintRegPartial);
// This cast is always safe because NEON QVector formats support every
// combination of FP and lane size that SVE formats do.
return static_cast<PrintRegisterFormat>(q_format);
}
unsigned GetPrintRegLaneSizeInBytesLog2(PrintRegisterFormat format) {
VIXL_ASSERT((format & kPrintRegLaneSizeMask) != kPrintRegLaneSizeUnknown);
return (format & kPrintRegLaneSizeMask) >> kPrintRegLaneSizeOffset;
}
unsigned GetPrintRegLaneSizeInBytes(PrintRegisterFormat format) {
return 1 << GetPrintRegLaneSizeInBytesLog2(format);
}
unsigned GetPrintRegSizeInBytesLog2(PrintRegisterFormat format) {
switch (format & kPrintRegAsVectorMask) {
case kPrintRegAsScalar:
return GetPrintRegLaneSizeInBytesLog2(format);
case kPrintRegAsDVector:
return kDRegSizeInBytesLog2;
case kPrintRegAsQVector:
return kQRegSizeInBytesLog2;
default:
case kPrintRegAsSVEVector:
// We print SVE vectors in Q-sized chunks. These need special handling,
// and it's probably an error to call this function in that case.
VIXL_UNREACHABLE();
return kQRegSizeInBytesLog2;
}
}
unsigned GetPrintRegSizeInBytes(PrintRegisterFormat format) {
return 1 << GetPrintRegSizeInBytesLog2(format);
}
unsigned GetPrintRegSizeInBitsLog2(PrintRegisterFormat format) {
return GetPrintRegSizeInBytesLog2(format) + kBitsPerByteLog2;
}
unsigned GetPrintRegSizeInBits(PrintRegisterFormat format) {
return 1 << GetPrintRegSizeInBitsLog2(format);
}
const char* GetPartialRegSuffix(PrintRegisterFormat format) {
switch (GetPrintRegSizeInBitsLog2(format)) {
case kBRegSizeLog2:
return "<7:0>";
case kHRegSizeLog2:
return "<15:0>";
case kSRegSizeLog2:
return "<31:0>";
case kDRegSizeLog2:
return "<63:0>";
case kQRegSizeLog2:
return "<127:0>";
}
VIXL_UNREACHABLE();
return "<UNKNOWN>";
}
unsigned GetPrintRegLaneCount(PrintRegisterFormat format) {
unsigned reg_size_log2 = GetPrintRegSizeInBytesLog2(format);
unsigned lane_size_log2 = GetPrintRegLaneSizeInBytesLog2(format);
VIXL_ASSERT(reg_size_log2 >= lane_size_log2);
return 1 << (reg_size_log2 - lane_size_log2);
}
uint16_t GetPrintRegLaneMask(PrintRegisterFormat format) {
int print_as = format & kPrintRegAsVectorMask;
if (print_as == kPrintRegAsScalar) return 1;
// Vector formats, including SVE formats printed in Q-sized chunks.
static const uint16_t masks[] = {0xffff, 0x5555, 0x1111, 0x0101, 0x0001};
unsigned size_in_bytes_log2 = GetPrintRegLaneSizeInBytesLog2(format);
VIXL_ASSERT(size_in_bytes_log2 < ArrayLength(masks));
uint16_t mask = masks[size_in_bytes_log2];
// Exclude lanes that aren't visible in D vectors.
if (print_as == kPrintRegAsDVector) mask &= 0x00ff;
return mask;
}
PrintRegisterFormat GetPrintRegisterFormatForSize(unsigned reg_size,
unsigned lane_size);
PrintRegisterFormat GetPrintRegisterFormatForSize(unsigned size) {
return GetPrintRegisterFormatForSize(size, size);
}
PrintRegisterFormat GetPrintRegisterFormatForSizeFP(unsigned size) {
switch (size) {
default:
VIXL_UNREACHABLE();
return kPrintDReg;
case kDRegSizeInBytes:
return kPrintDReg;
case kSRegSizeInBytes:
return kPrintSReg;
case kHRegSizeInBytes:
return kPrintHReg;
}
}
PrintRegisterFormat GetPrintRegisterFormatTryFP(PrintRegisterFormat format) {
if ((GetPrintRegLaneSizeInBytes(format) == kHRegSizeInBytes) ||
(GetPrintRegLaneSizeInBytes(format) == kSRegSizeInBytes) ||
(GetPrintRegLaneSizeInBytes(format) == kDRegSizeInBytes)) {
return static_cast<PrintRegisterFormat>(format | kPrintRegAsFP);
}
return format;
}
PrintRegisterFormat GetPrintRegisterFormatForSizeTryFP(unsigned size) {
return GetPrintRegisterFormatTryFP(GetPrintRegisterFormatForSize(size));
}
template <typename T>
PrintRegisterFormat GetPrintRegisterFormat(T value) {
return GetPrintRegisterFormatForSize(sizeof(value));
}
PrintRegisterFormat GetPrintRegisterFormat(double value) {
VIXL_STATIC_ASSERT(sizeof(value) == kDRegSizeInBytes);
return GetPrintRegisterFormatForSizeFP(sizeof(value));
}
PrintRegisterFormat GetPrintRegisterFormat(float value) {
VIXL_STATIC_ASSERT(sizeof(value) == kSRegSizeInBytes);
return GetPrintRegisterFormatForSizeFP(sizeof(value));
}
PrintRegisterFormat GetPrintRegisterFormat(Float16 value) {
VIXL_STATIC_ASSERT(sizeof(Float16ToRawbits(value)) == kHRegSizeInBytes);
return GetPrintRegisterFormatForSizeFP(sizeof(Float16ToRawbits(value)));
}
PrintRegisterFormat GetPrintRegisterFormat(VectorFormat vform);
PrintRegisterFormat GetPrintRegisterFormatFP(VectorFormat vform);
// Print all registers of the specified types.
void PrintRegisters();
void PrintVRegisters();
void PrintZRegisters();
void PrintSystemRegisters();
// As above, but only print the registers that have been updated.
void PrintWrittenRegisters();
void PrintWrittenVRegisters();
void PrintWrittenPRegisters();
// As above, but respect LOG_REG and LOG_VREG.
void LogWrittenRegisters() {
if (ShouldTraceRegs()) PrintWrittenRegisters();
}
void LogWrittenVRegisters() {
if (ShouldTraceVRegs()) PrintWrittenVRegisters();
}
void LogWrittenPRegisters() {
if (ShouldTraceVRegs()) PrintWrittenPRegisters();
}
void LogAllWrittenRegisters() {
LogWrittenRegisters();
LogWrittenVRegisters();
LogWrittenPRegisters();
}
// The amount of space to leave for a register name. This is used to keep the
// values vertically aligned. The longest register name has the form
// "z31<2047:1920>". The total overall value indentation must also take into
// account the fixed formatting: "# {name}: 0x{value}".
static const int kPrintRegisterNameFieldWidth = 14;
// Print whole, individual register values.
// - The format can be used to restrict how much of the register is printed,
// but such formats indicate that the unprinted high-order bits are zero and
// these helpers will assert that.
// - If the format includes the kPrintRegAsFP flag then human-friendly FP
// value annotations will be printed.
