blob: 224cb33b9ac9a0c920b6029d3ac6ea87fb559049 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- The address space manager: segment initialisation and ---*/
/*--- tracking, stack operations ---*/
/*--- ---*/
/*--- Implementation for Linux (and Darwin!) m_aspacemgr-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2013 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGO_linux) || defined(VGO_darwin)
/* *************************************************************
DO NOT INCLUDE ANY OTHER FILES HERE.
ADD NEW INCLUDES ONLY TO priv_aspacemgr.h
AND THEN ONLY AFTER READING DIRE WARNINGS THERE TOO.
************************************************************* */
#include "priv_aspacemgr.h"
#include "config.h"
/* Note: many of the exported functions implemented below are
described more fully in comments in pub_core_aspacemgr.h.
*/
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Overview. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Purpose
~~~~~~~
The purpose of the address space manager (aspacem) is:
(1) to record the disposition of all parts of the process' address
space at all times.
(2) to the extent that it can, influence layout in ways favourable
to our purposes.
It is important to appreciate that whilst it can and does attempt
to influence layout, and usually succeeds, it isn't possible to
impose absolute control: in the end, the kernel is the final
arbiter, and can always bounce our requests.
Strategy
~~~~~~~~
The strategy is therefore as follows:
* Track ownership of mappings. Each one can belong either to
Valgrind or to the client.
* Try to place the client's fixed and hinted mappings at the
requested addresses. Fixed mappings are allowed anywhere except
in areas reserved by Valgrind; the client can trash its own
mappings if it wants. Hinted mappings are allowed providing they
fall entirely in free areas; if not, they will be placed by
aspacem in a free area.
* Anonymous mappings are allocated so as to keep Valgrind and
client areas widely separated when possible. If address space
runs low, then they may become intermingled: aspacem will attempt
to use all possible space. But under most circumstances lack of
address space is not a problem and so the areas will remain far
apart.
Searches for client space start at aspacem_cStart and will wrap
around the end of the available space if needed. Searches for
Valgrind space start at aspacem_vStart and will also wrap around.
Because aspacem_cStart is approximately at the start of the
available space and aspacem_vStart is approximately in the
middle, for the most part the client anonymous mappings will be
clustered towards the start of available space, and Valgrind ones
in the middle.
The available space is delimited by aspacem_minAddr and
aspacem_maxAddr. aspacem is flexible and can operate with these
at any (sane) setting. For 32-bit Linux, aspacem_minAddr is set
to some low-ish value at startup (64M) and aspacem_maxAddr is
derived from the stack pointer at system startup. This seems a
reliable way to establish the initial boundaries.
A command line option allows to change the value of aspacem_minAddr,
so as to allow memory hungry applications to use the lowest
part of the memory.
64-bit Linux is similar except for the important detail that the
upper boundary is set to 64G. The reason is so that all
anonymous mappings (basically all client data areas) are kept
below 64G, since that is the maximum range that memcheck can
track shadow memory using a fast 2-level sparse array. It can go
beyond that but runs much more slowly. The 64G limit is
arbitrary and is trivially changed. So, with the current
settings, programs on 64-bit Linux will appear to run out of
address space and presumably fail at the 64G limit. Given the
considerable space overhead of Memcheck, that means you should be
able to memcheckify programs that use up to about 32G natively.
Note that the aspacem_minAddr/aspacem_maxAddr limits apply only to
anonymous mappings. The client can still do fixed and hinted maps
at any addresses provided they do not overlap Valgrind's segments.
This makes Valgrind able to load prelinked .so's at their requested
addresses on 64-bit platforms, even if they are very high (eg,
112TB).
At startup, aspacem establishes the usable limits, and advises
m_main to place the client stack at the top of the range, which on
a 32-bit machine will be just below the real initial stack. One
effect of this is that self-hosting sort-of works, because an inner
valgrind will then place its client's stack just below its own
initial stack.
The segment array and segment kinds
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The central data structure is the segment array (segments[0
.. nsegments_used-1]). This covers the entire address space in
order, giving account of every byte of it. Free spaces are
represented explicitly as this makes many operations simpler.
Mergeable adjacent segments are aggressively merged so as to create
a "normalised" representation (preen_nsegments).
There are 7 (mutually-exclusive) segment kinds, the meaning of
which is important:
SkFree: a free space, which may be allocated either to Valgrind (V)
or the client (C).
SkAnonC: an anonymous mapping belonging to C. For these, aspacem
tracks a boolean indicating whether or not is is part of the
client's heap area (can't remember why).
SkFileC: a file mapping belonging to C.
SkShmC: a shared memory segment belonging to C.
SkAnonV: an anonymous mapping belonging to V. These cover all V's
dynamic memory needs, including non-client malloc/free areas,
shadow memory, and the translation cache.
SkFileV: a file mapping belonging to V. As far as I know these are
only created transiently for the purposes of reading debug info.
SkResvn: a reservation segment.
These are mostly straightforward. Reservation segments have some
subtlety, however.
A reservation segment is unmapped from the kernel's point of view,
but is an area in which aspacem will not create anonymous maps
(either Vs or Cs). The idea is that we will try to keep it clear
when the choice to do so is ours. Reservation segments are
'invisible' from the client's point of view: it may choose to park
a fixed mapping in the middle of one, and that's just tough -- we
can't do anything about that. From the client's perspective
reservations are semantically equivalent to (although
distinguishable from, if it makes enquiries) free areas.
Reservations are a primitive mechanism provided for whatever
purposes the rest of the system wants. Currently they are used to
reserve the expansion space into which a growdown stack is
expanded, and into which the data segment is extended. Note,
though, those uses are entirely external to this module, which only
supplies the primitives.
Reservations may be shrunk in order that an adjoining anonymous
mapping may be extended. This makes dataseg/stack expansion work.
A reservation may not be shrunk below one page.
The advise/notify concept
~~~~~~~~~~~~~~~~~~~~~~~~~
All mmap-related calls must be routed via aspacem. Calling
sys_mmap directly from the rest of the system is very dangerous
because aspacem's data structures will become out of date.
The fundamental mode of operation of aspacem is to support client
mmaps. Here's what happens (in ML_(generic_PRE_sys_mmap)):
* m_syswrap intercepts the mmap call. It examines the parameters
and identifies the requested placement constraints. There are
three possibilities: no constraint (MAny), hinted (MHint, "I
prefer X but will accept anything"), and fixed (MFixed, "X or
nothing").
* This request is passed to VG_(am_get_advisory). This decides on
a placement as described in detail in Strategy above. It may
also indicate that the map should fail, because it would trash
one of Valgrind's areas, which would probably kill the system.
* Control returns to the wrapper. If VG_(am_get_advisory) has
declared that the map should fail, then it must be made to do so.
Usually, though, the request is considered acceptable, in which
case an "advised" address is supplied. The advised address
replaces the original address supplied by the client, and
MAP_FIXED is set.
Note at this point that although aspacem has been asked for
advice on where to place the mapping, no commitment has yet been
made by either it or the kernel.
* The adjusted request is handed off to the kernel.
* The kernel's result is examined. If the map succeeded, aspacem
is told of the outcome (VG_(am_notify_client_mmap)), so it can
update its records accordingly.
This then is the central advise-notify idiom for handling client
mmap/munmap/mprotect/shmat:
* ask aspacem for an advised placement (or a veto)
* if not vetoed, hand request to kernel, using the advised placement
* examine result, and if successful, notify aspacem of the result.
There are also many convenience functions, eg
VG_(am_mmap_anon_fixed_client), which do both phases entirely within
aspacem.
To debug all this, a sync-checker is provided. It reads
/proc/self/maps, compares what it sees with aspacem's records, and
complains if there is a difference. --sanity-level=3 runs it before
and after each syscall, which is a powerful, if slow way of finding
buggy syscall wrappers.
Loss of pointercheck
~~~~~~~~~~~~~~~~~~~~
Up to and including Valgrind 2.4.1, x86 segmentation was used to
enforce seperation of V and C, so that wild writes by C could not
trash V. This got called "pointercheck". Unfortunately, the new
more flexible memory layout, plus the need to be portable across
different architectures, means doing this in hardware is no longer
viable, and doing it in software is expensive. So at the moment we
don't do it at all.
*/
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- The Address Space Manager's state. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* ------ start of STATE for the address-space manager ------ */
/* Max number of segments we can track. On Android, virtual address
space is limited, so keep a low limit -- 5000 x sizef(NSegment) is
360KB. */
#if defined(VGPV_arm_linux_android) \
|| defined(VGPV_x86_linux_android) \
|| defined(VGPV_mips32_linux_android) \
|| defined(VGPV_arm64_linux_android)
# define VG_N_SEGMENTS 5000
#else
# define VG_N_SEGMENTS 30000
#endif
/* Max number of segment file names we can track. These are big (1002
bytes) so on Android limit the space usage to ~1MB. */
#if defined(VGPV_arm_linux_android) \
|| defined(VGPV_x86_linux_android) \
|| defined(VGPV_mips32_linux_android) \
|| defined(VGPV_arm64_linux_android)
# define VG_N_SEGNAMES 1000
#else
# define VG_N_SEGNAMES 6000
#endif
/* Max length of a segment file name. */
#define VG_MAX_SEGNAMELEN 1000
typedef
struct {
Bool inUse;
Bool mark;
HChar fname[VG_MAX_SEGNAMELEN];
}
SegName;
/* Filename table. _used is the high water mark; an entry is only
valid if its index >= 0, < _used, and its .inUse field == True.
The .mark field is used to garbage-collect dead entries.
*/
static SegName segnames[VG_N_SEGNAMES];
static Int segnames_used = 0;
/* Array [0 .. nsegments_used-1] of all mappings. */
/* Sorted by .addr field. */
/* I: len may not be zero. */
/* I: overlapping segments are not allowed. */
/* I: the segments cover the entire address space precisely. */
/* Each segment can optionally hold an index into the filename table. */
static NSegment nsegments[VG_N_SEGMENTS];
static Int nsegments_used = 0;
#define Addr_MIN ((Addr)0)
#define Addr_MAX ((Addr)(-1ULL))
/* Limits etc */
Addr VG_(clo_aspacem_minAddr)
#if defined(VGO_darwin)
# if VG_WORDSIZE == 4
= (Addr) 0x00001000;
# else
= (Addr) 0x100000000; // 4GB page zero
# endif
#else
= (Addr) 0x04000000; // 64M
#endif
// The smallest address that aspacem will try to allocate
static Addr aspacem_minAddr = 0;
// The largest address that aspacem will try to allocate
static Addr aspacem_maxAddr = 0;
// Where aspacem will start looking for client space
static Addr aspacem_cStart = 0;
// Where aspacem will start looking for Valgrind space
static Addr aspacem_vStart = 0;
#define AM_SANITY_CHECK \
do { \
if (VG_(clo_sanity_level >= 3)) \
aspacem_assert(VG_(am_do_sync_check) \
(__PRETTY_FUNCTION__,__FILE__,__LINE__)); \
} while (0)
/* ------ end of STATE for the address-space manager ------ */
/* ------ Forwards decls ------ */
inline
static Int find_nsegment_idx ( Addr a );
static void parse_procselfmaps (
void (*record_mapping)( Addr addr, SizeT len, UInt prot,
ULong dev, ULong ino, Off64T offset,
const HChar* filename ),
void (*record_gap)( Addr addr, SizeT len )
);
/* ----- Hacks to do with the "commpage" on arm-linux ----- */
/* Not that I have anything against the commpage per se. It's just
that it's not listed in /proc/self/maps, which is a royal PITA --
we have to fake it up, in parse_procselfmaps.
