blob: 54ffbb0e865c7b6afa1da9bec43ae875eef395de [file] [log] [blame]
/* Copyright (C) 2012 IBM
Author: Maynard Johnson <maynardj@us.ibm.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#if defined(HAS_DFP)
typedef union stuff {
_Decimal64 dec_val;
_Decimal128 dec_val128;
unsigned long long u64_val;
struct {
#if defined(VGP_ppc64le_linux)
unsigned long long vall;
unsigned long long valu;
#else
unsigned long long valu;
unsigned long long vall;
#endif
} u128;
} dfp_val_t;
typedef unsigned char Bool;
#define True 1
#define False 0
#define ALLCR "cr0","cr1","cr2","cr3","cr4","cr5","cr6","cr7"
#define SET_CR(_arg) \
__asm__ __volatile__ ("mtcr %0" : : "b"(_arg) : ALLCR );
#define SET_XER(_arg) \
__asm__ __volatile__ ("mtxer %0" : : "b"(_arg) : "xer" );
#define GET_CR(_lval) \
__asm__ __volatile__ ("mfcr %0" : "=b"(_lval) )
#define GET_XER(_lval) \
__asm__ __volatile__ ("mfxer %0" : "=b"(_lval) )
#define GET_CR_XER(_lval_cr,_lval_xer) \
do { GET_CR(_lval_cr); GET_XER(_lval_xer); } while (0)
#define SET_CR_ZERO \
SET_CR(0)
#define SET_XER_ZERO \
SET_XER(0)
#define SET_CR_XER_ZERO \
do { SET_CR_ZERO; SET_XER_ZERO; } while (0)
#define SET_FPSCR_ZERO \
do { double _d = 0.0; \
__asm__ __volatile__ ("mtfsf 0xFF, %0" : : "f"(_d) ); \
} while (0)
#define GET_FPSCR(_arg) \
__asm__ __volatile__ ("mffs %0" : "=f"(_arg) )
#define SET_FPSCR_DRN \
__asm__ __volatile__ ("mtfsf 1, %0, 0, 1" : : "f"(f14) )
// The assembly-level instructions being tested
/* In _test_dtstdc[q], DCM can be one of 6 possible data classes, numbered 0-5.
* In reality, DCM is a 6-bit mask field. We just test the individual values
* and assume that masking multiple values would work OK.
* BF is the condition register bit field which can range from 0-7. But for
* testing purposes, we only use BF values of '0' and '5'.
*/
static void _test_dtstdc(int BF, int DCM, dfp_val_t *val1, dfp_val_t *x1 __attribute__((unused)))
{
_Decimal64 f14 = val1->dec_val;
if (DCM < 0 || DCM > 5 || !(BF == 0 || BF == 5)) {
fprintf(stderr, "Invalid inputs to asm test: a=%d, b=%d\n", BF, DCM);
return;
}
switch (DCM) {
case 0:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 1" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 1" : : "f" (f14));
break;
case 1:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 2" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 2" : : "f" (f14));
break;
case 2:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 4" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 4" : : "f" (f14));
break;
case 3:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 8" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 8" : : "f" (f14));
break;
case 4:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 16" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 16" : : "f" (f14));
break;
case 5:
if (BF)
__asm__ __volatile__ ("dtstdc 5, %0, 32" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdc 0, %0, 32" : : "f" (f14));
break;
default:
break;
}
}
static void _test_dtstdcq(int BF, int DCM, dfp_val_t *val1, dfp_val_t *x1 __attribute__((unused)))
{
_Decimal128 f14 = val1->dec_val128;
if (DCM < 0 || DCM > 5 || !(BF == 0 || BF == 5)) {
fprintf(stderr, "Invalid inputs to asm test: a=%d, b=%d\n", BF, DCM);
return;
}
switch (DCM) {
case 0:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 1" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 1" : : "f" (f14));
break;
case 1:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 2" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 2" : : "f" (f14));
break;
case 2:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 4" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 4" : : "f" (f14));
break;
case 3:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 8" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 8" : : "f" (f14));
break;
case 4:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 16" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 16" : : "f" (f14));
break;
case 5:
if (BF)
__asm__ __volatile__ ("dtstdcq 5, %0, 32" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdcq 0, %0, 32" : : "f" (f14));
break;
default:
break;
}
}
/* In _test_dtstdg[q], DGM can be one of 6 possible data groups, numbered 0-5.