// - The suffix can be used to add annotations (such as memory access
// details), or to suppress the newline.
void PrintRegister(int code,
PrintRegisterFormat format = kPrintXReg,
const char* suffix = "\n");
void PrintVRegister(int code,
PrintRegisterFormat format = kPrintReg1Q,
const char* suffix = "\n");
// PrintZRegister and PrintPRegister print over several lines, so they cannot
// allow the suffix to be overridden.
void PrintZRegister(int code, PrintRegisterFormat format = kPrintRegVnQ);
void PrintPRegister(int code, PrintRegisterFormat format = kPrintRegVnQ);
void PrintFFR(PrintRegisterFormat format = kPrintRegVnQ);
// Print a single Q-sized part of a Z register, or the corresponding two-byte
// part of a P register. These print single lines, and therefore allow the
// suffix to be overridden. The format must include the kPrintRegPartial flag.
void PrintPartialZRegister(int code,
int q_index,
PrintRegisterFormat format = kPrintRegVnQ,
const char* suffix = "\n");
void PrintPartialPRegister(int code,
int q_index,
PrintRegisterFormat format = kPrintRegVnQ,
const char* suffix = "\n");
void PrintPartialPRegister(const char* name,
const SimPRegister& reg,
int q_index,
PrintRegisterFormat format = kPrintRegVnQ,
const char* suffix = "\n");
// Like Print*Register (above), but respect trace parameters.
void LogRegister(unsigned code, PrintRegisterFormat format) {
if (ShouldTraceRegs()) PrintRegister(code, format);
}
void LogVRegister(unsigned code, PrintRegisterFormat format) {
if (ShouldTraceVRegs()) PrintVRegister(code, format);
}
void LogZRegister(unsigned code, PrintRegisterFormat format) {
if (ShouldTraceVRegs()) PrintZRegister(code, format);
}
void LogPRegister(unsigned code, PrintRegisterFormat format) {
if (ShouldTraceVRegs()) PrintPRegister(code, format);
}
void LogFFR(PrintRegisterFormat format) {
if (ShouldTraceVRegs()) PrintFFR(format);
}
// Other state updates, including system registers.
void PrintSystemRegister(SystemRegister id);
void PrintTakenBranch(const Instruction* target);
void LogSystemRegister(SystemRegister id) {
if (ShouldTraceSysRegs()) PrintSystemRegister(id);
}
void LogTakenBranch(const Instruction* target) {
if (ShouldTraceBranches()) PrintTakenBranch(target);
}
// Trace memory accesses.
// Common, contiguous register accesses (such as for scalars).
// The *Write variants automatically set kPrintRegPartial on the format.
void PrintRead(int rt_code, PrintRegisterFormat format, uintptr_t address);
void PrintExtendingRead(int rt_code,
PrintRegisterFormat format,
int access_size_in_bytes,
uintptr_t address);
void PrintWrite(int rt_code, PrintRegisterFormat format, uintptr_t address);
void PrintVRead(int rt_code, PrintRegisterFormat format, uintptr_t address);
void PrintVWrite(int rt_code, PrintRegisterFormat format, uintptr_t address);
// Simple, unpredicated SVE accesses always access the whole vector, and never
// know the lane type, so there's no need to accept a `format`.
void PrintZRead(int rt_code, uintptr_t address) {
vregisters_[rt_code].NotifyRegisterLogged();
PrintZAccess(rt_code, "<-", address);
}
void PrintZWrite(int rt_code, uintptr_t address) {
PrintZAccess(rt_code, "->", address);
}
void PrintPRead(int rt_code, uintptr_t address) {
pregisters_[rt_code].NotifyRegisterLogged();
PrintPAccess(rt_code, "<-", address);
}
void PrintPWrite(int rt_code, uintptr_t address) {
PrintPAccess(rt_code, "->", address);
}
// Like Print* (above), but respect GetTraceParameters().
void LogRead(int rt_code, PrintRegisterFormat format, uintptr_t address) {
if (ShouldTraceRegs()) PrintRead(rt_code, format, address);
}
void LogExtendingRead(int rt_code,
PrintRegisterFormat format,
int access_size_in_bytes,
uintptr_t address) {
if (ShouldTraceRegs()) {
PrintExtendingRead(rt_code, format, access_size_in_bytes, address);
}
}
void LogWrite(int rt_code, PrintRegisterFormat format, uintptr_t address) {
if (ShouldTraceWrites()) PrintWrite(rt_code, format, address);
}
void LogVRead(int rt_code, PrintRegisterFormat format, uintptr_t address) {
if (ShouldTraceVRegs()) PrintVRead(rt_code, format, address);
}
void LogVWrite(int rt_code, PrintRegisterFormat format, uintptr_t address) {
if (ShouldTraceWrites()) PrintVWrite(rt_code, format, address);
}
void LogZRead(int rt_code, uintptr_t address) {
if (ShouldTraceVRegs()) PrintZRead(rt_code, address);
}
void LogZWrite(int rt_code, uintptr_t address) {
if (ShouldTraceWrites()) PrintZWrite(rt_code, address);
}
void LogPRead(int rt_code, uintptr_t address) {
if (ShouldTraceVRegs()) PrintPRead(rt_code, address);
}
void LogPWrite(int rt_code, uintptr_t address) {
if (ShouldTraceWrites()) PrintPWrite(rt_code, address);
}
// Helpers for the above, where the access operation is parameterised.
// - For loads, set op = "<-".
// - For stores, set op = "->".
void PrintAccess(int rt_code,
PrintRegisterFormat format,
const char* op,
uintptr_t address);
void PrintVAccess(int rt_code,
PrintRegisterFormat format,
const char* op,
uintptr_t address);
// Simple, unpredicated SVE accesses always access the whole vector, and never
// know the lane type, so these don't accept a `format`.
void PrintZAccess(int rt_code, const char* op, uintptr_t address);
void PrintPAccess(int rt_code, const char* op, uintptr_t address);
// Multiple-structure accesses.
void PrintVStructAccess(int rt_code,
int reg_count,
PrintRegisterFormat format,
const char* op,
uintptr_t address);
// Single-structure (single-lane) accesses.
void PrintVSingleStructAccess(int rt_code,
int reg_count,
int lane,
PrintRegisterFormat format,
const char* op,
uintptr_t address);
// Replicating accesses.
void PrintVReplicatingStructAccess(int rt_code,
int reg_count,
PrintRegisterFormat format,
const char* op,
uintptr_t address);
// Multiple-structure accesses.
void PrintZStructAccess(int rt_code,
int reg_count,
const LogicPRegister& pg,
PrintRegisterFormat format,
int msize_in_bytes,
const char* op,
const LogicSVEAddressVector& addr);
// Register-printing helper for all structured accessors.
//
// All lanes (according to `format`) are printed, but lanes indicated by
// `focus_mask` are of particular interest. Each bit corresponds to a byte in
// the printed register, in a manner similar to SVE's predicates. Currently,
// this is used to determine when to print human-readable FP annotations.
void PrintVRegistersForStructuredAccess(int rt_code,
int reg_count,
uint16_t focus_mask,
PrintRegisterFormat format);
// As for the VRegister variant, but print partial Z register names.
void PrintZRegistersForStructuredAccess(int rt_code,
int q_index,
int reg_count,
uint16_t focus_mask,
PrintRegisterFormat format);
// Print part of a memory access. This should be used for annotating
// non-trivial accesses, such as structured or sign-extending loads. Call
// Print*Register (or Print*RegistersForStructuredAccess), then
// PrintPartialAccess for each contiguous access that makes up the
// instruction.
//
// access_mask:
// The lanes to be printed. Each bit corresponds to a byte in the printed
// register, in a manner similar to SVE's predicates, except that the
// lane size is not respected when interpreting lane_mask: unaligned bits
// must be zeroed.
//
// This function asserts that this mask is non-zero.
//
// future_access_mask:
// The lanes to be printed by a future invocation. This must be specified
// because vertical lines are drawn for partial accesses that haven't yet
// been printed. The format is the same as for accessed_mask.
//
// If a lane is active in both `access_mask` and `future_access_mask`,
// `access_mask` takes precedence.
//
// struct_element_count:
// The number of elements in each structure. For non-structured accesses,
// set this to one. Along with lane_size_in_bytes, this is used determine
// the size of each access, and to format the accessed value.
//
// op:
// For stores, use "->". For loads, use "<-".
//
// address:
// The address of this partial access. (Not the base address of the whole
// instruction.) The traced value is read from this address (according to
// part_count and lane_size_in_bytes) so it must be accessible, and when
// tracing stores, the store must have been executed before this function
// is called.
//
// reg_size_in_bytes:
// The size of the register being accessed. This helper is usually used
// for V registers or Q-sized chunks of Z registers, so that is the
// default, but it is possible to use this to annotate X register
// accesses by specifying kXRegSizeInBytes.
//
// The return value is a future_access_mask suitable for the next iteration,
// so that it is possible to execute this in a loop, until the mask is zero.
