blob: 6f3d2342b7533a9e7cbe5142441741ab62f78e1a [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- x86- and AMD64-specific definitions. cg-x86-amd64.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Cachegrind, a Valgrind tool for cache
profiling programs.
Copyright (C) 2002-2010 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGA_x86) || defined(VGA_amd64)
#include "pub_tool_basics.h"
#include "pub_tool_cpuid.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "cg_arch.h"
// All CPUID info taken from sandpile.org/ia32/cpuid.htm */
// Probably only works for Intel and AMD chips, and probably only for some of
// them.
static void micro_ops_warn(Int actual_size, Int used_size, Int line_size)
{
VG_(dmsg)("warning: Pentium 4 with %d KB micro-op instruction trace cache\n",
actual_size);
VG_(dmsg)(" Simulating a %d KB I-cache with %d B lines\n",
used_size, line_size);
}
/* Intel method is truly wretched. We have to do an insane indexing into an
* array of pre-defined configurations for various parts of the memory
* hierarchy.
* According to Intel Processor Identification, App Note 485.
*
* If a L3 cache is found, then data for it rather than the L2
* is returned via *LLc.
*/
static
Int Intel_cache_info(Int level, cache_t* I1c, cache_t* D1c, cache_t* LLc)
{
Int cpuid1_eax;
Int cpuid1_ignore;
Int family;
Int model;
UChar info[16];
Int i, j, trials;
Bool L2_found = False;
/* If we see L3 cache info, copy it into L3c. Then, at the end,
copy it into *LLc. Hence if a L3 cache is specified, *LLc will
eventually contain a description of it rather than the L2 cache.
The use of the L3c intermediary makes this process independent
of the order in which the cache specifications appear in
info[]. */
Bool L3_found = False;
cache_t L3c = { 0, 0, 0 };
if (level < 2) {
VG_(dmsg)("warning: CPUID level < 2 for Intel processor (%d)\n", level);
return -1;
}
/* family/model needed to distinguish code reuse (currently 0x49) */
VG_(cpuid)(1, 0, &cpuid1_eax, &cpuid1_ignore,
&cpuid1_ignore, &cpuid1_ignore);
family = (((cpuid1_eax >> 20) & 0xff) << 4) + ((cpuid1_eax >> 8) & 0xf);
model = (((cpuid1_eax >> 16) & 0xf) << 4) + ((cpuid1_eax >> 4) & 0xf);
VG_(cpuid)(2, 0, (Int*)&info[0], (Int*)&info[4],
(Int*)&info[8], (Int*)&info[12]);
trials = info[0] - 1; /* AL register - bits 0..7 of %eax */
info[0] = 0x0; /* reset AL */
if (0 != trials) {
VG_(dmsg)("warning: non-zero CPUID trials for Intel processor (%d)\n",
trials);
return -1;
}
for (i = 0; i < 16; i++) {
switch (info[i]) {
case 0x0: /* ignore zeros */
break;
/* TLB info, ignore */
case 0x01: case 0x02: case 0x03: case 0x04: case 0x05:
case 0x4f: case 0x50: case 0x51: case 0x52: case 0x55:
case 0x56: case 0x57: case 0x59:
case 0x5a: case 0x5b: case 0x5c: case 0x5d:
case 0xb0: case 0xb1: case 0xb2:
case 0xb3: case 0xb4: case 0xba: case 0xc0:
case 0xca:
break;
case 0x06: *I1c = (cache_t) { 8, 4, 32 }; break;
case 0x08: *I1c = (cache_t) { 16, 4, 32 }; break;
case 0x09: *I1c = (cache_t) { 32, 4, 64 }; break;
case 0x30: *I1c = (cache_t) { 32, 8, 64 }; break;
case 0x0a: *D1c = (cache_t) { 8, 2, 32 }; break;
case 0x0c: *D1c = (cache_t) { 16, 4, 32 }; break;
case 0x0e: *D1c = (cache_t) { 24, 6, 64 }; break;
case 0x2c: *D1c = (cache_t) { 32, 8, 64 }; break;
/* IA-64 info -- panic! */
case 0x10: case 0x15: case 0x1a:
case 0x88: case 0x89: case 0x8a: case 0x8d:
case 0x90: case 0x96: case 0x9b:
VG_(tool_panic)("IA-64 cache detected?!");
/* L3 cache info. */
case 0x22: L3c = (cache_t) { 512, 4, 64 }; L3_found = True; break;
case 0x23: L3c = (cache_t) { 1024, 8, 64 }; L3_found = True; break;
case 0x25: L3c = (cache_t) { 2048, 8, 64 }; L3_found = True; break;
case 0x29: L3c = (cache_t) { 4096, 8, 64 }; L3_found = True; break;
case 0x46: L3c = (cache_t) { 4096, 4, 64 }; L3_found = True; break;
case 0x47: L3c = (cache_t) { 8192, 8, 64 }; L3_found = True; break;
case 0x4a: L3c = (cache_t) { 6144, 12, 64 }; L3_found = True; break;
case 0x4b: L3c = (cache_t) { 8192, 16, 64 }; L3_found = True; break;
case 0x4c: L3c = (cache_t) { 12288, 12, 64 }; L3_found = True; break;
case 0x4d: L3c = (cache_t) { 16384, 16, 64 }; L3_found = True; break;
case 0xd0: L3c = (cache_t) { 512, 4, 64 }; L3_found = True; break;
case 0xd1: L3c = (cache_t) { 1024, 4, 64 }; L3_found = True; break;
case 0xd2: L3c = (cache_t) { 2048, 4, 64 }; L3_found = True; break;
case 0xd6: L3c = (cache_t) { 1024, 8, 64 }; L3_found = True; break;
case 0xd7: L3c = (cache_t) { 2048, 8, 64 }; L3_found = True; break;
case 0xd8: L3c = (cache_t) { 4096, 8, 64 }; L3_found = True; break;
case 0xdc: L3c = (cache_t) { 1536, 12, 64 }; L3_found = True; break;
case 0xdd: L3c = (cache_t) { 3072, 12, 64 }; L3_found = True; break;
case 0xde: L3c = (cache_t) { 6144, 12, 64 }; L3_found = True; break;
case 0xe2: L3c = (cache_t) { 2048, 16, 64 }; L3_found = True; break;
case 0xe3: L3c = (cache_t) { 4096, 16, 64 }; L3_found = True; break;
case 0xe4: L3c = (cache_t) { 8192, 16, 64 }; L3_found = True; break;
case 0xea: L3c = (cache_t) { 12288, 24, 64 }; L3_found = True; break;
case 0xeb: L3c = (cache_t) { 18432, 24, 64 }; L3_found = True; break;
case 0xec: L3c = (cache_t) { 24576, 24, 64 }; L3_found = True; break;
/* Described as "MLC" in Intel documentation */
case 0x21: *LLc = (cache_t) { 256, 8, 64 }; L2_found = True; break;
/* These are sectored, whatever that means */
case 0x39: *LLc = (cache_t) { 128, 4, 64 }; L2_found = True; break;
case 0x3c: *LLc = (cache_t) { 256, 4, 64 }; L2_found = True; break;
/* If a P6 core, this means "no L2 cache".
If a P4 core, this means "no L3 cache".
We don't know what core it is, so don't issue a warning. To detect
a missing L2 cache, we use 'L2_found'. */
case 0x40:
break;
case 0x41: *LLc = (cache_t) { 128, 4, 32 }; L2_found = True; break;
case 0x42: *LLc = (cache_t) { 256, 4, 32 }; L2_found = True; break;
case 0x43: *LLc = (cache_t) { 512, 4, 32 }; L2_found = True; break;
case 0x44: *LLc = (cache_t) { 1024, 4, 32 }; L2_found = True; break;
case 0x45: *LLc = (cache_t) { 2048, 4, 32 }; L2_found = True; break;
case 0x48: *LLc = (cache_t) { 3072, 12, 64 }; L2_found = True; break;
case 0x4e: *LLc = (cache_t) { 6144, 24, 64 }; L2_found = True; break;
case 0x49:
if (family == 15 && model == 6) {
/* On Xeon MP (family F, model 6), this is for L3 */
L3c = (cache_t) { 4096, 16, 64 }; L3_found = True;
} else {
*LLc = (cache_t) { 4096, 16, 64 }; L2_found = True;
}
break;
/* These are sectored, whatever that means */
case 0x60: *D1c = (cache_t) { 16, 8, 64 }; break; /* sectored */
case 0x66: *D1c = (cache_t) { 8, 4, 64 }; break; /* sectored */
case 0x67: *D1c = (cache_t) { 16, 4, 64 }; break; /* sectored */
case 0x68: *D1c = (cache_t) { 32, 4, 64 }; break; /* sectored */
/* HACK ALERT: Instruction trace cache -- capacity is micro-ops based.