But note also bug 254556 comment #2: this is now fixed in newer
kernels -- it is listed as a "[vectors]" entry. Presumably the
fake entry made here duplicates the [vectors] entry, and so, if at
some point in the future, we can stop supporting buggy kernels,
then this kludge can be removed entirely, since the procmap parser
below will read that entry in the normal way. */
#if defined(VGP_arm_linux)
# define ARM_LINUX_FAKE_COMMPAGE_START 0xFFFF0000
# define ARM_LINUX_FAKE_COMMPAGE_END1 0xFFFF1000
#endif
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- SegName array management. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Searches the filename table to find an index for the given name.
If none is found, an index is allocated and the name stored. If no
space is available we just give up. If the string is too long to
store, return -1.
*/
static Int allocate_segname ( const HChar* name )
{
Int i, j, len;
aspacem_assert(name);
if (0) VG_(debugLog)(0,"aspacem","allocate_segname %s\n", name);
len = VG_(strlen)(name);
if (len + 1 > VG_MAX_SEGNAMELEN) {
return -1;
}
/* first see if we already have the name. */
Int free_slot = -1;
for (i = 0; i < segnames_used; i++) {
if (!segnames[i].inUse) {
free_slot = i;
continue;
}
if (0 == VG_(strcmp)(name, &segnames[i].fname[0])) {
return i;
}
}
/* no we don't. */
if (free_slot >= 0) {
/* we have a free slot; use it. */
i = free_slot;
} else {
/* no free slots .. advance the high-water mark. */
if (segnames_used < VG_N_SEGNAMES) {
i = segnames_used;
segnames_used++;
} else {
ML_(am_barf_toolow)("VG_N_SEGNAMES");
}
}
/* copy it in */
segnames[i].inUse = True;
for (j = 0; j < len; j++)
segnames[i].fname[j] = name[j];
segnames[i].fname[len] = 0;
return i;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Displaying the segment array. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
static const HChar* show_SegKind ( SegKind sk )
{
switch (sk) {
case SkFree: return " ";
case SkAnonC: return "anon";
case SkAnonV: return "ANON";
case SkFileC: return "file";
case SkFileV: return "FILE";
case SkShmC: return "shm ";
case SkResvn: return "RSVN";
default: return "????";
}
}
static const HChar* show_ShrinkMode ( ShrinkMode sm )
{
switch (sm) {
case SmLower: return "SmLower";
case SmUpper: return "SmUpper";
case SmFixed: return "SmFixed";
default: return "Sm?????";
}
}
static void show_len_concisely ( /*OUT*/HChar* buf, Addr start, Addr end )
{
const HChar* fmt;
ULong len = ((ULong)end) - ((ULong)start) + 1;
if (len < 10*1000*1000ULL) {
fmt = "%7llu";
}
else if (len < 999999ULL * (1ULL<<20)) {
fmt = "%6llum";
len >>= 20;
}
else if (len < 999999ULL * (1ULL<<30)) {
fmt = "%6llug";
len >>= 30;
}
else if (len < 999999ULL * (1ULL<<40)) {
fmt = "%6llut";
len >>= 40;
}
else {
fmt = "%6llue";
len >>= 50;
}
ML_(am_sprintf)(buf, fmt, len);
}
/* Show full details of an NSegment */
static void __attribute__ ((unused))
show_nsegment_full ( Int logLevel, Int segNo, const NSegment* seg )
{
HChar len_buf[20];
const HChar* name = "(none)";
if (seg->fnIdx >= 0 && seg->fnIdx < segnames_used
&& segnames[seg->fnIdx].inUse
&& segnames[seg->fnIdx].fname[0] != 0)
name = segnames[seg->fnIdx].fname;
show_len_concisely(len_buf, seg->start, seg->end);
VG_(debugLog)(
logLevel, "aspacem",
"%3d: %s %010llx-%010llx %s %c%c%c%c%c %s "
"d=0x%03llx i=%-7lld o=%-7lld (%d) m=%d %s\n",
segNo, show_SegKind(seg->kind),
(ULong)seg->start, (ULong)seg->end, len_buf,
seg->hasR ? 'r' : '-', seg->hasW ? 'w' : '-',
seg->hasX ? 'x' : '-', seg->hasT ? 'T' : '-',
seg->isCH ? 'H' : '-',
show_ShrinkMode(seg->smode),
seg->dev, seg->ino, seg->offset, seg->fnIdx,
(Int)seg->mark, name
);
}
/* Show an NSegment in a user-friendly-ish way. */
static void show_nsegment ( Int logLevel, Int segNo, const NSegment* seg )
{
HChar len_buf[20];
show_len_concisely(len_buf, seg->start, seg->end);
switch (seg->kind) {
case SkFree:
VG_(debugLog)(
logLevel, "aspacem",
"%3d: %s %010llx-%010llx %s\n",
segNo, show_SegKind(seg->kind),
(ULong)seg->start, (ULong)seg->end, len_buf
);
break;
case SkAnonC: case SkAnonV: case SkShmC:
VG_(debugLog)(
logLevel, "aspacem",
"%3d: %s %010llx-%010llx %s %c%c%c%c%c\n",
segNo, show_SegKind(seg->kind),
(ULong)seg->start, (ULong)seg->end, len_buf,
seg->hasR ? 'r' : '-', seg->hasW ? 'w' : '-',
seg->hasX ? 'x' : '-', seg->hasT ? 'T' : '-',
seg->isCH ? 'H' : '-'
);
break;
case SkFileC: case SkFileV:
VG_(debugLog)(
logLevel, "aspacem",
"%3d: %s %010llx-%010llx %s %c%c%c%c%c d=0x%03llx "
"i=%-7lld o=%-7lld (%d)\n",
segNo, show_SegKind(seg->kind),
(ULong)seg->start, (ULong)seg->end, len_buf,
seg->hasR ? 'r' : '-', seg->hasW ? 'w' : '-',
seg->hasX ? 'x' : '-', seg->hasT ? 'T' : '-',
seg->isCH ? 'H' : '-',
seg->dev, seg->ino, seg->offset, seg->fnIdx
);
break;
case SkResvn:
VG_(debugLog)(
logLevel, "aspacem",
"%3d: %s %010llx-%010llx %s %c%c%c%c%c %s\n",
segNo, show_SegKind(seg->kind),
(ULong)seg->start, (ULong)seg->end, len_buf,
seg->hasR ? 'r' : '-', seg->hasW ? 'w' : '-',
seg->hasX ? 'x' : '-', seg->hasT ? 'T' : '-',
seg->isCH ? 'H' : '-',
show_ShrinkMode(seg->smode)
);
break;
default:
VG_(debugLog)(
logLevel, "aspacem",
"%3d: ???? UNKNOWN SEGMENT KIND\n",
segNo
);
break;
}
}
/* Print out the segment array (debugging only!). */
void VG_(am_show_nsegments) ( Int logLevel, const HChar* who )
{
Int i;
VG_(debugLog)(logLevel, "aspacem",
"<<< SHOW_SEGMENTS: %s (%d segments, %d segnames)\n",
who, nsegments_used, segnames_used);
for (i = 0; i < segnames_used; i++) {
if (!segnames[i].inUse)
continue;
VG_(debugLog)(logLevel, "aspacem",
"(%2d) %s\n", i, segnames[i].fname);
}
for (i = 0; i < nsegments_used; i++)
show_nsegment( logLevel, i, &nsegments[i] );
VG_(debugLog)(logLevel, "aspacem",
">>>\n");
}
/* Get the filename corresponding to this segment, if known and if it
has one. The returned name's storage cannot be assumed to be
persistent, so the caller should immediately copy the name
elsewhere. */
const HChar* VG_(am_get_filename)( NSegment const * seg )
{
Int i;
aspacem_assert(seg);
i = seg->fnIdx;
if (i < 0 || i >= segnames_used || !segnames[i].inUse)
return NULL;
else
return &segnames[i].fname[0];
}
/* Collect up the start addresses of all non-free, non-resvn segments.
The interface is a bit strange in order to avoid potential
segment-creation races caused by dynamic allocation of the result
buffer *starts.
The function first computes how many entries in the result
buffer *starts will be needed. If this number <= nStarts,
they are placed in starts[0..], and the number is returned.
If nStarts is not large enough, nothing is written to
starts[0..], and the negation of the size is returned.