// Note that accessed_mask must still be updated by the caller for each call.
uint16_t PrintPartialAccess(uint16_t access_mask,
uint16_t future_access_mask,
int struct_element_count,
int lane_size_in_bytes,
const char* op,
uintptr_t address,
int reg_size_in_bytes = kQRegSizeInBytes);
// Print an abstract register value. This works for all register types, and
// can print parts of registers. This exists to ensure consistent formatting
// of values.
void PrintRegisterValue(const uint8_t* value,
int value_size,
PrintRegisterFormat format);
template <typename T>
void PrintRegisterValue(const T& sim_register, PrintRegisterFormat format) {
PrintRegisterValue(sim_register.GetBytes(),
std::min(sim_register.GetSizeInBytes(),
kQRegSizeInBytes),
format);
}
// As above, but format as an SVE predicate value, using binary notation with
// spaces between each bit so that they align with the Z register bytes that
// they predicate.
void PrintPRegisterValue(uint16_t value);
void PrintRegisterValueFPAnnotations(const uint8_t* value,
uint16_t lane_mask,
PrintRegisterFormat format);
template <typename T>
void PrintRegisterValueFPAnnotations(const T& sim_register,
uint16_t lane_mask,
PrintRegisterFormat format) {
PrintRegisterValueFPAnnotations(sim_register.GetBytes(), lane_mask, format);
}
template <typename T>
void PrintRegisterValueFPAnnotations(const T& sim_register,
PrintRegisterFormat format) {
PrintRegisterValueFPAnnotations(sim_register.GetBytes(),
GetPrintRegLaneMask(format),
format);
}
VIXL_NO_RETURN void DoUnreachable(const Instruction* instr);
void DoTrace(const Instruction* instr);
void DoLog(const Instruction* instr);
static const char* WRegNameForCode(unsigned code,
Reg31Mode mode = Reg31IsZeroRegister);
static const char* XRegNameForCode(unsigned code,
Reg31Mode mode = Reg31IsZeroRegister);
static const char* BRegNameForCode(unsigned code);
static const char* HRegNameForCode(unsigned code);
static const char* SRegNameForCode(unsigned code);
static const char* DRegNameForCode(unsigned code);
static const char* VRegNameForCode(unsigned code);
static const char* ZRegNameForCode(unsigned code);
static const char* PRegNameForCode(unsigned code);
bool IsColouredTrace() const { return coloured_trace_; }
VIXL_DEPRECATED("IsColouredTrace", bool coloured_trace() const) {
return IsColouredTrace();
}
void SetColouredTrace(bool value);
VIXL_DEPRECATED("SetColouredTrace", void set_coloured_trace(bool value)) {
SetColouredTrace(value);
}
// Values for traces parameters defined in simulator-constants-aarch64.h in
// enum TraceParameters.
int GetTraceParameters() const { return trace_parameters_; }
VIXL_DEPRECATED("GetTraceParameters", int trace_parameters() const) {
return GetTraceParameters();
}
bool ShouldTraceWrites() const {
return (GetTraceParameters() & LOG_WRITE) != 0;
}
bool ShouldTraceRegs() const {
return (GetTraceParameters() & LOG_REGS) != 0;
}
bool ShouldTraceVRegs() const {
return (GetTraceParameters() & LOG_VREGS) != 0;
}
bool ShouldTraceSysRegs() const {
return (GetTraceParameters() & LOG_SYSREGS) != 0;
}
bool ShouldTraceBranches() const {
return (GetTraceParameters() & LOG_BRANCH) != 0;
}
void SetTraceParameters(int parameters);
VIXL_DEPRECATED("SetTraceParameters",
void set_trace_parameters(int parameters)) {
SetTraceParameters(parameters);
}
// Clear the simulated local monitor to force the next store-exclusive
// instruction to fail.
void ClearLocalMonitor() { local_monitor_.Clear(); }
void SilenceExclusiveAccessWarning() {
print_exclusive_access_warning_ = false;
}
void CheckIsValidUnalignedAtomicAccess(int rn,
uint64_t address,
unsigned access_size) {
// Verify that the address is available to the host.
VIXL_ASSERT(address == static_cast<uintptr_t>(address));
if (GetCPUFeatures()->Has(CPUFeatures::kUSCAT)) {
// Check that the access falls entirely within one atomic access granule.
if (AlignDown(address, kAtomicAccessGranule) !=
AlignDown(address + access_size - 1, kAtomicAccessGranule)) {
VIXL_ALIGNMENT_EXCEPTION();
}
} else {
// Check that the access is aligned.
if (AlignDown(address, access_size) != address) {
VIXL_ALIGNMENT_EXCEPTION();
}
}
// The sp must be aligned to 16 bytes when it is accessed.
if ((rn == kSpRegCode) && (AlignDown(address, 16) != address)) {
VIXL_ALIGNMENT_EXCEPTION();
}
}
enum PointerType { kDataPointer, kInstructionPointer };
struct PACKey {
uint64_t high;
uint64_t low;
int number;
};
// Current implementation is that all pointers are tagged.
bool HasTBI(uint64_t ptr, PointerType type) {
USE(ptr, type);
return true;
}
// Current implementation uses 48-bit virtual addresses.
int GetBottomPACBit(uint64_t ptr, int ttbr) {
USE(ptr, ttbr);
VIXL_ASSERT((ttbr == 0) || (ttbr == 1));
return 48;
}
// The top PAC bit is 55 for the purposes of relative bit fields with TBI,
// however bit 55 is the TTBR bit regardless of TBI so isn't part of the PAC
// codes in pointers.
int GetTopPACBit(uint64_t ptr, PointerType type) {
return HasTBI(ptr, type) ? 55 : 63;
}
// Armv8.3 Pointer authentication helpers.
uint64_t CalculatePACMask(uint64_t ptr, PointerType type, int ext_bit);
uint64_t ComputePAC(uint64_t data, uint64_t context, PACKey key);
uint64_t AuthPAC(uint64_t ptr,
uint64_t context,
PACKey key,
PointerType type);
uint64_t AddPAC(uint64_t ptr, uint64_t context, PACKey key, PointerType type);
uint64_t StripPAC(uint64_t ptr, PointerType type);
// The common CPUFeatures interface with the set of available features.
CPUFeatures* GetCPUFeatures() {
return cpu_features_auditor_.GetCPUFeatures();
}
void SetCPUFeatures(const CPUFeatures& cpu_features) {
cpu_features_auditor_.SetCPUFeatures(cpu_features);
}
// The set of features that the simulator has encountered.
const CPUFeatures& GetSeenFeatures() {
return cpu_features_auditor_.GetSeenFeatures();
}
void ResetSeenFeatures() { cpu_features_auditor_.ResetSeenFeatures(); }
// Runtime call emulation support.
// It requires VIXL's ABI features, and C++11 or greater.
// Also, the initialisation of the tuples in RuntimeCall(Non)Void is incorrect
// in GCC before 4.9.1: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51253
#if defined(VIXL_HAS_ABI_SUPPORT) && __cplusplus >= 201103L && \
(defined(__clang__) || GCC_VERSION_OR_NEWER(4, 9, 1))
#define VIXL_HAS_SIMULATED_RUNTIME_CALL_SUPPORT
// The implementation of the runtime call helpers require the functionality
// provided by `std::index_sequence`. It is only available from C++14, but
// we want runtime call simulation to work from C++11, so we emulate if
// necessary.
#if __cplusplus >= 201402L
template <std::size_t... I>
using local_index_sequence = std::index_sequence<I...>;
template <typename... P>
using __local_index_sequence_for = std::index_sequence_for<P...>;
#else
// Emulate the behaviour of `std::index_sequence` and
// `std::index_sequence_for`.
// Naming follow the `std` names, prefixed with `emulated_`.
template <size_t... I>
struct emulated_index_sequence {};
// A recursive template to create a sequence of indexes.