* conversion to byte size is a total guess; treat the 12K and 16K
* cases the same since the cache byte size must be a power of two for
* everything to work!. Also guessing 32 bytes for the line size...
*/
case 0x70: /* 12K micro-ops, 8-way */
*I1c = (cache_t) { 16, 8, 32 };
micro_ops_warn(12, 16, 32);
break;
case 0x71: /* 16K micro-ops, 8-way */
*I1c = (cache_t) { 16, 8, 32 };
micro_ops_warn(16, 16, 32);
break;
case 0x72: /* 32K micro-ops, 8-way */
*I1c = (cache_t) { 32, 8, 32 };
micro_ops_warn(32, 32, 32);
break;
/* not sectored, whatever that might mean */
case 0x78: *LLc = (cache_t) { 1024, 4, 64 }; L2_found = True; break;
/* These are sectored, whatever that means */
case 0x79: *LLc = (cache_t) { 128, 8, 64 }; L2_found = True; break;
case 0x7a: *LLc = (cache_t) { 256, 8, 64 }; L2_found = True; break;
case 0x7b: *LLc = (cache_t) { 512, 8, 64 }; L2_found = True; break;
case 0x7c: *LLc = (cache_t) { 1024, 8, 64 }; L2_found = True; break;
case 0x7d: *LLc = (cache_t) { 2048, 8, 64 }; L2_found = True; break;
case 0x7e: *LLc = (cache_t) { 256, 8, 128 }; L2_found = True; break;
case 0x7f: *LLc = (cache_t) { 512, 2, 64 }; L2_found = True; break;
case 0x80: *LLc = (cache_t) { 512, 8, 64 }; L2_found = True; break;
case 0x81: *LLc = (cache_t) { 128, 8, 32 }; L2_found = True; break;
case 0x82: *LLc = (cache_t) { 256, 8, 32 }; L2_found = True; break;
case 0x83: *LLc = (cache_t) { 512, 8, 32 }; L2_found = True; break;
case 0x84: *LLc = (cache_t) { 1024, 8, 32 }; L2_found = True; break;
case 0x85: *LLc = (cache_t) { 2048, 8, 32 }; L2_found = True; break;
case 0x86: *LLc = (cache_t) { 512, 4, 64 }; L2_found = True; break;
case 0x87: *LLc = (cache_t) { 1024, 8, 64 }; L2_found = True; break;
/* Ignore prefetch information */
case 0xf0: case 0xf1:
break;
case 0xff:
j = 0;
VG_(cpuid)(4, j++, (Int*)&info[0], (Int*)&info[4],
(Int*)&info[8], (Int*)&info[12]);
while ((info[0] & 0x1f) != 0) {
UInt assoc = ((*(UInt *)&info[4] >> 22) & 0x3ff) + 1;
UInt parts = ((*(UInt *)&info[4] >> 12) & 0x3ff) + 1;
UInt line_size = (*(UInt *)&info[4] & 0x7ff) + 1;
UInt sets = *(UInt *)&info[8] + 1;
cache_t c;
c.size = assoc * parts * line_size * sets / 1024;
c.assoc = assoc;
c.line_size = line_size;
switch ((info[0] & 0xe0) >> 5)
{
case 1:
switch (info[0] & 0x1f)
{
case 1: *D1c = c; break;
case 2: *I1c = c; break;
case 3: VG_(dmsg)("warning: L1 unified cache ignored\n"); break;
default: VG_(dmsg)("warning: L1 cache of unknown type ignored\n"); break;
}
break;
case 2:
switch (info[0] & 0x1f)
{
case 1: VG_(dmsg)("warning: L2 data cache ignored\n"); break;
case 2: VG_(dmsg)("warning: L2 instruction cache ignored\n"); break;
case 3: *LLc = c; L2_found = True; break;
default: VG_(dmsg)("warning: L2 cache of unknown type ignored\n"); break;
}
break;
case 3:
switch (info[0] & 0x1f)
{
case 1: VG_(dmsg)("warning: L3 data cache ignored\n"); break;