Correct use of this function may mean calling it multiple times in
order to establish a suitably-sized buffer. */
Int VG_(am_get_segment_starts)( Addr* starts, Int nStarts )
{
Int i, j, nSegs;
/* don't pass dumbass arguments */
aspacem_assert(nStarts > 0);
nSegs = 0;
for (i = 0; i < nsegments_used; i++) {
if (nsegments[i].kind == SkFree || nsegments[i].kind == SkResvn)
continue;
nSegs++;
}
if (nSegs > nStarts) {
/* The buffer isn't big enough. Tell the caller how big it needs
to be. */
return -nSegs;
}
/* There's enough space. So write into the result buffer. */
aspacem_assert(nSegs <= nStarts);
j = 0;
for (i = 0; i < nsegments_used; i++) {
if (nsegments[i].kind == SkFree || nsegments[i].kind == SkResvn)
continue;
starts[j] = nsegments[i].start;
j++;
}
aspacem_assert(j == nSegs); /* this should not fail */
return nSegs;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Sanity checking and preening of the segment array. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Check representational invariants for NSegments. */
static Bool sane_NSegment ( const NSegment* s )
{
if (s == NULL) return False;
/* No zero sized segments and no wraparounds. */
if (s->start >= s->end) return False;
/* .mark is used for admin purposes only. */
if (s->mark) return False;
/* require page alignment */
if (!VG_IS_PAGE_ALIGNED(s->start)) return False;
if (!VG_IS_PAGE_ALIGNED(s->end+1)) return False;
switch (s->kind) {
case SkFree:
return
s->smode == SmFixed
&& s->dev == 0 && s->ino == 0 && s->offset == 0 && s->fnIdx == -1
&& !s->hasR && !s->hasW && !s->hasX && !s->hasT
&& !s->isCH;
case SkAnonC: case SkAnonV: case SkShmC:
return
s->smode == SmFixed
&& s->dev == 0 && s->ino == 0 && s->offset == 0 && s->fnIdx == -1
&& (s->kind==SkAnonC ? True : !s->isCH);
case SkFileC: case SkFileV:
return
s->smode == SmFixed
&& (s->fnIdx == -1 ||
(s->fnIdx >= 0 && s->fnIdx < segnames_used
&& segnames[s->fnIdx].inUse))
&& !s->isCH;
case SkResvn:
return
s->dev == 0 && s->ino == 0 && s->offset == 0 && s->fnIdx == -1
&& !s->hasR && !s->hasW && !s->hasX && !s->hasT
&& !s->isCH;
default:
return False;
}
}
/* Try merging s2 into s1, if possible. If successful, s1 is
modified, and True is returned. Otherwise s1 is unchanged and
False is returned. */
static Bool maybe_merge_nsegments ( NSegment* s1, const NSegment* s2 )
{
if (s1->kind != s2->kind)
return False;
if (s1->end+1 != s2->start)
return False;
/* reject cases which would cause wraparound */
if (s1->start > s2->end)
return False;
switch (s1->kind) {
case SkFree:
s1->end = s2->end;
return True;
case SkAnonC: case SkAnonV:
if (s1->hasR == s2->hasR && s1->hasW == s2->hasW
&& s1->hasX == s2->hasX && s1->isCH == s2->isCH) {
s1->end = s2->end;
s1->hasT |= s2->hasT;
return True;
}
break;
case SkFileC: case SkFileV:
if (s1->hasR == s2->hasR
&& s1->hasW == s2->hasW && s1->hasX == s2->hasX
&& s1->dev == s2->dev && s1->ino == s2->ino
&& s2->offset == s1->offset
+ ((ULong)s2->start) - ((ULong)s1->start) ) {
s1->end = s2->end;
s1->hasT |= s2->hasT;
return True;
}
break;
case SkShmC:
return False;
case SkResvn:
if (s1->smode == SmFixed && s2->smode == SmFixed) {
s1->end = s2->end;
return True;
}
default:
break;
}
return False;
}
/* Sanity-check and canonicalise the segment array (merge mergable
segments). Returns True if any segments were merged. */
static Bool preen_nsegments ( void )
{
Int i, j, r, w, nsegments_used_old = nsegments_used;
/* Pass 1: check the segment array covers the entire address space
exactly once, and also that each segment is sane. */
aspacem_assert(nsegments_used > 0);
aspacem_assert(nsegments[0].start == Addr_MIN);
aspacem_assert(nsegments[nsegments_used-1].end == Addr_MAX);
aspacem_assert(sane_NSegment(&nsegments[0]));
for (i = 1; i < nsegments_used; i++) {
aspacem_assert(sane_NSegment(&nsegments[i]));
aspacem_assert(nsegments[i-1].end+1 == nsegments[i].start);
}
/* Pass 2: merge as much as possible, using
maybe_merge_segments. */
w = 0;
for (r = 1; r < nsegments_used; r++) {
if (maybe_merge_nsegments(&nsegments[w], &nsegments[r])) {
/* nothing */
} else {
w++;
if (w != r)
nsegments[w] = nsegments[r];
}
}
w++;
aspacem_assert(w > 0 && w <= nsegments_used);
nsegments_used = w;
/* Pass 3: free up unused string table slots */
/* clear mark bits */
for (i = 0; i < segnames_used; i++)
segnames[i].mark = False;
/* mark */
for (i = 0; i < nsegments_used; i++) {
j = nsegments[i].fnIdx;
aspacem_assert(j >= -1 && j < segnames_used);
if (j >= 0) {
aspacem_assert(segnames[j].inUse);
segnames[j].mark = True;
}
}
/* release */
for (i = 0; i < segnames_used; i++) {
if (segnames[i].mark == False) {
segnames[i].inUse = False;
segnames[i].fname[0] = 0;
}
}
return nsegments_used != nsegments_used_old;
}
/* Check the segment array corresponds with the kernel's view of
memory layout. sync_check_ok returns True if no anomalies were
found, else False. In the latter case the mismatching segments are
displayed.
The general idea is: we get the kernel to show us all its segments
and also the gaps in between. For each such interval, try and find
a sequence of appropriate intervals in our segment array which
cover or more than cover the kernel's interval, and which all have
suitable kinds/permissions etc.
Although any specific kernel interval is not matched exactly to a
valgrind interval or sequence thereof, eventually any disagreement
on mapping boundaries will be detected. This is because, if for
example valgrind's intervals cover a greater range than the current
kernel interval, it must be the case that a neighbouring free-space
interval belonging to valgrind cannot cover the neighbouring
free-space interval belonging to the kernel. So the disagreement
is detected.
In other words, we examine each kernel interval in turn, and check
we do not disagree over the range of that interval. Because all of
the address space is examined, any disagreements must eventually be
detected.
*/
static Bool sync_check_ok = False;
static void sync_check_mapping_callback ( Addr addr, SizeT len, UInt prot,
ULong dev, ULong ino, Off64T offset,
const HChar* filename )
{
Int iLo, iHi, i;
Bool sloppyXcheck;
/* If a problem has already been detected, don't continue comparing
segments, so as to avoid flooding the output with error
messages. */
#if !defined(VGO_darwin)
/* GrP fixme not */
if (!sync_check_ok)
return;
#endif
if (len == 0)
return;
/* The kernel should not give us wraparounds. */
aspacem_assert(addr <= addr + len - 1);
iLo = find_nsegment_idx( addr );
iHi = find_nsegment_idx( addr + len - 1 );
/* These 5 should be guaranteed by find_nsegment_idx. */
aspacem_assert(0 <= iLo && iLo < nsegments_used);
aspacem_assert(0 <= iHi && iHi < nsegments_used);
aspacem_assert(iLo <= iHi);
aspacem_assert(nsegments[iLo].start <= addr );
aspacem_assert(nsegments[iHi].end >= addr + len - 1 );
/* x86 doesn't differentiate 'x' and 'r' (at least, all except the
most recent NX-bit enabled CPUs) and so recent kernels attempt
to provide execute protection by placing all executable mappings
low down in the address space and then reducing the size of the
code segment to prevent code at higher addresses being executed.
These kernels report which mappings are really executable in
the /proc/self/maps output rather than mirroring what was asked
for when each mapping was created. In order to cope with this we
have a sloppyXcheck mode which we enable on x86 and s390 - in this
mode we allow the kernel to report execute permission when we weren't
expecting it but not vice versa. */
# if defined(VGA_x86) || defined (VGA_s390x)
sloppyXcheck = True;
# else
sloppyXcheck = False;
# endif
/* NSegments iLo .. iHi inclusive should agree with the presented
data. */
for (i = iLo; i <= iHi; i++) {
Bool same, cmp_offsets, cmp_devino;
UInt seg_prot;
/* compare the kernel's offering against ours. */
same = nsegments[i].kind == SkAnonC
|| nsegments[i].kind == SkAnonV
|| nsegments[i].kind == SkFileC
|| nsegments[i].kind == SkFileV
|| nsegments[i].kind == SkShmC;
seg_prot = 0;
if (nsegments[i].hasR) seg_prot |= VKI_PROT_READ;
if (nsegments[i].hasW) seg_prot |= VKI_PROT_WRITE;
if (nsegments[i].hasX) seg_prot |= VKI_PROT_EXEC;
cmp_offsets
= nsegments[i].kind == SkFileC || nsegments[i].kind == SkFileV;
cmp_devino
= nsegments[i].dev != 0 || nsegments[i].ino != 0;
/* Consider other reasons to not compare dev/inode */
#if defined(VGO_linux)
/* bproc does some godawful hack on /dev/zero at process
migration, which changes the name of it, and its dev & ino */
if (filename && 0==VG_(strcmp)(filename, "/dev/zero (deleted)"))
cmp_devino = False;
/* hack apparently needed on MontaVista Linux */
if (filename && VG_(strstr)(filename, "/.lib-ro/"))
cmp_devino = False;
#endif
#if defined(VGO_darwin)
// GrP fixme kernel info doesn't have dev/inode
cmp_devino = False;
// GrP fixme V and kernel don't agree on offsets
cmp_offsets = False;
#endif
/* If we are doing sloppy execute permission checks then we
allow segment to have X permission when we weren't expecting
it (but not vice versa) so if the kernel reported execute
permission then pretend that this segment has it regardless
of what we were expecting. */
if (sloppyXcheck && (prot & VKI_PROT_EXEC) != 0) {
seg_prot |= VKI_PROT_EXEC;
}
same = same
&& seg_prot == prot
&& (cmp_devino
? (nsegments[i].dev == dev && nsegments[i].ino == ino)
: True)
&& (cmp_offsets
? nsegments[i].start-nsegments[i].offset == addr-offset
: True);
if (!same) {
Addr start = addr;
Addr end = start + len - 1;
HChar len_buf[20];
show_len_concisely(len_buf, start, end);
sync_check_ok = False;
VG_(debugLog)(
0,"aspacem",
"segment mismatch: V's seg 1st, kernel's 2nd:\n");
show_nsegment_full( 0, i, &nsegments[i] );
VG_(debugLog)(0,"aspacem",
"...: .... %010llx-%010llx %s %c%c%c.. ....... "
"d=0x%03llx i=%-7lld o=%-7lld (.) m=. %s\n",
(ULong)start, (ULong)end, len_buf,
prot & VKI_PROT_READ ? 'r' : '-',
prot & VKI_PROT_WRITE ? 'w' : '-',
prot & VKI_PROT_EXEC ? 'x' : '-',
dev, ino, offset, filename ? filename : "(none)" );
return;
}
}
/* Looks harmless. Keep going. */
return;
}
static void sync_check_gap_callback ( Addr addr, SizeT len )
{
Int iLo, iHi, i;
/* If a problem has already been detected, don't continue comparing
segments, so as to avoid flooding the output with error
messages. */
#if !defined(VGO_darwin)
/* GrP fixme not */
if (!sync_check_ok)
return;
#endif
if (len == 0)
return;
/* The kernel should not give us wraparounds. */
aspacem_assert(addr <= addr + len - 1);
iLo = find_nsegment_idx( addr );
iHi = find_nsegment_idx( addr + len - 1 );
/* These 5 should be guaranteed by find_nsegment_idx. */
aspacem_assert(0 <= iLo && iLo < nsegments_used);
aspacem_assert(0 <= iHi && iHi < nsegments_used);
aspacem_assert(iLo <= iHi);
aspacem_assert(nsegments[iLo].start <= addr );
aspacem_assert(nsegments[iHi].end >= addr + len - 1 );
/* NSegments iLo .. iHi inclusive should agree with the presented
data. */
for (i = iLo; i <= iHi; i++) {
Bool same;
/* compare the kernel's offering against ours. */
same = nsegments[i].kind == SkFree
|| nsegments[i].kind == SkResvn;
if (!same) {
Addr start = addr;
Addr end = start + len - 1;
HChar len_buf[20];
show_len_concisely(len_buf, start, end);
sync_check_ok = False;
VG_(debugLog)(
0,"aspacem",
"segment mismatch: V's gap 1st, kernel's 2nd:\n");
show_nsegment_full( 0, i, &nsegments[i] );
VG_(debugLog)(0,"aspacem",
" : .... %010llx-%010llx %s\n",
(ULong)start, (ULong)end, len_buf);
return;
}
}
/* Looks harmless. Keep going. */
return;
}
/* Sanity check: check that Valgrind and the kernel agree on the
address space layout. Prints offending segments and call point if
a discrepancy is detected, but does not abort the system. Returned
Bool is False if a discrepancy was found. */
Bool VG_(am_do_sync_check) ( const HChar* fn,
const HChar* file, Int line )
{
sync_check_ok = True;
if (0)
VG_(debugLog)(0,"aspacem", "do_sync_check %s:%d\n", file,line);
parse_procselfmaps( sync_check_mapping_callback,
sync_check_gap_callback );
if (!sync_check_ok) {
VG_(debugLog)(0,"aspacem",
"sync check at %s:%d (%s): FAILED\n",
file, line, fn);
VG_(debugLog)(0,"aspacem", "\n");
# if 0
{
HChar buf[100]; // large enough
VG_(am_show_nsegments)(0,"post syncheck failure");
VG_(sprintf)(buf, "/bin/cat /proc/%d/maps", VG_(getpid)());
VG_(system)(buf);
}
# endif
}
return sync_check_ok;
}
/* Hook to allow sanity checks to be done from aspacemgr-common.c. */
void ML_(am_do_sanity_check)( void )
{
AM_SANITY_CHECK;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Low level access / modification of the segment array. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Binary search the interval array for a given address. Since the
array covers the entire address space the search cannot fail. The
_WRK function does the real work. Its caller (just below) caches
the results thereof, to save time. With N_CACHE of 63 we get a hit
rate exceeding 90% when running OpenOffice.