// The base case (for `N == 0`) is declared outside of the class scope, as
// required by C++.
template <std::size_t N, size_t... I>
struct emulated_make_index_sequence_helper
: emulated_make_index_sequence_helper<N - 1, N - 1, I...> {};
template <std::size_t N>
struct emulated_make_index_sequence : emulated_make_index_sequence_helper<N> {
};
template <typename... P>
struct emulated_index_sequence_for
: emulated_make_index_sequence<sizeof...(P)> {};
template <std::size_t... I>
using local_index_sequence = emulated_index_sequence<I...>;
template <typename... P>
using __local_index_sequence_for = emulated_index_sequence_for<P...>;
#endif
// Expand the argument tuple and perform the call.
template <typename R, typename... P, std::size_t... I>
R DoRuntimeCall(R (*function)(P...),
std::tuple<P...> arguments,
local_index_sequence<I...>) {
return function(std::get<I>(arguments)...);
}
template <typename R, typename... P>
void RuntimeCallNonVoid(R (*function)(P...)) {
ABI abi;
std::tuple<P...> argument_operands{
ReadGenericOperand<P>(abi.GetNextParameterGenericOperand<P>())...};
R return_value = DoRuntimeCall(function,
argument_operands,
__local_index_sequence_for<P...>{});
WriteGenericOperand(abi.GetReturnGenericOperand<R>(), return_value);
}
template <typename R, typename... P>
void RuntimeCallVoid(R (*function)(P...)) {
ABI abi;
std::tuple<P...> argument_operands{
ReadGenericOperand<P>(abi.GetNextParameterGenericOperand<P>())...};
DoRuntimeCall(function,
argument_operands,
__local_index_sequence_for<P...>{});
}
// We use `struct` for `void` return type specialisation.
template <typename R, typename... P>
struct RuntimeCallStructHelper {
static void Wrapper(Simulator* simulator, uintptr_t function_pointer) {
R (*function)(P...) = reinterpret_cast<R (*)(P...)>(function_pointer);
simulator->RuntimeCallNonVoid(function);
}
};
// Partial specialization when the return type is `void`.
template <typename... P>
struct RuntimeCallStructHelper<void, P...> {
static void Wrapper(Simulator* simulator, uintptr_t function_pointer) {
void (*function)(P...) =
reinterpret_cast<void (*)(P...)>(function_pointer);
simulator->RuntimeCallVoid(function);
}
};
#endif
// Configure the simulated value of 'VL', which is the size of a Z register.
// Because this cannot occur during a program's lifetime, this function also
// resets the SVE registers.
void SetVectorLengthInBits(unsigned vector_length);
unsigned GetVectorLengthInBits() const { return vector_length_; }
unsigned GetVectorLengthInBytes() const {
VIXL_ASSERT((vector_length_ % kBitsPerByte) == 0);
return vector_length_ / kBitsPerByte;
}
unsigned GetPredicateLengthInBits() const {
VIXL_ASSERT((GetVectorLengthInBits() % kZRegBitsPerPRegBit) == 0);
return GetVectorLengthInBits() / kZRegBitsPerPRegBit;
}
unsigned GetPredicateLengthInBytes() const {
VIXL_ASSERT((GetVectorLengthInBytes() % kZRegBitsPerPRegBit) == 0);
return GetVectorLengthInBytes() / kZRegBitsPerPRegBit;
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) const {
if (IsSVEFormat(vform)) {
return GetVectorLengthInBits();
} else {
return vixl::aarch64::RegisterSizeInBitsFromFormat(vform);
}
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) const {
unsigned size_in_bits = RegisterSizeInBitsFromFormat(vform);
VIXL_ASSERT((size_in_bits % kBitsPerByte) == 0);
return size_in_bits / kBitsPerByte;
}
int LaneCountFromFormat(VectorFormat vform) const {
if (IsSVEFormat(vform)) {
return GetVectorLengthInBits() / LaneSizeInBitsFromFormat(vform);
} else {
return vixl::aarch64::LaneCountFromFormat(vform);
}
}
bool IsFirstActive(VectorFormat vform,
const LogicPRegister& mask,
const LogicPRegister& bits) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
if (mask.IsActive(vform, i)) {
return bits.IsActive(vform, i);
}
}
return false;
}
bool AreNoneActive(VectorFormat vform,
const LogicPRegister& mask,
const LogicPRegister& bits) {
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
if (mask.IsActive(vform, i) && bits.IsActive(vform, i)) {
return false;
}
}
return true;
}
bool IsLastActive(VectorFormat vform,
const LogicPRegister& mask,
const LogicPRegister& bits) {
for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) {
if (mask.IsActive(vform, i)) {
return bits.IsActive(vform, i);
}
}
return false;
}
void PredTest(VectorFormat vform,
const LogicPRegister& mask,
const LogicPRegister& bits) {
ReadNzcv().SetN(IsFirstActive(vform, mask, bits));
ReadNzcv().SetZ(AreNoneActive(vform, mask, bits));
ReadNzcv().SetC(!IsLastActive(vform, mask, bits));
ReadNzcv().SetV(0);
LogSystemRegister(NZCV);
}
SimPRegister& GetPTrue() { return pregister_all_true_; }
protected:
const char* clr_normal;
const char* clr_flag_name;
const char* clr_flag_value;
const char* clr_reg_name;
const char* clr_reg_value;
const char* clr_vreg_name;
const char* clr_vreg_value;
const char* clr_preg_name;
const char* clr_preg_value;
const char* clr_memory_address;
const char* clr_warning;
const char* clr_warning_message;
const char* clr_printf;
const char* clr_branch_marker;
// Simulation helpers ------------------------------------
void ResetSystemRegisters();
void ResetRegisters();
void ResetVRegisters();
void ResetPRegisters();
void ResetFFR();
bool ConditionPassed(Condition cond) {
switch (cond) {
case eq:
return ReadZ();
case ne:
return !ReadZ();
case hs:
return ReadC();
case lo:
return !ReadC();
case mi:
return ReadN();
case pl:
return !ReadN();
case vs:
return ReadV();
case vc:
return !ReadV();
case hi:
return ReadC() && !ReadZ();
case ls:
return !(ReadC() && !ReadZ());
case ge:
return ReadN() == ReadV();
case lt:
return ReadN() != ReadV();
case gt:
return !ReadZ() && (ReadN() == ReadV());
case le:
return !(!ReadZ() && (ReadN() == ReadV()));
case nv:
VIXL_FALLTHROUGH();
case al:
return true;
default:
VIXL_UNREACHABLE();
return false;
}
}
bool ConditionPassed(Instr cond) {
return ConditionPassed(static_cast<Condition>(cond));
}
bool ConditionFailed(Condition cond) { return !ConditionPassed(cond); }
void AddSubHelper(const Instruction* instr, int64_t op2);
uint64_t AddWithCarry(unsigned reg_size,
bool set_flags,
uint64_t left,
uint64_t right,
int carry_in = 0);
std::pair<uint64_t, uint8_t> AddWithCarry(unsigned reg_size,
uint64_t left,
uint64_t right,
int carry_in);
void LogicalHelper(const Instruction* instr, int64_t op2);
void ConditionalCompareHelper(const Instruction* instr, int64_t op2);
void LoadStoreHelper(const Instruction* instr,
int64_t offset,
AddrMode addrmode);
void LoadStorePairHelper(const Instruction* instr, AddrMode addrmode);
template <typename T>
void CompareAndSwapHelper(const Instruction* instr);
template <typename T>
void CompareAndSwapPairHelper(const Instruction* instr);
template <typename T>
void AtomicMemorySimpleHelper(const Instruction* instr);
template <typename T>
void AtomicMemorySwapHelper(const Instruction* instr);
template <typename T>
void LoadAcquireRCpcHelper(const Instruction* instr);
template <typename T1, typename T2>
void LoadAcquireRCpcUnscaledOffsetHelper(const Instruction* instr);
template <typename T>
void StoreReleaseUnscaledOffsetHelper(const Instruction* instr);
uintptr_t AddressModeHelper(unsigned addr_reg,
int64_t offset,
AddrMode addrmode);
void NEONLoadStoreMultiStructHelper(const Instruction* instr,
AddrMode addr_mode);
void NEONLoadStoreSingleStructHelper(const Instruction* instr,
AddrMode addr_mode);
uint64_t AddressUntag(uint64_t address) { return address & ~kAddressTagMask; }
template <typename T>
T* AddressUntag(T* address) {
uintptr_t address_raw = reinterpret_cast<uintptr_t>(address);
return reinterpret_cast<T*>(AddressUntag(address_raw));
}
int64_t ShiftOperand(unsigned reg_size,
uint64_t value,
Shift shift_type,
unsigned amount) const;
int64_t ExtendValue(unsigned reg_width,
int64_t value,
Extend extend_type,
unsigned left_shift = 0) const;
uint64_t PolynomialMult(uint64_t op1,
uint64_t op2,
int lane_size_in_bits) const;
void ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr);
void ld1(VectorFormat vform, LogicVRegister dst, int index, uint64_t addr);
void ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr);
void ld1r(VectorFormat vform,
VectorFormat unpack_vform,
LogicVRegister dst,
uint64_t addr,
bool is_signed = false);
void ld2(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
uint64_t addr);
void ld2(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
int index,
uint64_t addr);
void ld2r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
uint64_t addr);
void ld3(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
uint64_t addr);
void ld3(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
int index,
uint64_t addr);
void ld3r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
uint64_t addr);
void ld4(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
uint64_t addr);
void ld4(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
int index,
uint64_t addr);
void ld4r(VectorFormat vform,
LogicVRegister dst1,
LogicVRegister dst2,
LogicVRegister dst3,
LogicVRegister dst4,
uint64_t addr);
void st1(VectorFormat vform, LogicVRegister src, uint64_t addr);
void st1(VectorFormat vform, LogicVRegister src, int index, uint64_t addr);
void st2(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
uint64_t addr);
void st2(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
int index,
uint64_t addr);
void st3(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
LogicVRegister src3,
uint64_t addr);
void st3(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
LogicVRegister src3,
int index,
uint64_t addr);
void st4(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
LogicVRegister src3,
LogicVRegister src4,
uint64_t addr);
void st4(VectorFormat vform,
LogicVRegister src,
LogicVRegister src2,
LogicVRegister src3,
LogicVRegister src4,
int index,
uint64_t addr);
LogicVRegister cmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
Condition cond);
LogicVRegister cmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
int imm,
Condition cond);
LogicVRegister cmptst(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister add(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
// Add `value` to each lane of `src1`, treating `value` as unsigned for the
// purposes of setting the saturation flags.