case 2: VG_(dmsg)("warning: L3 instruction cache ignored\n"); break;
case 3: L3c = c; L3_found = True; break;
default: VG_(dmsg)("warning: L3 cache of unknown type ignored\n"); break;
}
break;
default:
VG_(dmsg)("warning: L%u cache ignored\n", (info[0] & 0xe0) >> 5);
break;
}
VG_(cpuid)(4, j++, (Int*)&info[0], (Int*)&info[4],
(Int*)&info[8], (Int*)&info[12]);
}
break;
default:
VG_(dmsg)("warning: Unknown Intel cache config value (0x%x), ignoring\n",
info[i]);
break;
}
}
/* If we found a L3 cache, throw away the L2 data and use the L3's instead. */
if (L3_found) {
VG_(dmsg)("warning: L3 cache found, using its data for the LL simulation.\n");
*LLc = L3c;
L2_found = True;
}
if (!L2_found)
VG_(dmsg)("warning: L2 cache not installed, ignore LL results.\n");
return 0;
}
/* AMD method is straightforward, just extract appropriate bits from the
* result registers.
*
* Bits, for D1 and I1:
* 31..24 data L1 cache size in KBs
* 23..16 data L1 cache associativity (FFh=full)
* 15.. 8 data L1 cache lines per tag
* 7.. 0 data L1 cache line size in bytes
*
* Bits, for L2:
* 31..16 unified L2 cache size in KBs
* 15..12 unified L2 cache associativity (0=off, FFh=full)
* 11.. 8 unified L2 cache lines per tag
* 7.. 0 unified L2 cache line size in bytes
*
* #3 The AMD K7 processor's L2 cache must be configured prior to relying
* upon this information. (Whatever that means -- njn)
*
* Also, according to Cyrille Chepelov, Duron stepping A0 processors (model
* 0x630) have a bug and misreport their L2 size as 1KB (it's really 64KB),
* so we detect that.
*
* Returns 0 on success, non-zero on failure. As with the Intel code
* above, if a L3 cache is found, then data for it rather than the L2
* is returned via *LLc.
*/
/* A small helper */
static Int decode_AMD_cache_L2_L3_assoc ( Int bits_15_12 )
{
/* Decode a L2/L3 associativity indication. It is encoded
differently from the I1/D1 associativity. Returns 1
(direct-map) as a safe but suboptimal result for unknown
encodings. */
switch (bits_15_12 & 0xF) {
case 1: return 1; case 2: return 2;
case 4: return 4; case 6: return 8;
case 8: return 16; case 0xA: return 32;
case 0xB: return 48; case 0xC: return 64;
case 0xD: return 96; case 0xE: return 128;
case 0xF: /* fully associative */
case 0: /* L2/L3 cache or TLB is disabled */
default:
return 1;
}
}
static
Int AMD_cache_info(cache_t* I1c, cache_t* D1c, cache_t* LLc)
{
UInt ext_level;
UInt dummy, model;
UInt I1i, D1i, L2i, L3i;
VG_(cpuid)(0x80000000, 0, &ext_level, &dummy, &dummy, &dummy);
if (0 == (ext_level & 0x80000000) || ext_level < 0x80000006) {
VG_(dmsg)("warning: ext_level < 0x80000006 for AMD processor (0x%x)\n",
ext_level);
return -1;
}
VG_(cpuid)(0x80000005, 0, &dummy, &dummy, &D1i, &I1i);
VG_(cpuid)(0x80000006, 0, &dummy, &dummy, &L2i, &L3i);
VG_(cpuid)(0x1, 0, &model, &dummy, &dummy, &dummy);