Re ">> 12", it doesn't matter that the page size of some targets
might be different from 12. Really "(a >> 12) % N_CACHE" is merely
a hash function, and the actual cache entry is always validated
correctly against the selected cache entry before use.
*/
/* Don't call find_nsegment_idx_WRK; use find_nsegment_idx instead. */
__attribute__((noinline))
static Int find_nsegment_idx_WRK ( Addr a )
{
Addr a_mid_lo, a_mid_hi;
Int mid,
lo = 0,
hi = nsegments_used-1;
while (True) {
/* current unsearched space is from lo to hi, inclusive. */
if (lo > hi) {
/* Not found. This can't happen. */
ML_(am_barf)("find_nsegment_idx: not found");
}
mid = (lo + hi) / 2;
a_mid_lo = nsegments[mid].start;
a_mid_hi = nsegments[mid].end;
if (a < a_mid_lo) { hi = mid-1; continue; }
if (a > a_mid_hi) { lo = mid+1; continue; }
aspacem_assert(a >= a_mid_lo && a <= a_mid_hi);
aspacem_assert(0 <= mid && mid < nsegments_used);
return mid;
}
}
inline static Int find_nsegment_idx ( Addr a )
{
# define N_CACHE 131 /*prime*/
static Addr cache_pageno[N_CACHE];
static Int cache_segidx[N_CACHE];
static Bool cache_inited = False;
static UWord n_q = 0;
static UWord n_m = 0;
UWord ix;
if (LIKELY(cache_inited)) {
/* do nothing */
} else {
for (ix = 0; ix < N_CACHE; ix++) {
cache_pageno[ix] = 0;
cache_segidx[ix] = -1;
}
cache_inited = True;
}
ix = (a >> 12) % N_CACHE;
n_q++;
if (0 && 0 == (n_q & 0xFFFF))
VG_(debugLog)(0,"xxx","find_nsegment_idx: %lu %lu\n", n_q, n_m);
if ((a >> 12) == cache_pageno[ix]
&& cache_segidx[ix] >= 0
&& cache_segidx[ix] < nsegments_used
&& nsegments[cache_segidx[ix]].start <= a
&& a <= nsegments[cache_segidx[ix]].end) {
/* hit */
/* aspacem_assert( cache_segidx[ix] == find_nsegment_idx_WRK(a) ); */
return cache_segidx[ix];
}
/* miss */
n_m++;
cache_segidx[ix] = find_nsegment_idx_WRK(a);
cache_pageno[ix] = a >> 12;
return cache_segidx[ix];
# undef N_CACHE
}
/* Finds the segment containing 'a'. Only returns file/anon/resvn
segments. This returns a 'NSegment const *' - a pointer to
readonly data. */
NSegment const * VG_(am_find_nsegment) ( Addr a )
{
Int i = find_nsegment_idx(a);
aspacem_assert(i >= 0 && i < nsegments_used);
aspacem_assert(nsegments[i].start <= a);
aspacem_assert(a <= nsegments[i].end);
if (nsegments[i].kind == SkFree)
return NULL;
else
return &nsegments[i];
}
/* Given a pointer to a seg, tries to figure out which one it is in
nsegments[..]. Very paranoid. */
static Int segAddr_to_index ( const NSegment* seg )
{
Int i;
if (seg < &nsegments[0] || seg >= &nsegments[nsegments_used])
return -1;
i = ((const UChar*)seg - (const UChar*)(&nsegments[0])) / sizeof(NSegment);
if (i < 0 || i >= nsegments_used)
return -1;
if (seg == &nsegments[i])
return i;
return -1;
}
/* Find the next segment along from 'here', if it is a file/anon/resvn
segment. */
NSegment const * VG_(am_next_nsegment) ( const NSegment* here, Bool fwds )
{
Int i = segAddr_to_index(here);
if (i < 0 || i >= nsegments_used)
return NULL;
if (fwds) {
i++;
if (i >= nsegments_used)
return NULL;
} else {
i--;
if (i < 0)
return NULL;
}
switch (nsegments[i].kind) {
case SkFileC: case SkFileV: case SkShmC:
case SkAnonC: case SkAnonV: case SkResvn:
return &nsegments[i];
default:
break;
}
return NULL;
}
/* Trivial fn: return the total amount of space in anonymous mappings,
both for V and the client. Is used for printing stats in
out-of-memory messages. */
ULong VG_(am_get_anonsize_total)( void )
{
Int i;
ULong total = 0;
for (i = 0; i < nsegments_used; i++) {
if (nsegments[i].kind == SkAnonC || nsegments[i].kind == SkAnonV) {
total += (ULong)nsegments[i].end
- (ULong)nsegments[i].start + 1ULL;
}
}
return total;
}
/* Test if a piece of memory is addressable by client or by valgrind with at
least the "prot" protection permissions by examining the underlying
segments. If client && freeOk is True then SkFree areas are also allowed.
*/
static
Bool is_valid_for( Bool client, Addr start, SizeT len, UInt prot, Bool freeOk )
{
Int i, iLo, iHi;
Bool needR, needW, needX;
if (len == 0)
return True; /* somewhat dubious case */
if (start + len < start)
return False; /* reject wraparounds */
needR = toBool(prot & VKI_PROT_READ);
needW = toBool(prot & VKI_PROT_WRITE);
needX = toBool(prot & VKI_PROT_EXEC);
iLo = find_nsegment_idx(start);
aspacem_assert(start >= nsegments[iLo].start);
if (start+len-1 <= nsegments[iLo].end) {
/* This is a speedup hack which avoids calling find_nsegment_idx
a second time when possible. It is always correct to just
use the "else" clause below, but is_valid_for_client is
called a lot by the leak checker, so avoiding pointless calls
to find_nsegment_idx, which can be expensive, is helpful. */
iHi = iLo;
} else {
iHi = find_nsegment_idx(start + len - 1);
}
if (client) {
for (i = iLo; i <= iHi; i++) {
if ( (nsegments[i].kind == SkFileC
|| nsegments[i].kind == SkAnonC
|| nsegments[i].kind == SkShmC
|| (nsegments[i].kind == SkFree && freeOk)
|| (nsegments[i].kind == SkResvn && freeOk))
&& (needR ? nsegments[i].hasR : True)
&& (needW ? nsegments[i].hasW : True)
&& (needX ? nsegments[i].hasX : True) ) {
/* ok */
} else {
return False;
}
}
} else {
for (i = iLo; i <= iHi; i++) {
if ( (nsegments[i].kind == SkFileV
|| nsegments[i].kind == SkAnonV)
&& (needR ? nsegments[i].hasR : True)
&& (needW ? nsegments[i].hasW : True)
&& (needX ? nsegments[i].hasX : True) ) {
/* ok */
} else {
return False;
}
}
}
return True;
}
/* Test if a piece of memory is addressable by the client with at
least the "prot" protection permissions by examining the underlying
segments. */
Bool VG_(am_is_valid_for_client)( Addr start, SizeT len,
UInt prot )
{
return is_valid_for(/* client */ True,
start, len, prot, False/*free not OK*/ );
}
/* Variant of VG_(am_is_valid_for_client) which allows free areas to
be consider part of the client's addressable space. It also
considers reservations to be allowable, since from the client's
point of view they don't exist. */
Bool VG_(am_is_valid_for_client_or_free_or_resvn)
( Addr start, SizeT len, UInt prot )
{
return is_valid_for(/* client */ True,
start, len, prot, True/*free is OK*/ );
}
Bool VG_(am_is_valid_for_valgrind) ( Addr start, SizeT len, UInt prot )
{
return is_valid_for(/* client */ False,
start, len, prot, False/*irrelevant*/ );
}
/* Returns True if any part of the address range is marked as having
translations made from it. This is used to determine when to
discard code, so if in doubt return True. */
static Bool any_Ts_in_range ( Addr start, SizeT len )
{
Int iLo, iHi, i;
aspacem_assert(len > 0);
aspacem_assert(start + len > start);
iLo = find_nsegment_idx(start);
iHi = find_nsegment_idx(start + len - 1);
for (i = iLo; i <= iHi; i++) {
if (nsegments[i].hasT)
return True;
}
return False;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Modifying the segment array, and constructing segments. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Split the segment containing 'a' into two, so that 'a' is
guaranteed to be the start of a new segment. If 'a' is already the
start of a segment, do nothing. */
static void split_nsegment_at ( Addr a )
{
Int i, j;
aspacem_assert(a > 0);
aspacem_assert(VG_IS_PAGE_ALIGNED(a));
i = find_nsegment_idx(a);
aspacem_assert(i >= 0 && i < nsegments_used);
if (nsegments[i].start == a)
/* 'a' is already the start point of a segment, so nothing to be
done. */
return;
/* else we have to slide the segments upwards to make a hole */
if (nsegments_used >= VG_N_SEGMENTS)
ML_(am_barf_toolow)("VG_N_SEGMENTS");
for (j = nsegments_used-1; j > i; j--)
nsegments[j+1] = nsegments[j];
nsegments_used++;
nsegments[i+1] = nsegments[i];
nsegments[i+1].start = a;
nsegments[i].end = a-1;
if (nsegments[i].kind == SkFileV || nsegments[i].kind == SkFileC)
nsegments[i+1].offset
+= ((ULong)nsegments[i+1].start) - ((ULong)nsegments[i].start);
aspacem_assert(sane_NSegment(&nsegments[i]));
aspacem_assert(sane_NSegment(&nsegments[i+1]));
}
/* Do the minimum amount of segment splitting necessary to ensure that
sLo is the first address denoted by some segment and sHi is the
highest address denoted by some other segment. Returns the indices
of the lowest and highest segments in the range. */
static
void split_nsegments_lo_and_hi ( Addr sLo, Addr sHi,
/*OUT*/Int* iLo,
/*OUT*/Int* iHi )
{
aspacem_assert(sLo < sHi);
aspacem_assert(VG_IS_PAGE_ALIGNED(sLo));
aspacem_assert(VG_IS_PAGE_ALIGNED(sHi+1));
if (sLo > 0)
split_nsegment_at(sLo);
if (sHi < sHi+1)
split_nsegment_at(sHi+1);
*iLo = find_nsegment_idx(sLo);
*iHi = find_nsegment_idx(sHi);
aspacem_assert(0 <= *iLo && *iLo < nsegments_used);
aspacem_assert(0 <= *iHi && *iHi < nsegments_used);
aspacem_assert(*iLo <= *iHi);
aspacem_assert(nsegments[*iLo].start == sLo);
aspacem_assert(nsegments[*iHi].end == sHi);
/* Not that I'm overly paranoid or anything, definitely not :-) */
}
/* Add SEG to the collection, deleting/truncating any it overlaps.