LogicVRegister add_uint(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
uint64_t value);
LogicVRegister addp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicPRegister brka(LogicPRegister pd,
const LogicPRegister& pg,
const LogicPRegister& pn);
LogicPRegister brkb(LogicPRegister pd,
const LogicPRegister& pg,
const LogicPRegister& pn);
LogicPRegister brkn(LogicPRegister pdm,
const LogicPRegister& pg,
const LogicPRegister& pn);
LogicPRegister brkpa(LogicPRegister pd,
const LogicPRegister& pg,
const LogicPRegister& pn,
const LogicPRegister& pm);
LogicPRegister brkpb(LogicPRegister pd,
const LogicPRegister& pg,
const LogicPRegister& pn,
const LogicPRegister& pm);
// dst = srca + src1 * src2
LogicVRegister mla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
// dst = srca - src1 * src2
LogicVRegister mls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister mul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister mul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister mla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister mls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister pmul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sdiv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister udiv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
typedef LogicVRegister (Simulator::*ByElementOp)(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister fmulx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister smull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister smlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister umulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sqdmull(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmull2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqrdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sdot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqrdmlah(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister udot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sqrdmlsh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister sub(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
// Subtract `value` from each lane of `src1`, treating `value` as unsigned for
// the purposes of setting the saturation flags.
LogicVRegister sub_uint(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
uint64_t value);
LogicVRegister and_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister orr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister orn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister eor(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister bic(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister bic(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
uint64_t imm);
LogicVRegister bif(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister bit(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister bsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister cls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister clz(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister cnot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister cnt(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister not_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister rbit(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister rev(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister rev_byte(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int rev_size);
LogicVRegister rev16(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister rev32(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister rev64(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister addlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
bool is_signed,
bool do_accumulate);
LogicVRegister saddlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uaddlp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sadalp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uadalp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister ror(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int rotation);
LogicVRegister ext(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index);
LogicVRegister rotate_elements_right(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int index);
template <typename T>
LogicVRegister fcadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int rot);
LogicVRegister fcadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int rot);
template <typename T>
LogicVRegister fcmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
const LogicVRegister& acc,
int index,
int rot);
LogicVRegister fcmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int index,
int rot);
LogicVRegister fcmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
const LogicVRegister& acc,
int rot);
template <typename T>
LogicVRegister fadda(VectorFormat vform,
LogicVRegister acc,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister fadda(VectorFormat vform,
LogicVRegister acc,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister cadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
int rot,
bool saturate = false);
LogicVRegister bgrp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool do_bext = false);
LogicVRegister bdep(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister histcnt(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister index(VectorFormat vform,
LogicVRegister dst,
uint64_t start,
uint64_t step);
LogicVRegister ins_element(VectorFormat vform,
LogicVRegister dst,
int dst_index,
const LogicVRegister& src,
int src_index);
LogicVRegister ins_immediate(VectorFormat vform,
LogicVRegister dst,
int dst_index,
uint64_t imm);
LogicVRegister insr(VectorFormat vform, LogicVRegister dst, uint64_t imm);
LogicVRegister dup_element(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int src_index);
LogicVRegister dup_elements_to_segments(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int src_index);
LogicVRegister dup_immediate(VectorFormat vform,
LogicVRegister dst,
uint64_t imm);
LogicVRegister mov(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicPRegister mov(LogicPRegister dst, const LogicPRegister& src);
LogicVRegister mov_merging(VectorFormat vform,
LogicVRegister dst,
const SimPRegister& pg,
const LogicVRegister& src);
LogicVRegister mov_zeroing(VectorFormat vform,
LogicVRegister dst,
const SimPRegister& pg,
const LogicVRegister& src);
LogicVRegister mov_alternating(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int start_at);
LogicPRegister mov_merging(LogicPRegister dst,
const LogicPRegister& pg,
const LogicPRegister& src);
LogicPRegister mov_zeroing(LogicPRegister dst,
const LogicPRegister& pg,
const LogicPRegister& src);
LogicVRegister movi(VectorFormat vform, LogicVRegister dst, uint64_t imm);
LogicVRegister mvni(VectorFormat vform, LogicVRegister dst, uint64_t imm);
LogicVRegister orr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
uint64_t imm);
LogicVRegister sshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool shift_is_8bit = true);
LogicVRegister ushl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool shift_is_8bit = true);
LogicVRegister sshr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ushr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
// Perform a "conditional last" operation. The first part of the pair is true
// if any predicate lane is active, false otherwise. The second part takes the
// value of the last active (plus offset) lane, or last (plus offset) lane if
// none active.