/* Check for Duron bug */
if (model == 0x630) {
VG_(dmsg)("warning: Buggy Duron stepping A0. Assuming L2 size=65536 bytes\n");
L2i = (64 << 16) | (L2i & 0xffff);
}
D1c->size = (D1i >> 24) & 0xff;
D1c->assoc = (D1i >> 16) & 0xff;
D1c->line_size = (D1i >> 0) & 0xff;
I1c->size = (I1i >> 24) & 0xff;
I1c->assoc = (I1i >> 16) & 0xff;
I1c->line_size = (I1i >> 0) & 0xff;
LLc->size = (L2i >> 16) & 0xffff; /* Nb: different bits used for L2 */
LLc->assoc = decode_AMD_cache_L2_L3_assoc((L2i >> 12) & 0xf);
LLc->line_size = (L2i >> 0) & 0xff;
if (((L3i >> 18) & 0x3fff) > 0) {
/* There's an L3 cache. Replace *LLc contents with this info. */
/* NB: the test in the if is "if L3 size > 0 ". I don't know if
this is the right way to test presence-vs-absence of L3. I
can't see any guidance on this in the AMD documentation. */
LLc->size = ((L3i >> 18) & 0x3fff) * 512;
LLc->assoc = decode_AMD_cache_L2_L3_assoc((L3i >> 12) & 0xf);
LLc->line_size = (L3i >> 0) & 0xff;
VG_(dmsg)("warning: L3 cache found, using its data for the L2 simulation.\n");
}
return 0;
}
static
Int get_caches_from_CPUID(cache_t* I1c, cache_t* D1c, cache_t* LLc)
{
Int level, ret;
Char vendor_id[13];
if (!VG_(has_cpuid)()) {
VG_(dmsg)("CPUID instruction not supported\n");
return -1;
}
VG_(cpuid)(0, 0, &level, (int*)&vendor_id[0],
(int*)&vendor_id[8], (int*)&vendor_id[4]);
vendor_id[12] = '\0';
if (0 == level) {
VG_(dmsg)("CPUID level is 0, early Pentium?\n");
return -1;
}
/* Only handling Intel and AMD chips... no Cyrix, Transmeta, etc */
if (0 == VG_(strcmp)(vendor_id, "GenuineIntel")) {
ret = Intel_cache_info(level, I1c, D1c, LLc);
} else if (0 == VG_(strcmp)(vendor_id, "AuthenticAMD")) {
ret = AMD_cache_info(I1c, D1c, LLc);
} else if (0 == VG_(strcmp)(vendor_id, "CentaurHauls")) {
/* Total kludge. Pretend to be a VIA Nehemiah. */
D1c->size = 64;
D1c->assoc = 16;
D1c->line_size = 16;
I1c->size = 64;
I1c->assoc = 4;
I1c->line_size = 16;
LLc->size = 64;
LLc->assoc = 16;
LLc->line_size = 16;
ret = 0;
} else {
VG_(dmsg)("CPU vendor ID not recognised (%s)\n", vendor_id);
return -1;
}
/* Successful! Convert sizes from KB to bytes */
I1c->size *= 1024;
D1c->size *= 1024;
LLc->size *= 1024;
return ret;
}
void VG_(configure_caches)(cache_t* I1c, cache_t* D1c, cache_t* LLc,
Bool all_caches_clo_defined)
{
Int res;
// Set caches to default.
*I1c = (cache_t) { 65536, 2, 64 };
*D1c = (cache_t) { 65536, 2, 64 };
*LLc = (cache_t) { 262144, 8, 64 };
// Then replace with any info we can get from CPUID.
res = get_caches_from_CPUID(I1c, D1c, LLc);
// Warn if CPUID failed and config not completely specified from cmd line.
if (res != 0 && !all_caches_clo_defined) {
VG_(dmsg)("Warning: Couldn't auto-detect cache config, using one "
"or more defaults \n");
}
}
#endif // defined(VGA_x86) || defined(VGA_amd64)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/