This deals with all the tricky cases of splitting up segments as
needed. */
static void add_segment ( const NSegment* seg )
{
Int i, iLo, iHi, delta;
Bool segment_is_sane;
Addr sStart = seg->start;
Addr sEnd = seg->end;
aspacem_assert(sStart <= sEnd);
aspacem_assert(VG_IS_PAGE_ALIGNED(sStart));
aspacem_assert(VG_IS_PAGE_ALIGNED(sEnd+1));
segment_is_sane = sane_NSegment(seg);
if (!segment_is_sane) show_nsegment_full(0,-1,seg);
aspacem_assert(segment_is_sane);
split_nsegments_lo_and_hi( sStart, sEnd, &iLo, &iHi );
/* Now iLo .. iHi inclusive is the range of segment indices which
seg will replace. If we're replacing more than one segment,
slide those above the range down to fill the hole. */
delta = iHi - iLo;
aspacem_assert(delta >= 0);
if (delta > 0) {
for (i = iLo; i < nsegments_used-delta; i++)
nsegments[i] = nsegments[i+delta];
nsegments_used -= delta;
}
nsegments[iLo] = *seg;
(void)preen_nsegments();
if (0) VG_(am_show_nsegments)(0,"AFTER preen (add_segment)");
}
/* Clear out an NSegment record. */
static void init_nsegment ( /*OUT*/NSegment* seg )
{
seg->kind = SkFree;
seg->start = 0;
seg->end = 0;
seg->smode = SmFixed;
seg->dev = 0;
seg->ino = 0;
seg->mode = 0;
seg->offset = 0;
seg->fnIdx = -1;
seg->hasR = seg->hasW = seg->hasX = seg->hasT = seg->isCH = False;
seg->mark = False;
}
/* Make an NSegment which holds a reservation. */
static void init_resvn ( /*OUT*/NSegment* seg, Addr start, Addr end )
{
aspacem_assert(start < end);
aspacem_assert(VG_IS_PAGE_ALIGNED(start));
aspacem_assert(VG_IS_PAGE_ALIGNED(end+1));
init_nsegment(seg);
seg->kind = SkResvn;
seg->start = start;
seg->end = end;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Startup, including reading /proc/self/maps. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
static void read_maps_callback ( Addr addr, SizeT len, UInt prot,
ULong dev, ULong ino, Off64T offset,
const HChar* filename )
{
NSegment seg;
init_nsegment( &seg );
seg.start = addr;
seg.end = addr+len-1;
seg.dev = dev;
seg.ino = ino;
seg.offset = offset;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
seg.hasT = False;
/* Don't use the presence of a filename to decide if a segment in
the initial /proc/self/maps to decide if the segment is an AnonV
or FileV segment as some systems don't report the filename. Use
the device and inode numbers instead. Fixes bug #124528. */
seg.kind = SkAnonV;
if (dev != 0 && ino != 0)
seg.kind = SkFileV;
# if defined(VGO_darwin)
// GrP fixme no dev/ino on darwin
if (offset != 0)
seg.kind = SkFileV;
# endif // defined(VGO_darwin)
# if defined(VGP_arm_linux)
/* The standard handling of entries read from /proc/self/maps will
cause the faked up commpage segment to have type SkAnonV, which
is a problem because it contains code we want the client to
execute, and so later m_translate will segfault the client when
it tries to go in there. Hence change the ownership of it here
to the client (SkAnonC). The least-worst kludge I could think
of. */
if (addr == ARM_LINUX_FAKE_COMMPAGE_START
&& addr + len == ARM_LINUX_FAKE_COMMPAGE_END1
&& seg.kind == SkAnonV)
seg.kind = SkAnonC;
# endif // defined(VGP_arm_linux)
if (filename)
seg.fnIdx = allocate_segname( filename );
if (0) show_nsegment( 2,0, &seg );
add_segment( &seg );
}
/* See description in pub_core_aspacemgr.h */
Addr VG_(am_startup) ( Addr sp_at_startup )
{
NSegment seg;
Addr suggested_clstack_end;
aspacem_assert(sizeof(Word) == sizeof(void*));
aspacem_assert(sizeof(Addr) == sizeof(void*));
aspacem_assert(sizeof(SizeT) == sizeof(void*));
aspacem_assert(sizeof(SSizeT) == sizeof(void*));
/* Check that we can store the largest imaginable dev, ino and
offset numbers in an NSegment. */
aspacem_assert(sizeof(seg.dev) == 8);
aspacem_assert(sizeof(seg.ino) == 8);
aspacem_assert(sizeof(seg.offset) == 8);
aspacem_assert(sizeof(seg.mode) == 4);
/* Add a single interval covering the entire address space. */
init_nsegment(&seg);
seg.kind = SkFree;
seg.start = Addr_MIN;
seg.end = Addr_MAX;
nsegments[0] = seg;
nsegments_used = 1;
aspacem_minAddr = VG_(clo_aspacem_minAddr);
#if defined(VGO_darwin)
# if VG_WORDSIZE == 4
aspacem_maxAddr = (Addr) 0xffffffff;
aspacem_cStart = aspacem_minAddr;
aspacem_vStart = 0xf0000000; // 0xc0000000..0xf0000000 available
# else
aspacem_maxAddr = (Addr) 0x7fffffffffff;
aspacem_cStart = aspacem_minAddr;
aspacem_vStart = 0x700000000000; // 0x7000:00000000..0x7fff:5c000000 avail
// 0x7fff:5c000000..0x7fff:ffe00000? is stack, dyld, shared cache
# endif
suggested_clstack_end = -1; // ignored; Mach-O specifies its stack
#else /* !defined(VGO_darwin) */
/* Establish address limits and block out unusable parts
accordingly. */
VG_(debugLog)(2, "aspacem",
" sp_at_startup = 0x%010llx (supplied)\n",
(ULong)sp_at_startup );
# if VG_WORDSIZE == 8
aspacem_maxAddr = (Addr)0x1000000000ULL - 1; // 64G
# ifdef ENABLE_INNER
{ Addr cse = VG_PGROUNDDN( sp_at_startup ) - 1;
if (aspacem_maxAddr > cse)
aspacem_maxAddr = cse;
}
# endif
# else
aspacem_maxAddr = VG_PGROUNDDN( sp_at_startup ) - 1;
# endif
aspacem_cStart = aspacem_minAddr;
aspacem_vStart = VG_PGROUNDUP(aspacem_minAddr
+ (aspacem_maxAddr - aspacem_minAddr + 1) / 2);
# ifdef ENABLE_INNER
aspacem_vStart -= 0x10000000; // 256M
# endif
suggested_clstack_end = aspacem_maxAddr - 16*1024*1024ULL
+ VKI_PAGE_SIZE;
#endif /* #else of 'defined(VGO_darwin)' */
aspacem_assert(VG_IS_PAGE_ALIGNED(aspacem_minAddr));
aspacem_assert(VG_IS_PAGE_ALIGNED(aspacem_maxAddr + 1));
aspacem_assert(VG_IS_PAGE_ALIGNED(aspacem_cStart));
aspacem_assert(VG_IS_PAGE_ALIGNED(aspacem_vStart));
aspacem_assert(VG_IS_PAGE_ALIGNED(suggested_clstack_end + 1));
VG_(debugLog)(2, "aspacem",
" minAddr = 0x%010llx (computed)\n",
(ULong)aspacem_minAddr);
VG_(debugLog)(2, "aspacem",
" maxAddr = 0x%010llx (computed)\n",
(ULong)aspacem_maxAddr);
VG_(debugLog)(2, "aspacem",
" cStart = 0x%010llx (computed)\n",
(ULong)aspacem_cStart);
VG_(debugLog)(2, "aspacem",
" vStart = 0x%010llx (computed)\n",
(ULong)aspacem_vStart);
VG_(debugLog)(2, "aspacem",
"suggested_clstack_end = 0x%010llx (computed)\n",
(ULong)suggested_clstack_end);
if (aspacem_cStart > Addr_MIN) {
init_resvn(&seg, Addr_MIN, aspacem_cStart-1);
add_segment(&seg);
}
if (aspacem_maxAddr < Addr_MAX) {
init_resvn(&seg, aspacem_maxAddr+1, Addr_MAX);
add_segment(&seg);
}
/* Create a 1-page reservation at the notional initial
client/valgrind boundary. This isn't strictly necessary, but
because the advisor does first-fit and starts searches for
valgrind allocations at the boundary, this is kind of necessary
in order to get it to start allocating in the right place. */
init_resvn(&seg, aspacem_vStart, aspacem_vStart + VKI_PAGE_SIZE - 1);
add_segment(&seg);
VG_(am_show_nsegments)(2, "Initial layout");
VG_(debugLog)(2, "aspacem", "Reading /proc/self/maps\n");
parse_procselfmaps( read_maps_callback, NULL );
/* NB: on arm-linux, parse_procselfmaps automagically kludges up
(iow, hands to its callbacks) a description of the ARM Commpage,
since that's not listed in /proc/self/maps (kernel bug IMO). We
have to fake up its existence in parse_procselfmaps and not
merely add it here as an extra segment, because doing the latter
causes sync checking to fail: we see we have an extra segment in
the segments array, which isn't listed in /proc/self/maps.