std::pair<bool, uint64_t> clast(VectorFormat vform,
const LogicPRegister& pg,
const LogicVRegister& src2,
int offset_from_last_active);
LogicPRegister match(VectorFormat vform,
LogicPRegister dst,
const LogicVRegister& haystack,
const LogicVRegister& needles,
bool negate_match);
LogicVRegister compact(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister splice(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sel(VectorFormat vform,
LogicVRegister dst,
const SimPRegister& pg,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicPRegister sel(LogicPRegister dst,
const LogicPRegister& pg,
const LogicPRegister& src1,
const LogicPRegister& src2);
LogicVRegister sminmax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max);
LogicVRegister smax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister smin(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sminmaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max);
LogicVRegister smaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sminp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister addp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister addv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uaddlv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister saddlv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sminmaxv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
bool max);
LogicVRegister smaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sminv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uxtl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uxtl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sxtl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sxtl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uxt(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
unsigned from_size_in_bits);
LogicVRegister sxt(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
unsigned from_size_in_bits);
LogicVRegister tbl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& ind);
LogicVRegister tbl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& ind);
LogicVRegister tbl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& tab3,
const LogicVRegister& ind);
LogicVRegister tbl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& tab3,
const LogicVRegister& tab4,
const LogicVRegister& ind);
LogicVRegister Table(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
const LogicVRegister& tab);
LogicVRegister Table(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& ind,
bool zero_out_of_bounds,
const LogicVRegister* tab1,
const LogicVRegister* tab2 = NULL,
const LogicVRegister* tab3 = NULL,
const LogicVRegister* tab4 = NULL);
LogicVRegister tbx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& ind);
LogicVRegister tbx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& ind);
LogicVRegister tbx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& tab3,
const LogicVRegister& ind);
LogicVRegister tbx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& tab,
const LogicVRegister& tab2,
const LogicVRegister& tab3,
const LogicVRegister& tab4,
const LogicVRegister& ind);
LogicVRegister uaddl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uaddl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uaddw(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uaddw2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister saddl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister saddl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister saddw(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister saddw2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister usubl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister usubl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister usubw(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister usubw2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ssubl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ssubl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ssubw(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ssubw2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uminmax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max);
LogicVRegister umax(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister umin(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uminmaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool max);
LogicVRegister umaxp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uminp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uminmaxv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
bool max);
LogicVRegister umaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uminv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister trn1(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister trn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister zip1(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister zip2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uzp1(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uzp2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister shl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister scvtf(VectorFormat vform,
unsigned dst_data_size_in_bits,
unsigned src_data_size_in_bits,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
FPRounding round,
int fbits = 0);
LogicVRegister scvtf(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int fbits,
FPRounding rounding_mode);
LogicVRegister ucvtf(VectorFormat vform,
unsigned dst_data_size,
unsigned src_data_size,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
FPRounding round,
int fbits = 0);
LogicVRegister ucvtf(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int fbits,
FPRounding rounding_mode);
LogicVRegister sshll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sshll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister shll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister shll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister ushll(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister ushll2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sli(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sri(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sshr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister ushr(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister ssra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister usra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister srsra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister ursra(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister suqadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister usqadd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sqshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister uqshl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqshlu(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister abs(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister neg(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister extractnarrow(VectorFormat vform,
LogicVRegister dst,
bool dst_is_signed,
const LogicVRegister& src,
bool src_is_signed);
LogicVRegister xtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sqxtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister uqxtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister sqxtun(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister absdiff(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool is_signed);
LogicVRegister saba(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister uaba(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister shrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister shrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister rshrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister rshrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister uqshrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister uqshrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister uqrshrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister uqrshrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqshrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqshrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqrshrn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqrshrn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqshrun(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqshrun2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqrshrun(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqrshrun2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
int shift);
LogicVRegister sqrdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool round = true);
LogicVRegister dot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool is_signed);
LogicVRegister sdot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister udot(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister sqrdmlash(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool round = true,
bool sub_op = false);
LogicVRegister sqrdmlah(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool round = true);
LogicVRegister sqrdmlsh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool round = true);
LogicVRegister sqdmulh(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
#define NEON_3VREG_LOGIC_LIST(V) \
V(addhn) \
V(addhn2) \
V(raddhn) \
V(raddhn2) \
V(subhn) \
V(subhn2) \
V(rsubhn) \
V(rsubhn2) \
V(pmull) \
V(pmull2) \
V(sabal) \
V(sabal2) \
V(uabal) \
V(uabal2) \
V(sabdl) \
V(sabdl2) \
V(uabdl) \
V(uabdl2) \
V(smull) \
V(smull2) \
V(umull) \
V(umull2) \
V(smlal) \
V(smlal2) \
V(umlal) \
V(umlal2) \
V(smlsl) \
V(smlsl2) \
V(umlsl) \
V(umlsl2) \
V(sqdmlal) \
V(sqdmlal2) \
V(sqdmlsl) \
V(sqdmlsl2) \
V(sqdmull) \
V(sqdmull2)
#define DEFINE_LOGIC_FUNC(FXN) \
LogicVRegister FXN(VectorFormat vform, \
LogicVRegister dst, \
const LogicVRegister& src1, \
const LogicVRegister& src2);
NEON_3VREG_LOGIC_LIST(DEFINE_LOGIC_FUNC)
#undef DEFINE_LOGIC_FUNC
#define NEON_FP3SAME_LIST(V) \
V(fadd, FPAdd, false) \
V(fsub, FPSub, true) \
V(fmul, FPMul, true) \
V(fmulx, FPMulx, true) \
V(fdiv, FPDiv, true) \
V(fmax, FPMax, false) \
V(fmin, FPMin, false) \
V(fmaxnm, FPMaxNM, false) \
V(fminnm, FPMinNM, false)
#define DECLARE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \
template <typename T> \
LogicVRegister FN(VectorFormat vform, \
LogicVRegister dst, \
const LogicVRegister& src1, \
const LogicVRegister& src2); \
LogicVRegister FN(VectorFormat vform, \
LogicVRegister dst, \
const LogicVRegister& src1, \
const LogicVRegister& src2);
NEON_FP3SAME_LIST(DECLARE_NEON_FP_VECTOR_OP)
#undef DECLARE_NEON_FP_VECTOR_OP
#define NEON_FPPAIRWISE_LIST(V) \
V(faddp, fadd, FPAdd) \
V(fmaxp, fmax, FPMax) \
V(fmaxnmp, fmaxnm, FPMaxNM) \
V(fminp, fmin, FPMin) \
V(fminnmp, fminnm, FPMinNM)
#define DECLARE_NEON_FP_PAIR_OP(FNP, FN, OP) \
LogicVRegister FNP(VectorFormat vform, \
LogicVRegister dst, \
const LogicVRegister& src1, \
const LogicVRegister& src2); \
LogicVRegister FNP(VectorFormat vform, \
LogicVRegister dst, \
const LogicVRegister& src);
NEON_FPPAIRWISE_LIST(DECLARE_NEON_FP_PAIR_OP)
#undef DECLARE_NEON_FP_PAIR_OP
enum FrintMode {
kFrintToInteger = 0,
kFrintToInt32 = 32,
kFrintToInt64 = 64
};
template <typename T>
LogicVRegister frecps(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister frecps(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
template <typename T>
LogicVRegister frsqrts(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister frsqrts(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
template <typename T>