Hence we must make it appear that /proc/self/maps contained this
segment all along. Sigh. */
VG_(am_show_nsegments)(2, "With contents of /proc/self/maps");
AM_SANITY_CHECK;
return suggested_clstack_end;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- The core query-notify mechanism. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* Query aspacem to ask where a mapping should go. */
Addr VG_(am_get_advisory) ( const MapRequest* req,
Bool forClient,
/*OUT*/Bool* ok )
{
/* This function implements allocation policy.
The nature of the allocation request is determined by req, which
specifies the start and length of the request and indicates
whether the start address is mandatory, a hint, or irrelevant,
and by forClient, which says whether this is for the client or
for V.
Return values: the request can be vetoed (*ok is set to False),
in which case the caller should not attempt to proceed with
making the mapping. Otherwise, *ok is set to True, the caller
may proceed, and the preferred address at which the mapping
should happen is returned.
Note that this is an advisory system only: the kernel can in
fact do whatever it likes as far as placement goes, and we have
no absolute control over it.
Allocations will never be granted in a reserved area.
The Default Policy is:
Search the address space for two free intervals: one of them
big enough to contain the request without regard to the
specified address (viz, as if it was a floating request) and
the other being able to contain the request at the specified
address (viz, as if were a fixed request). Then, depending on
the outcome of the search and the kind of request made, decide
whether the request is allowable and what address to advise.
The Default Policy is overriden by Policy Exception #1:
If the request is for a fixed client map, we are prepared to
grant it providing all areas inside the request are either
free, reservations, or mappings belonging to the client. In
other words we are prepared to let the client trash its own
mappings if it wants to.
The Default Policy is overriden by Policy Exception #2:
If the request is for a hinted client map, we are prepared to
grant it providing all areas inside the request are either
free or reservations. In other words we are prepared to let
the client have a hinted mapping anywhere it likes provided
it does not trash either any of its own mappings or any of
valgrind's mappings.
*/
Int i, j;
Addr holeStart, holeEnd, holeLen;
Bool fixed_not_required;
Addr startPoint = forClient ? aspacem_cStart : aspacem_vStart;
Addr reqStart = req->rkind==MAny ? 0 : req->start;
Addr reqEnd = reqStart + req->len - 1;
Addr reqLen = req->len;
/* These hold indices for segments found during search, or -1 if not
found. */
Int floatIdx = -1;
Int fixedIdx = -1;
aspacem_assert(nsegments_used > 0);
if (0) {
VG_(am_show_nsegments)(0,"getAdvisory");
VG_(debugLog)(0,"aspacem", "getAdvisory 0x%llx %lld\n",
(ULong)req->start, (ULong)req->len);
}
/* Reject zero-length requests */
if (req->len == 0) {
*ok = False;
return 0;
}
/* Reject wraparounds */
if ((req->rkind==MFixed || req->rkind==MHint)
&& req->start + req->len < req->start) {
*ok = False;
return 0;
}
/* ------ Implement Policy Exception #1 ------ */
if (forClient && req->rkind == MFixed) {
Int iLo = find_nsegment_idx(reqStart);
Int iHi = find_nsegment_idx(reqEnd);
Bool allow = True;
for (i = iLo; i <= iHi; i++) {
if (nsegments[i].kind == SkFree
|| nsegments[i].kind == SkFileC
|| nsegments[i].kind == SkAnonC
|| nsegments[i].kind == SkShmC
|| nsegments[i].kind == SkResvn) {
/* ok */
} else {
allow = False;
break;
}
}
if (allow) {
/* Acceptable. Granted. */
*ok = True;
return reqStart;
}
/* Not acceptable. Fail. */
*ok = False;
return 0;
}
/* ------ Implement Policy Exception #2 ------ */
if (forClient && req->rkind == MHint) {
Int iLo = find_nsegment_idx(reqStart);
Int iHi = find_nsegment_idx(reqEnd);
Bool allow = True;
for (i = iLo; i <= iHi; i++) {
if (nsegments[i].kind == SkFree
|| nsegments[i].kind == SkResvn) {
/* ok */
} else {
allow = False;
break;
}
}
if (allow) {
/* Acceptable. Granted. */
*ok = True;
return reqStart;
}
/* Not acceptable. Fall through to the default policy. */
}
/* ------ Implement the Default Policy ------ */
/* Don't waste time looking for a fixed match if not requested to. */
fixed_not_required = req->rkind == MAny;
i = find_nsegment_idx(startPoint);
/* Examine holes from index i back round to i-1. Record the
index first fixed hole and the first floating hole which would
satisfy the request. */
for (j = 0; j < nsegments_used; j++) {
if (nsegments[i].kind != SkFree) {
i++;
if (i >= nsegments_used) i = 0;
continue;
}
holeStart = nsegments[i].start;
holeEnd = nsegments[i].end;
/* Stay sane .. */
aspacem_assert(holeStart <= holeEnd);
aspacem_assert(aspacem_minAddr <= holeStart);
aspacem_assert(holeEnd <= aspacem_maxAddr);
/* See if it's any use to us. */
holeLen = holeEnd - holeStart + 1;
if (fixedIdx == -1 && holeStart <= reqStart && reqEnd <= holeEnd)
fixedIdx = i;
if (floatIdx == -1 && holeLen >= reqLen)
floatIdx = i;
/* Don't waste time searching once we've found what we wanted. */
if ((fixed_not_required || fixedIdx >= 0) && floatIdx >= 0)
break;
i++;
if (i >= nsegments_used) i = 0;
}
aspacem_assert(fixedIdx >= -1 && fixedIdx < nsegments_used);
if (fixedIdx >= 0)
aspacem_assert(nsegments[fixedIdx].kind == SkFree);
aspacem_assert(floatIdx >= -1 && floatIdx < nsegments_used);
if (floatIdx >= 0)
aspacem_assert(nsegments[floatIdx].kind == SkFree);
AM_SANITY_CHECK;
/* Now see if we found anything which can satisfy the request. */
switch (req->rkind) {
case MFixed:
if (fixedIdx >= 0) {
*ok = True;
return req->start;
} else {
*ok = False;
return 0;
}
break;
case MHint:
if (fixedIdx >= 0) {
*ok = True;
return req->start;
}
if (floatIdx >= 0) {
*ok = True;
return nsegments[floatIdx].start;
}
*ok = False;
return 0;
case MAny:
if (floatIdx >= 0) {
*ok = True;
return nsegments[floatIdx].start;
}
*ok = False;
return 0;
default:
break;
}
/*NOTREACHED*/
ML_(am_barf)("getAdvisory: unknown request kind");
*ok = False;
return 0;
}
/* Convenience wrapper for VG_(am_get_advisory) for client floating or
fixed requests. If start is zero, a floating request is issued; if
nonzero, a fixed request at that address is issued. Same comments
about return values apply. */
Addr VG_(am_get_advisory_client_simple) ( Addr start, SizeT len,
/*OUT*/Bool* ok )
{
MapRequest mreq;
mreq.rkind = start==0 ? MAny : MFixed;
mreq.start = start;
mreq.len = len;
return VG_(am_get_advisory)( &mreq, True/*forClient*/, ok );
}
/* Similar to VG_(am_find_nsegment) but only returns free segments. */
static NSegment const * VG_(am_find_free_nsegment) ( Addr a )
{
Int i = find_nsegment_idx(a);
aspacem_assert(i >= 0 && i < nsegments_used);
aspacem_assert(nsegments[i].start <= a);
aspacem_assert(a <= nsegments[i].end);
if (nsegments[i].kind == SkFree)
return &nsegments[i];
else
return NULL;
}
Bool VG_(am_covered_by_single_free_segment)
( Addr start, SizeT len)
{
NSegment const* segLo = VG_(am_find_free_nsegment)( start );
NSegment const* segHi = VG_(am_find_free_nsegment)( start + len - 1 );
return segLo != NULL && segHi != NULL && segLo == segHi;
}
/* Notifies aspacem that the client completed an mmap successfully.
The segment array is updated accordingly. If the returned Bool is
True, the caller should immediately discard translations from the
specified address range. */
Bool
VG_(am_notify_client_mmap)( Addr a, SizeT len, UInt prot, UInt flags,
Int fd, Off64T offset )
{
HChar buf[VKI_PATH_MAX];
ULong dev, ino;
UInt mode;
NSegment seg;
Bool needDiscard;
aspacem_assert(len > 0);
aspacem_assert(VG_IS_PAGE_ALIGNED(a));
aspacem_assert(VG_IS_PAGE_ALIGNED(len));
aspacem_assert(VG_IS_PAGE_ALIGNED(offset));
/* Discard is needed if any of the just-trashed range had T. */
needDiscard = any_Ts_in_range( a, len );
init_nsegment( &seg );
seg.kind = (flags & VKI_MAP_ANONYMOUS) ? SkAnonC : SkFileC;
seg.start = a;
seg.end = a + len - 1;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
if (!(flags & VKI_MAP_ANONYMOUS)) {
// Nb: We ignore offset requests in anonymous mmaps (see bug #126722)
seg.offset = offset;
if (ML_(am_get_fd_d_i_m)(fd, &dev, &ino, &mode)) {
seg.dev = dev;
seg.ino = ino;
seg.mode = mode;
}
if (ML_(am_resolve_filename)(fd, buf, VKI_PATH_MAX)) {
seg.fnIdx = allocate_segname( buf );
}
}
add_segment( &seg );
AM_SANITY_CHECK;
return needDiscard;
}
/* Notifies aspacem that the client completed a shmat successfully.
The segment array is updated accordingly. If the returned Bool is
True, the caller should immediately discard translations from the
specified address range. */
Bool
VG_(am_notify_client_shmat)( Addr a, SizeT len, UInt prot )
{
NSegment seg;
Bool needDiscard;
aspacem_assert(len > 0);
aspacem_assert(VG_IS_PAGE_ALIGNED(a));
aspacem_assert(VG_IS_PAGE_ALIGNED(len));
/* Discard is needed if any of the just-trashed range had T. */
needDiscard = any_Ts_in_range( a, len );
init_nsegment( &seg );
seg.kind = SkShmC;
seg.start = a;
seg.end = a + len - 1;
seg.offset = 0;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
add_segment( &seg );
AM_SANITY_CHECK;
return needDiscard;
}
/* Notifies aspacem that an mprotect was completed successfully. The
segment array is updated accordingly. Note, as with
VG_(am_notify_munmap), it is not the job of this function to reject
stupid mprotects, for example the client doing mprotect of
non-client areas. Such requests should be intercepted earlier, by
the syscall wrapper for mprotect. This function merely records
whatever it is told. If the returned Bool is True, the caller
should immediately discard translations from the specified address
range. */
Bool VG_(am_notify_mprotect)( Addr start, SizeT len, UInt prot )
{
Int i, iLo, iHi;
Bool newR, newW, newX, needDiscard;
aspacem_assert(VG_IS_PAGE_ALIGNED(start));
aspacem_assert(VG_IS_PAGE_ALIGNED(len));
if (len == 0)
return False;
newR = toBool(prot & VKI_PROT_READ);
newW = toBool(prot & VKI_PROT_WRITE);
newX = toBool(prot & VKI_PROT_EXEC);
/* Discard is needed if we're dumping X permission */
needDiscard = any_Ts_in_range( start, len ) && !newX;
split_nsegments_lo_and_hi( start, start+len-1, &iLo, &iHi );
iLo = find_nsegment_idx(start);
iHi = find_nsegment_idx(start + len - 1);
for (i = iLo; i <= iHi; i++) {
/* Apply the permissions to all relevant segments. */
switch (nsegments[i].kind) {
case SkAnonC: case SkAnonV: case SkFileC: case SkFileV: case SkShmC:
nsegments[i].hasR = newR;
nsegments[i].hasW = newW;
nsegments[i].hasX = newX;
aspacem_assert(sane_NSegment(&nsegments[i]));
break;
default:
break;
}
}
/* Changing permissions could have made previously un-mergable
segments mergeable. Therefore have to re-preen them. */
(void)preen_nsegments();
AM_SANITY_CHECK;
return needDiscard;
}
/* Notifies aspacem that an munmap completed successfully. The
segment array is updated accordingly. As with
VG_(am_notify_munmap), we merely record the given info, and don't
check it for sensibleness. If the returned Bool is True, the
caller should immediately discard translations from the specified
address range. */
Bool VG_(am_notify_munmap)( Addr start, SizeT len )
{
NSegment seg;
Bool needDiscard;
aspacem_assert(VG_IS_PAGE_ALIGNED(start));
aspacem_assert(VG_IS_PAGE_ALIGNED(len));
if (len == 0)
return False;
needDiscard = any_Ts_in_range( start, len );
init_nsegment( &seg );
seg.start = start;
seg.end = start + len - 1;
/* The segment becomes unused (free). Segments from above
aspacem_maxAddr were originally SkResvn and so we make them so
again. Note, this isn't really right when the segment straddles
the aspacem_maxAddr boundary - then really it should be split in
two, the lower part marked as SkFree and the upper part as
SkResvn. Ah well. */
if (start > aspacem_maxAddr
&& /* check previous comparison is meaningful */
aspacem_maxAddr < Addr_MAX)
seg.kind = SkResvn;
else
/* Ditto for segments from below aspacem_minAddr. */
if (seg.end < aspacem_minAddr && aspacem_minAddr > 0)
seg.kind = SkResvn;
else
seg.kind = SkFree;
add_segment( &seg );
/* Unmapping could create two adjacent free segments, so a preen is
needed. add_segment() will do that, so no need to here. */
AM_SANITY_CHECK;
return needDiscard;
}
/*-----------------------------------------------------------------*/
/*--- ---*/
/*--- Handling mappings which do not arise directly from the ---*/
/*--- simulation of the client. ---*/
/*--- ---*/
/*-----------------------------------------------------------------*/
/* --- --- --- map, unmap, protect --- --- --- */
/* Map a file at a fixed address for the client, and update the
segment array accordingly. */
SysRes VG_(am_mmap_file_fixed_client)
( Addr start, SizeT length, UInt prot, Int fd, Off64T offset )
{
return VG_(am_mmap_named_file_fixed_client)(start, length, prot, fd, offset, NULL);
}
SysRes VG_(am_mmap_named_file_fixed_client)
( Addr start, SizeT length, UInt prot, Int fd, Off64T offset, const HChar *name )
{
SysRes sres;
NSegment seg;
Addr advised;
Bool ok;
MapRequest req;
ULong dev, ino;
UInt mode;
HChar buf[VKI_PATH_MAX];
/* Not allowable. */
if (length == 0
|| !VG_IS_PAGE_ALIGNED(start)
|| !VG_IS_PAGE_ALIGNED(offset))
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Ask for an advisory. If it's negative, fail immediately. */
req.rkind = MFixed;
req.start = start;
req.len = length;
advised = VG_(am_get_advisory)( &req, True/*forClient*/, &ok );
if (!ok || advised != start)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* We have been advised that the mapping is allowable at the
specified address. So hand it off to the kernel, and propagate
any resulting failure immediately. */
// DDD: #warning GrP fixme MAP_FIXED can clobber memory!
sres = VG_(am_do_mmap_NO_NOTIFY)(
start, length, prot,
VKI_MAP_FIXED|VKI_MAP_PRIVATE,
fd, offset
);
if (sr_isError(sres))
return sres;
if (sr_Res(sres) != start) {
/* I don't think this can happen. It means the kernel made a
fixed map succeed but not at the requested location. Try to
repair the damage, then return saying the mapping failed. */
(void)ML_(am_do_munmap_NO_NOTIFY)( sr_Res(sres), length );
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
/* Ok, the mapping succeeded. Now notify the interval map. */
init_nsegment( &seg );
seg.kind = SkFileC;
seg.start = start;
seg.end = seg.start + VG_PGROUNDUP(length) - 1;
seg.offset = offset;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
if (ML_(am_get_fd_d_i_m)(fd, &dev, &ino, &mode)) {
seg.dev = dev;
seg.ino = ino;
seg.mode = mode;
}
if (name) {
seg.fnIdx = allocate_segname( name );
} else if (ML_(am_resolve_filename)(fd, buf, VKI_PATH_MAX)) {
seg.fnIdx = allocate_segname( buf );
}
add_segment( &seg );
AM_SANITY_CHECK;
return sres;
}
/* Map anonymously at a fixed address for the client, and update
the segment array accordingly. */
SysRes VG_(am_mmap_anon_fixed_client) ( Addr start, SizeT length, UInt prot )
{
SysRes sres;
NSegment seg;
Addr advised;
Bool ok;
MapRequest req;
/* Not allowable. */
if (length == 0 || !VG_IS_PAGE_ALIGNED(start))
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Ask for an advisory. If it's negative, fail immediately. */
req.rkind = MFixed;
req.start = start;
req.len = length;
advised = VG_(am_get_advisory)( &req, True/*forClient*/, &ok );
if (!ok || advised != start)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* We have been advised that the mapping is allowable at the
specified address. So hand it off to the kernel, and propagate
any resulting failure immediately. */
// DDD: #warning GrP fixme MAP_FIXED can clobber memory!
sres = VG_(am_do_mmap_NO_NOTIFY)(
start, length, prot,
VKI_MAP_FIXED|VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
0, 0
);
if (sr_isError(sres))
return sres;
if (sr_Res(sres) != start) {
/* I don't think this can happen. It means the kernel made a
fixed map succeed but not at the requested location. Try to
repair the damage, then return saying the mapping failed. */
(void)ML_(am_do_munmap_NO_NOTIFY)( sr_Res(sres), length );
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
/* Ok, the mapping succeeded. Now notify the interval map. */
init_nsegment( &seg );
seg.kind = SkAnonC;
seg.start = start;
seg.end = seg.start + VG_PGROUNDUP(length) - 1;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
add_segment( &seg );
AM_SANITY_CHECK;
return sres;
}
/* Map anonymously at an unconstrained address for the client, and
update the segment array accordingly. */
SysRes VG_(am_mmap_anon_float_client) ( SizeT length, Int prot )
{
SysRes sres;
NSegment seg;
Addr advised;
Bool ok;
MapRequest req;
/* Not allowable. */
if (length == 0)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Ask for an advisory. If it's negative, fail immediately. */
req.rkind = MAny;
req.start = 0;
req.len = length;
advised = VG_(am_get_advisory)( &req, True/*forClient*/, &ok );
if (!ok)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* We have been advised that the mapping is allowable at the
advised address. So hand it off to the kernel, and propagate
any resulting failure immediately. */
// DDD: #warning GrP fixme MAP_FIXED can clobber memory!
sres = VG_(am_do_mmap_NO_NOTIFY)(
advised, length, prot,
VKI_MAP_FIXED|VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
0, 0
);
if (sr_isError(sres))
return sres;
if (sr_Res(sres) != advised) {
/* I don't think this can happen. It means the kernel made a
fixed map succeed but not at the requested location. Try to
repair the damage, then return saying the mapping failed. */
(void)ML_(am_do_munmap_NO_NOTIFY)( sr_Res(sres), length );
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
/* Ok, the mapping succeeded. Now notify the interval map. */
init_nsegment( &seg );
seg.kind = SkAnonC;
seg.start = advised;
seg.end = seg.start + VG_PGROUNDUP(length) - 1;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
add_segment( &seg );
AM_SANITY_CHECK;
return sres;
}
/* Map anonymously at an unconstrained address for V, and update the
segment array accordingly. This is fundamentally how V allocates
itself more address space when needed. */
SysRes VG_(am_mmap_anon_float_valgrind)( SizeT length )
{
SysRes sres;
NSegment seg;
Addr advised;
Bool ok;
MapRequest req;
/* Not allowable. */
if (length == 0)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Ask for an advisory. If it's negative, fail immediately. */
req.rkind = MAny;
req.start = 0;
req.len = length;
advised = VG_(am_get_advisory)( &req, False/*forClient*/, &ok );
if (!ok)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
// On Darwin, for anonymous maps you can pass in a tag which is used by
// programs like vmmap for statistical purposes.
#ifndef VM_TAG_VALGRIND
# define VM_TAG_VALGRIND 0
#endif
/* We have been advised that the mapping is allowable at the
specified address. So hand it off to the kernel, and propagate
any resulting failure immediately. */
/* GrP fixme darwin: use advisory as a hint only, otherwise syscall in
another thread can pre-empt our spot. [At one point on the DARWIN
branch the VKI_MAP_FIXED was commented out; unclear if this is
necessary or not given the second Darwin-only call that immediately
follows if this one fails. --njn]
Also, an inner valgrind cannot observe the mmap syscalls done by
the outer valgrind. The outer Valgrind might make the mmap
fail here, as the inner valgrind believes that a segment is free,
while it is in fact used by the outer valgrind.
So, for an inner valgrind, similarly to DARWIN, if the fixed mmap
fails, retry the mmap without map fixed.
This is a kludge which on linux is only activated for the inner.
The state of the inner aspacemgr is not made correct by this kludge
and so a.o. VG_(am_do_sync_check) could fail.