LogicVRegister fmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmla(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
template <typename T>
LogicVRegister fmls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmls(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& srca,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fnmul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmlal(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmlal2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmlsl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fmlsl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
template <typename T>
LogicVRegister fcmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
Condition cond);
LogicVRegister fcmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
Condition cond);
LogicVRegister fabscmp(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
Condition cond);
LogicVRegister fcmp_zero(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
Condition cond);
template <typename T>
LogicVRegister fneg(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fneg(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
template <typename T>
LogicVRegister frecpx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister frecpx(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister ftsmul(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ftssel(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister ftmad(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
unsigned index);
LogicVRegister fexpa(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
template <typename T>
LogicVRegister fscale(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister fscale(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
template <typename T>
LogicVRegister fabs_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fabs_(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fabd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2);
LogicVRegister frint(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
FPRounding rounding_mode,
bool inexact_exception = false,
FrintMode frint_mode = kFrintToInteger);
LogicVRegister fcvt(VectorFormat vform,
unsigned dst_data_size_in_bits,
unsigned src_data_size_in_bits,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister fcvts(VectorFormat vform,
unsigned dst_data_size_in_bits,
unsigned src_data_size_in_bits,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
FPRounding round,
int fbits = 0);
LogicVRegister fcvts(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
FPRounding rounding_mode,
int fbits = 0);
LogicVRegister fcvtu(VectorFormat vform,
unsigned dst_data_size_in_bits,
unsigned src_data_size_in_bits,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src,
FPRounding round,
int fbits = 0);
LogicVRegister fcvtu(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
FPRounding rounding_mode,
int fbits = 0);
LogicVRegister fcvtl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fcvtl2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fcvtn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fcvtn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fcvtxn(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fcvtxn2(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fsqrt(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister frsqrte(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister frecpe(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
FPRounding rounding);
LogicVRegister ursqrte(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister urecpe(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicPRegister pfalse(LogicPRegister dst);
LogicPRegister pfirst(LogicPRegister dst,
const LogicPRegister& pg,
const LogicPRegister& src);
LogicPRegister ptrue(VectorFormat vform, LogicPRegister dst, int pattern);
LogicPRegister pnext(VectorFormat vform,
LogicPRegister dst,
const LogicPRegister& pg,
const LogicPRegister& src);
LogicVRegister asrd(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
int shift);
LogicVRegister andv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister eorv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister orv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister saddv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister sminv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister smaxv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister uaddv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister uminv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister umaxv(VectorFormat vform,
LogicVRegister dst,
const LogicPRegister& pg,
const LogicVRegister& src);
LogicVRegister interleave_top_bottom(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
template <typename T>
struct TFPPairOp {
typedef T (Simulator::*type)(T a, T b);
};
template <typename T>
LogicVRegister FPPairedAcrossHelper(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
typename TFPPairOp<T>::type fn,
uint64_t inactive_value);
LogicVRegister FPPairedAcrossHelper(
VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src,
typename TFPPairOp<vixl::internal::SimFloat16>::type fn16,
typename TFPPairOp<float>::type fn32,
typename TFPPairOp<double>::type fn64,
uint64_t inactive_value);
LogicVRegister fminv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fmaxv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fminnmv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister fmaxnmv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister faddv(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
static const uint32_t CRC32_POLY = 0x04C11DB7;
static const uint32_t CRC32C_POLY = 0x1EDC6F41;
uint32_t Poly32Mod2(unsigned n, uint64_t data, uint32_t poly);
template <typename T>
uint32_t Crc32Checksum(uint32_t acc, T val, uint32_t poly);
uint32_t Crc32Checksum(uint32_t acc, uint64_t val, uint32_t poly);
void SysOp_W(int op, int64_t val);
template <typename T>
T FPRecipSqrtEstimate(T op);
template <typename T>
T FPRecipEstimate(T op, FPRounding rounding);
template <typename T, typename R>
R FPToFixed(T op, int fbits, bool is_signed, FPRounding rounding);
void FPCompare(double val0, double val1, FPTrapFlags trap);
double FPRoundInt(double value, FPRounding round_mode);
double FPRoundInt(double value, FPRounding round_mode, FrintMode frint_mode);
double FPRoundIntCommon(double value, FPRounding round_mode);
double recip_sqrt_estimate(double a);
double recip_estimate(double a);
double FPRecipSqrtEstimate(double a);
double FPRecipEstimate(double a);
double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
::vixl::internal::SimFloat16 FixedToFloat16(int64_t src,
int fbits,
FPRounding round_mode);
::vixl::internal::SimFloat16 UFixedToFloat16(uint64_t src,
int fbits,
FPRounding round_mode);
int16_t FPToInt16(double value, FPRounding rmode);
int32_t FPToInt32(double value, FPRounding rmode);
int64_t FPToInt64(double value, FPRounding rmode);
uint16_t FPToUInt16(double value, FPRounding rmode);
uint32_t FPToUInt32(double value, FPRounding rmode);
uint64_t FPToUInt64(double value, FPRounding rmode);
int32_t FPToFixedJS(double value);
template <typename T>
T FPAdd(T op1, T op2);
template <typename T>
T FPNeg(T op);
template <typename T>
T FPDiv(T op1, T op2);
template <typename T>
T FPMax(T a, T b);
template <typename T>
T FPMaxNM(T a, T b);
template <typename T>
T FPMin(T a, T b);
template <typename T>
T FPMinNM(T a, T b);
template <typename T>
T FPMul(T op1, T op2);
template <typename T>
T FPMulx(T op1, T op2);
template <typename T>
T FPMulAdd(T a, T op1, T op2);
template <typename T>
T FPSqrt(T op);
template <typename T>
T FPSub(T op1, T op2);
template <typename T>
T FPRecipStepFused(T op1, T op2);
template <typename T>
T FPRSqrtStepFused(T op1, T op2);
// This doesn't do anything at the moment. We'll need it if we want support
// for cumulative exception bits or floating-point exceptions.
void FPProcessException() {}
bool FPProcessNaNs(const Instruction* instr);
// Pseudo Printf instruction
void DoPrintf(const Instruction* instr);
// Pseudo-instructions to configure CPU features dynamically.
void DoConfigureCPUFeatures(const Instruction* instr);
void DoSaveCPUFeatures(const Instruction* instr);
void DoRestoreCPUFeatures(const Instruction* instr);
// General arithmetic helpers ----------------------------
// Add `delta` to the accumulator (`acc`), optionally saturate, then zero- or
// sign-extend. Initial `acc` bits outside `n` are ignored, but the delta must
// be a valid int<n>_t.
uint64_t IncDecN(uint64_t acc,
int64_t delta,
unsigned n,
bool is_saturating = false,
bool is_signed = false);
// SVE helpers -------------------------------------------
LogicVRegister SVEBitwiseLogicalUnpredicatedHelper(LogicalOp op,
VectorFormat vform,
LogicVRegister zd,
const LogicVRegister& zn,
const LogicVRegister& zm);
LogicPRegister SVEPredicateLogicalHelper(SVEPredicateLogicalOp op,
LogicPRegister Pd,
const LogicPRegister& pn,
const LogicPRegister& pm);
LogicVRegister SVEBitwiseImmHelper(SVEBitwiseLogicalWithImm_UnpredicatedOp op,
VectorFormat vform,
LogicVRegister zd,
uint64_t imm);
enum UnpackType { kHiHalf, kLoHalf };
enum ExtendType { kSignedExtend, kUnsignedExtend };
LogicVRegister unpk(VectorFormat vform,
LogicVRegister zd,
const LogicVRegister& zn,
UnpackType unpack_type,
ExtendType extend_type);
LogicPRegister SVEIntCompareVectorsHelper(Condition cc,
VectorFormat vform,
LogicPRegister dst,
const LogicPRegister& mask,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool is_wide_elements = false,
FlagsUpdate flags = SetFlags);
void SVEGatherLoadScalarPlusVectorHelper(const Instruction* instr,
VectorFormat vform,
SVEOffsetModifier mod);
// Store each active zt<i>[lane] to `addr.GetElementAddress(lane, ...)`.
//
// `zt_code` specifies the code of the first register (zt). Each additional
// register (up to `reg_count`) is `(zt_code + i) % 32`.
//
// This helper calls LogZWrite in the proper way, according to `addr`.
void SVEStructuredStoreHelper(VectorFormat vform,
const LogicPRegister& pg,
unsigned zt_code,
const LogicSVEAddressVector& addr);
// Load each active zt<i>[lane] from `addr.GetElementAddress(lane, ...)`.
void SVEStructuredLoadHelper(VectorFormat vform,
const LogicPRegister& pg,
unsigned zt_code,
const LogicSVEAddressVector& addr,
bool is_signed = false);
enum SVEFaultTolerantLoadType {
// - Elements active in both FFR and pg are accessed as usual. If the access
// fails, the corresponding lane and all subsequent lanes are filled with
// an unpredictable value, and made inactive in FFR.
//
// - Elements active in FFR but not pg are set to zero.
//
// - Elements that are not active in FFR are filled with an unpredictable
// value, regardless of pg.
kSVENonFaultLoad,
// If type == kSVEFirstFaultLoad, the behaviour is the same, except that the
// first active element is always accessed, regardless of FFR, and will
// generate a real fault if it is inaccessible. If the lane is not active in
// FFR, the actual value loaded into the result is still unpredictable.
kSVEFirstFaultLoad
};
// Load with first-faulting or non-faulting load semantics, respecting and
// updating FFR.
void SVEFaultTolerantLoadHelper(VectorFormat vform,
const LogicPRegister& pg,
unsigned zt_code,
const LogicSVEAddressVector& addr,
SVEFaultTolerantLoadType type,
bool is_signed);
LogicVRegister SVEBitwiseShiftHelper(Shift shift_op,
VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool is_wide_elements);
// Pack all even- or odd-numbered elements of source vector side by side and
// place in elements of lower half the destination vector, and leave the upper
// half all zero.