A proper solution implies a better collaboration between the
inner and the outer (e.g. inner VG_(am_get_advisory) should do
a client request to call the outer VG_(am_get_advisory). */
sres = VG_(am_do_mmap_NO_NOTIFY)(
advised, length,
VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC,
VKI_MAP_FIXED|VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
VM_TAG_VALGRIND, 0
);
#if defined(VGO_darwin) || defined(ENABLE_INNER)
/* Kludge on Darwin and inner linux if the fixed mmap failed. */
if (sr_isError(sres)) {
/* try again, ignoring the advisory */
sres = VG_(am_do_mmap_NO_NOTIFY)(
0, length,
VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC,
/*VKI_MAP_FIXED|*/VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
VM_TAG_VALGRIND, 0
);
}
#endif
if (sr_isError(sres))
return sres;
#if defined(VGO_linux) && !defined(ENABLE_INNER)
/* Doing the check only in linux not inner, as the below
check can fail when the kludge above has been used. */
if (sr_Res(sres) != advised) {
/* I don't think this can happen. It means the kernel made a
fixed map succeed but not at the requested location. Try to
repair the damage, then return saying the mapping failed. */
(void)ML_(am_do_munmap_NO_NOTIFY)( sr_Res(sres), length );
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
#endif
/* Ok, the mapping succeeded. Now notify the interval map. */
init_nsegment( &seg );
seg.kind = SkAnonV;
seg.start = sr_Res(sres);
seg.end = seg.start + VG_PGROUNDUP(length) - 1;
seg.hasR = True;
seg.hasW = True;
seg.hasX = True;
add_segment( &seg );
AM_SANITY_CHECK;
return sres;
}
/* Really just a wrapper around VG_(am_mmap_anon_float_valgrind). */
void* VG_(am_shadow_alloc)(SizeT size)
{
SysRes sres = VG_(am_mmap_anon_float_valgrind)( size );
return sr_isError(sres) ? NULL : (void*)sr_Res(sres);
}
/* Map a file at an unconstrained address for V, and update the
segment array accordingly. Use the provided flags */
static SysRes VG_(am_mmap_file_float_valgrind_flags) ( SizeT length, UInt prot,
UInt flags,
Int fd, Off64T offset )
{
SysRes sres;
NSegment seg;
Addr advised;
Bool ok;
MapRequest req;
ULong dev, ino;
UInt mode;
HChar buf[VKI_PATH_MAX];
/* Not allowable. */
if (length == 0 || !VG_IS_PAGE_ALIGNED(offset))
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Ask for an advisory. If it's negative, fail immediately. */
req.rkind = MAny;
req.start = 0;
#if defined(VGA_arm) || defined(VGA_arm64) \
|| defined(VGA_mips32) || defined(VGA_mips64)
aspacem_assert(VKI_SHMLBA >= VKI_PAGE_SIZE);
#else
aspacem_assert(VKI_SHMLBA == VKI_PAGE_SIZE);
#endif
if ((VKI_SHMLBA > VKI_PAGE_SIZE) && (VKI_MAP_SHARED & flags)) {
/* arm-linux only. See ML_(generic_PRE_sys_shmat) and bug 290974 */
req.len = length + VKI_SHMLBA - VKI_PAGE_SIZE;
} else {
req.len = length;
}
advised = VG_(am_get_advisory)( &req, False/*forClient*/, &ok );
if (!ok)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
if ((VKI_SHMLBA > VKI_PAGE_SIZE) && (VKI_MAP_SHARED & flags))
advised = VG_ROUNDUP(advised, VKI_SHMLBA);
/* We have been advised that the mapping is allowable at the
specified address. So hand it off to the kernel, and propagate
any resulting failure immediately. */
sres = VG_(am_do_mmap_NO_NOTIFY)(
advised, length, prot,
flags,
fd, offset
);
if (sr_isError(sres))
return sres;
if (sr_Res(sres) != advised) {
/* I don't think this can happen. It means the kernel made a
fixed map succeed but not at the requested location. Try to
repair the damage, then return saying the mapping failed. */
(void)ML_(am_do_munmap_NO_NOTIFY)( sr_Res(sres), length );
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
/* Ok, the mapping succeeded. Now notify the interval map. */
init_nsegment( &seg );
seg.kind = SkFileV;
seg.start = sr_Res(sres);
seg.end = seg.start + VG_PGROUNDUP(length) - 1;
seg.offset = offset;
seg.hasR = toBool(prot & VKI_PROT_READ);
seg.hasW = toBool(prot & VKI_PROT_WRITE);
seg.hasX = toBool(prot & VKI_PROT_EXEC);
if (ML_(am_get_fd_d_i_m)(fd, &dev, &ino, &mode)) {
seg.dev = dev;
seg.ino = ino;
seg.mode = mode;
}
if (ML_(am_resolve_filename)(fd, buf, VKI_PATH_MAX)) {
seg.fnIdx = allocate_segname( buf );
}
add_segment( &seg );
AM_SANITY_CHECK;
return sres;
}
/* Map privately a file at an unconstrained address for V, and update the
segment array accordingly. This is used by V for transiently
mapping in object files to read their debug info. */
SysRes VG_(am_mmap_file_float_valgrind) ( SizeT length, UInt prot,
Int fd, Off64T offset )
{
return VG_(am_mmap_file_float_valgrind_flags) (length, prot,
VKI_MAP_FIXED|VKI_MAP_PRIVATE,
fd, offset );
}
SysRes VG_(am_shared_mmap_file_float_valgrind)
( SizeT length, UInt prot, Int fd, Off64T offset )
{
return VG_(am_mmap_file_float_valgrind_flags) (length, prot,
VKI_MAP_FIXED|VKI_MAP_SHARED,
fd, offset );
}
/* --- --- munmap helper --- --- */
static
SysRes am_munmap_both_wrk ( /*OUT*/Bool* need_discard,
Addr start, SizeT len, Bool forClient )
{
Bool d;
SysRes sres;
if (!VG_IS_PAGE_ALIGNED(start))
goto eINVAL;
if (len == 0) {
*need_discard = False;
return VG_(mk_SysRes_Success)( 0 );
}
if (start + len < len)
goto eINVAL;
len = VG_PGROUNDUP(len);
aspacem_assert(VG_IS_PAGE_ALIGNED(start));
aspacem_assert(VG_IS_PAGE_ALIGNED(len));
if (forClient) {
if (!VG_(am_is_valid_for_client_or_free_or_resvn)
( start, len, VKI_PROT_NONE ))
goto eINVAL;
} else {
if (!VG_(am_is_valid_for_valgrind)
( start, len, VKI_PROT_NONE ))
goto eINVAL;
}
d = any_Ts_in_range( start, len );
sres = ML_(am_do_munmap_NO_NOTIFY)( start, len );
if (sr_isError(sres))
return sres;
VG_(am_notify_munmap)( start, len );
AM_SANITY_CHECK;
*need_discard = d;
return sres;
eINVAL:
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
/* Unmap the given address range and update the segment array
accordingly. This fails if the range isn't valid for the client.
If *need_discard is True after a successful return, the caller
should immediately discard translations from the specified address
range. */
SysRes VG_(am_munmap_client)( /*OUT*/Bool* need_discard,
Addr start, SizeT len )
{
return am_munmap_both_wrk( need_discard, start, len, True/*client*/ );
}
/* Unmap the given address range and update the segment array
accordingly. This fails if the range isn't valid for valgrind. */
SysRes VG_(am_munmap_valgrind)( Addr start, SizeT len )
{
Bool need_discard;
SysRes r = am_munmap_both_wrk( &need_discard,
start, len, False/*valgrind*/ );
/* If this assertion fails, it means we allowed translations to be
made from a V-owned section. Which shouldn't happen. */
if (!sr_isError(r))
aspacem_assert(!need_discard);
return r;
}
/* Let (start,len) denote an area within a single Valgrind-owned
segment (anon or file). Change the ownership of [start, start+len)
to the client instead. Fails if (start,len) does not denote a
suitable segment. */
Bool VG_(am_change_ownership_v_to_c)( Addr start, SizeT len )
{
Int i, iLo, iHi;
if (len == 0)
return True;
if (start + len < start)
return False;
if (!VG_IS_PAGE_ALIGNED(start) || !VG_IS_PAGE_ALIGNED(len))
return False;
i = find_nsegment_idx(start);
if (nsegments[i].kind != SkFileV && nsegments[i].kind != SkAnonV)
return False;
if (start+len-1 > nsegments[i].end)
return False;
aspacem_assert(start >= nsegments[i].start);
aspacem_assert(start+len-1 <= nsegments[i].end);
/* This scheme is like how mprotect works: split the to-be-changed
range into its own segment(s), then mess with them (it). There
should be only one. */
split_nsegments_lo_and_hi( start, start+len-1, &iLo, &iHi );
aspacem_assert(iLo == iHi);
switch (nsegments[iLo].kind) {
case SkFileV: nsegments[iLo].kind = SkFileC; break;
case SkAnonV: nsegments[iLo].kind = SkAnonC; break;
default: aspacem_assert(0); /* can't happen - guarded above */
}
preen_nsegments();
return True;
}
/* 'seg' must be NULL or have been obtained from
VG_(am_find_nsegment), and still valid. If non-NULL, and if it
denotes a SkAnonC (anonymous client mapping) area, set the .isCH
(is-client-heap) flag for that area. Otherwise do nothing.
(Bizarre interface so that the same code works for both Linux and
AIX and does not impose inefficiencies on the Linux version.) */
void VG_(am_set_segment_isCH_if_SkAnonC)( const NSegment* seg )
{
Int i = segAddr_to_index( seg );
aspacem_assert(i >= 0 && i < nsegments_used);
if (nsegments[i].kind == SkAnonC) {
nsegments[i].isCH = True;
} else {
aspacem_assert(nsegments[i].isCH == False);
}
}
/* Same idea as VG_(am_set_segment_isCH_if_SkAnonC), except set the
segment's hasT bit (has-cached-code) if this is SkFileC or SkAnonC
segment. */
void VG_(am_set_segment_hasT_if_SkFileC_or_SkAnonC)( const NSegment* seg )
{
Int i = segAddr_to_index( seg );
aspacem_assert(i >= 0 && i < nsegments_used);
if (nsegments[i].kind == SkAnonC || nsegments[i].kind == SkFileC) {
nsegments[i].hasT = True;
}
}
/* --- --- --- reservations --- --- --- */
/* Create a reservation from START .. START+LENGTH-1, with the given
ShrinkMode. When checking whether the reservation can be created,
also ensure that at least abs(EXTRA) extra free bytes will remain
above (> 0) or below (< 0) the reservation.
The reservation will only be created if it, plus the extra-zone,
falls entirely within a single free segment. The returned Bool
indicates whether the creation succeeded. */
Bool VG_(am_create_reservation) ( Addr start, SizeT length,