// [...| H | G | F | E | D | C | B | A ]
// => [...................| G | E | C | A ]
LogicVRegister pack_even_elements(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
// [...| H | G | F | E | D | C | B | A ]
// => [...................| H | F | D | B ]
LogicVRegister pack_odd_elements(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src);
LogicVRegister adcl(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
bool top);
template <typename T>
LogicVRegister FTMaddHelper(VectorFormat vform,
LogicVRegister dst,
const LogicVRegister& src1,
const LogicVRegister& src2,
uint64_t coeff_pos,
uint64_t coeff_neg);
// Return the first or last active lane, or -1 if none are active.
int GetFirstActive(VectorFormat vform, const LogicPRegister& pg) const;
int GetLastActive(VectorFormat vform, const LogicPRegister& pg) const;
int CountActiveLanes(VectorFormat vform, const LogicPRegister& pg) const;
// Count active and true lanes in `pn`.
int CountActiveAndTrueLanes(VectorFormat vform,
const LogicPRegister& pg,
const LogicPRegister& pn) const;
// Count the number of lanes referred to by `pattern`, given the vector
// length. If `pattern` is not a recognised SVEPredicateConstraint, this
// returns zero.
int GetPredicateConstraintLaneCount(VectorFormat vform, int pattern) const;
// Simulate a runtime call.
void DoRuntimeCall(const Instruction* instr);
// Processor state ---------------------------------------
// Simulated monitors for exclusive access instructions.
SimExclusiveLocalMonitor local_monitor_;
SimExclusiveGlobalMonitor global_monitor_;
// Output stream.
FILE* stream_;
PrintDisassembler* print_disasm_;
// General purpose registers. Register 31 is the stack pointer.
SimRegister registers_[kNumberOfRegisters];
// Vector registers
SimVRegister vregisters_[kNumberOfVRegisters];
// SVE predicate registers.
SimPRegister pregisters_[kNumberOfPRegisters];
// SVE first-fault register.
SimFFRRegister ffr_register_;
// A pseudo SVE predicate register with all bits set to true.
SimPRegister pregister_all_true_;
// Program Status Register.
// bits[31, 27]: Condition flags N, Z, C, and V.
// (Negative, Zero, Carry, Overflow)
SimSystemRegister nzcv_;
// Floating-Point Control Register
SimSystemRegister fpcr_;
// Only a subset of FPCR features are supported by the simulator. This helper
// checks that the FPCR settings are supported.
//
// This is checked when floating-point instructions are executed, not when
// FPCR is set. This allows generated code to modify FPCR for external
// functions, or to save and restore it when entering and leaving generated
// code.
void AssertSupportedFPCR() {
// No flush-to-zero support.
VIXL_ASSERT(ReadFpcr().GetFZ() == 0);
// Ties-to-even rounding only.
VIXL_ASSERT(ReadFpcr().GetRMode() == FPTieEven);
// No alternative half-precision support.
VIXL_ASSERT(ReadFpcr().GetAHP() == 0);
}
static int CalcNFlag(uint64_t result, unsigned reg_size) {
return (result >> (reg_size - 1)) & 1;
}
static int CalcZFlag(uint64_t result) { return (result == 0) ? 1 : 0; }
static const uint32_t kConditionFlagsMask = 0xf0000000;
// Stack
byte* stack_;
static const int stack_protection_size_ = 256;
// 8 KB stack.
// TODO: Make this configurable, or automatically allocate space as it runs
// out (like the OS would try to do).
static const int stack_size_ = 8 * 1024 + 2 * stack_protection_size_;
byte* stack_limit_;
Decoder* decoder_;
// Indicates if the pc has been modified by the instruction and should not be
// automatically incremented.
bool pc_modified_;
const Instruction* pc_;
// If non-NULL, the last instruction was a movprfx, and validity needs to be
// checked.
Instruction const* movprfx_;
// Branch type register, used for branch target identification.
BType btype_;
// Next value of branch type register after the current instruction has been
// decoded.
BType next_btype_;
// Global flag for enabling guarded pages.
// TODO: implement guarding at page granularity, rather than globally.
bool guard_pages_;
static const char* xreg_names[];
static const char* wreg_names[];
static const char* breg_names[];
static const char* hreg_names[];
static const char* sreg_names[];
static const char* dreg_names[];
static const char* vreg_names[];
static const char* zreg_names[];
static const char* preg_names[];
private:
using FormToVisitorFnMap =
std::map<const std::string,
const std::function<void(Simulator*, const Instruction*)>>;
static FormToVisitorFnMap form_to_visitor_;
uint32_t form_hash_;
static const PACKey kPACKeyIA;
static const PACKey kPACKeyIB;
static const PACKey kPACKeyDA;
static const PACKey kPACKeyDB;
static const PACKey kPACKeyGA;
bool CanReadMemory(uintptr_t address, size_t size);
// CanReadMemory needs dummy file descriptors, so we use a pipe. We can save
// some system call overhead by opening them on construction, rather than on
// every call to CanReadMemory.
int dummy_pipe_fd_[2];
template <typename T>
static T FPDefaultNaN();
// Standard NaN processing.
template <typename T>
T FPProcessNaN(T op) {
VIXL_ASSERT(IsNaN(op));
if (IsSignallingNaN(op)) {
FPProcessException();
}
return (ReadDN() == kUseDefaultNaN) ? FPDefaultNaN<T>() : ToQuietNaN(op);
}
template <typename T>
T FPProcessNaNs(T op1, T op2) {
if (IsSignallingNaN(op1)) {
return FPProcessNaN(op1);
} else if (IsSignallingNaN(op2)) {
return FPProcessNaN(op2);
} else if (IsNaN(op1)) {
VIXL_ASSERT(IsQuietNaN(op1));
return FPProcessNaN(op1);
} else if (IsNaN(op2)) {
VIXL_ASSERT(IsQuietNaN(op2));
return FPProcessNaN(op2);
} else {
return 0.0;
}
}
template <typename T>
T FPProcessNaNs3(T op1, T op2, T op3) {
if (IsSignallingNaN(op1)) {
return FPProcessNaN(op1);
} else if (IsSignallingNaN(op2)) {
return FPProcessNaN(op2);
} else if (IsSignallingNaN(op3)) {
return FPProcessNaN(op3);
} else if (IsNaN(op1)) {
VIXL_ASSERT(IsQuietNaN(op1));
return FPProcessNaN(op1);
} else if (IsNaN(op2)) {
VIXL_ASSERT(IsQuietNaN(op2));
return FPProcessNaN(op2);
} else if (IsNaN(op3)) {
VIXL_ASSERT(IsQuietNaN(op3));
return FPProcessNaN(op3);
} else {
return 0.0;
}
}
// Construct a SimVRegister from a SimPRegister, where each byte-sized lane of
// the destination is set to all true (0xff) when the corresponding
// predicate flag is set, and false (0x00) otherwise.
SimVRegister ExpandToSimVRegister(const SimPRegister& preg);
// Set each predicate flag in pd where the corresponding assigned-sized lane
// in vreg is non-zero. Clear the flag, otherwise. This is almost the opposite
// operation to ExpandToSimVRegister(), except that any non-zero lane is
// interpreted as true.
void ExtractFromSimVRegister(VectorFormat vform,
SimPRegister& pd, // NOLINT(runtime/references)
SimVRegister vreg);
bool coloured_trace_;
// A set of TraceParameters flags.
int trace_parameters_;
// Indicates whether the exclusive-access warning has been printed.
bool print_exclusive_access_warning_;
void PrintExclusiveAccessWarning();
CPUFeaturesAuditor cpu_features_auditor_;
std::vector<CPUFeatures> saved_cpu_features_;
// State for *rand48 functions, used to simulate randomness with repeatable
// behaviour (so that tests are deterministic). This is used to simulate RNDR
// and RNDRRS, as well as to simulate a source of entropy for architecturally
// undefined behaviour.
uint16_t rand_state_[3];
// A configurable size of SVE vector registers.
unsigned vector_length_;
};
#if defined(VIXL_HAS_SIMULATED_RUNTIME_CALL_SUPPORT) && __cplusplus < 201402L
// Base case of the recursive template used to emulate C++14
// `std::index_sequence`.
template <size_t... I>
struct Simulator::emulated_make_index_sequence_helper<0, I...>
: Simulator::emulated_index_sequence<I...> {};
#endif
} // namespace aarch64
} // namespace vixl
#endif // VIXL_INCLUDE_SIMULATOR_AARCH64
#endif // VIXL_AARCH64_SIMULATOR_AARCH64_H_