* In reality, DGM is a 6-bit mask field. We just test the individual values
* and assume that masking multiple values would work OK.
* BF is the condition register bit field which can range from 0-7. But for
* testing purposes, we only use BF values of '0' and '5'.
*/
static void _test_dtstdg(int BF, int DGM, dfp_val_t *val1, dfp_val_t *x1 __attribute__((unused)))
{
_Decimal64 f14 = val1->dec_val;
if (DGM < 0 || DGM > 5 || !(BF == 0 || BF == 5)) {
fprintf(stderr, "Invalid inputs to asm test: a=%d, b=%d\n", BF, DGM);
return;
}
switch (DGM) {
case 0:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 1" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 1" : : "f" (f14));
break;
case 1:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 2" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 2" : : "f" (f14));
break;
case 2:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 4" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 4" : : "f" (f14));
break;
case 3:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 8" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 8" : : "f" (f14));
break;
case 4:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 16" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 16" : : "f" (f14));
break;
case 5:
if (BF)
__asm__ __volatile__ ("dtstdg 5, %0, 32" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdg 0, %0, 32" : : "f" (f14));
break;
default:
break;
}
}
static void _test_dtstdgq(int BF, int DGM, dfp_val_t *val1, dfp_val_t *x1 __attribute__((unused)))
{
_Decimal128 f14 = val1->dec_val128;
if (DGM < 0 || DGM > 5 || !(BF == 0 || BF == 5)) {
fprintf(stderr, "Invalid inputs to asm test: a=%d, b=%d\n", BF, DGM);
return;
}
switch (DGM) {
case 0:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 1" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 1" : : "f" (f14));
break;
case 1:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 2" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 2" : : "f" (f14));
break;
case 2:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 4" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 4" : : "f" (f14));
break;
case 3:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 8" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 8" : : "f" (f14));
break;
case 4:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 16" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 16" : : "f" (f14));
break;
case 5:
if (BF)
__asm__ __volatile__ ("dtstdgq 5, %0, 32" : : "f" (f14));
else
__asm__ __volatile__ ("dtstdgq 0, %0, 32" : : "f" (f14));
break;
default:
break;
}
}
/* In _test_dtstex[q], BF is the condition register bit field indicating the
* CR field in which the result of the test should be placed. BF can range
* from 0-7, but for testing purposes, we only use BF values of '4' and '7'.
*/
static void
_test_dtstex(int BF, int x __attribute__((unused)), dfp_val_t *val1, dfp_val_t *val2)
{
_Decimal64 f14 = val1->dec_val;
_Decimal64 f16 = val2->dec_val;
if (!(BF == 4 || BF == 7)) {
fprintf(stderr, "Invalid input to asm test: a=%d\n", BF);
return;
}
switch (BF) {
case 4:
__asm__ __volatile__ ("dtstex 4, %0, %1" : : "f" (f14),"f" (f16));
break;
case 7:
__asm__ __volatile__ ("dtstex 7, %0, %1" : : "f" (f14),"f" (f16));
break;
default:
break;
}
}
static void _test_dtstexq(int BF, int x __attribute__((unused)), dfp_val_t *val1, dfp_val_t *val2)
{
_Decimal128 f14 = val1->dec_val128;
_Decimal128 f16 = val2->dec_val128;
if (!(BF == 4 || BF == 7)) {
fprintf(stderr, "Invalid input to asm test: a=%d\n", BF);
return;
}
switch (BF) {
case 4:
__asm__ __volatile__ ("dtstexq 4, %0, %1" : : "f" (f14),"f" (f16));
break;
case 7:
__asm__ __volatile__ ("dtstexq 7, %0, %1" : : "f" (f14),"f" (f16));
break;
default:
break;
}
}
typedef void (*test_funcp_t)(int a, int b, dfp_val_t *val1, dfp_val_t *val2);
typedef void (*test_driver_func_t)(void);
typedef struct test_table
{
test_driver_func_t test_category;
char * name;
} test_table_t;
/*
* 345.0DD (0x2207c00000000000 0xe50)
* 1.2300e+5DD (0x2207c00000000000 0x14c000)
* -16.0DD (0xa207c00000000000 0xe0)
* 0.00189DD (0x2206c00000000000 0xcf)
* -4.1235DD (0xa205c00000000000 0x10a395bcf)
* 9.8399e+20DD (0x2209400000000000 0x253f1f534acdd4)
* 0DD (0x2208000000000000 0x0)
* 0DD (0x2208000000000000 0x0)
* infDD (0x7800000000000000 0x0)
* nanDD (0x7c00000000000000 0x0
*/
static unsigned long long dfp128_vals[] = {
// Some finite numbers
0x2207c00000000000ULL, 0x0000000000000e50ULL,
0x2207c00000000000ULL, 0x000000000014c000ULL,
0xa207c00000000000ULL, 0x00000000000000e0ULL,
0x2206c00000000000ULL, 0x00000000000000cfULL,
0xa205c00000000000ULL, 0x000000010a395bcfULL,
0x6209400000fd0000ULL, 0x00253f1f534acdd4ULL, // huge number
0x000400000089b000ULL, 0x0a6000d000000049ULL, // very small number
// flavors of zero
0x2208000000000000ULL, 0x0000000000000000ULL,
0xa208000000000000ULL, 0x0000000000000000ULL, // negative
0xa248000000000000ULL, 0x0000000000000000ULL,
// flavors of NAN
0x7c00000000000000ULL, 0x0000000000000000ULL, // quiet
0xfc00000000000000ULL, 0xc00100035b007700ULL,
0x7e00000000000000ULL, 0xfe000000d0e0a0d0ULL, // signaling
// flavors of Infinity
0x7800000000000000ULL, 0x0000000000000000ULL,
0xf800000000000000ULL, 0x0000000000000000ULL, // negative
0xf900000000000000ULL, 0x0000000000000000ULL
};
static unsigned long long dfp64_vals[] = {
// various finite numbers
0x2234000000000e50ULL,
0x223400000014c000ULL,
0xa2340000000000e0ULL,// negative
0x22240000000000cfULL,
0xa21400010a395bcfULL,// negative
0x6e4d3f1f534acdd4ULL,// huge number
0x000400000089b000ULL,// very small number
// flavors of zero
0x2238000000000000ULL,
0xa238000000000000ULL,
0x4248000000000000ULL,
// flavors of NAN
0x7e34000000000111ULL,
0xfe000000d0e0a0d0ULL,//signaling
0xfc00000000000000ULL,//quiet
// flavors of Infinity
0x7800000000000000ULL,
0xf800000000000000ULL,//negative
0x7a34000000000000ULL,
};
// Both Long and Quad arrays of DFP values should have the same length, so it
// doesn't matter which array I use for calculating the following #define.
#define NUM_DFP_VALS (sizeof(dfp64_vals)/8)
typedef struct dfp_test_args {
int fra_idx;
int frb_idx;
} dfp_test_args_t;
// Index pairs from dfp64_vals array to be used with dfp_two_arg_tests
static dfp_test_args_t dfp_2args_x1[] = {
{0, 1},
{2, 1},
{4, 3},
{6, 0},
{2, 4},
{5, 1},
{5, 2},
{7, 1},
{7, 2},
{8, 0},
{8, 1},
{8, 2},
{7, 8},
{12, 14},
{12, 1},
{12, 13},
{12, 12},
{12, 11},
{11, 14},
{11, 0},
{11, 13},
{11, 11},
{14, 14},
{14, 3},
{14, 15},
};
typedef enum {
LONG_TEST,
QUAD_TEST
} precision_type_t;
typedef struct dfp_test
{
test_funcp_t test_func;
const char * name;
dfp_test_args_t * targs;
int num_tests;
precision_type_t precision;
const char * op;
} dfp_test_t;
typedef struct dfp_one_arg_test
{
test_funcp_t test_func;
const char * name;
precision_type_t precision;
const char * op;
} dfp_one_arg_test_t;
static dfp_one_arg_test_t
dfp_ClassAndGroupTest_tests[] = {
{ &_test_dtstdc, "dtstdc", LONG_TEST, "[tCls]"},
{ &_test_dtstdcq, "dtstdcq", QUAD_TEST, "[tCls]"},
{ &_test_dtstdg, "dtstdg", LONG_TEST, "[tGrp]"},
{ &_test_dtstdgq, "dtstdgq", QUAD_TEST, "[tGrp]"},
{ NULL, NULL, 0, NULL}
};
static void test_dfp_ClassAndGroupTest_ops(void)
{
test_funcp_t func;
dfp_val_t test_val, dummy;
int k = 0;
while ((func = dfp_ClassAndGroupTest_tests[k].test_func)) {
int i;
dfp_one_arg_test_t test_def = dfp_ClassAndGroupTest_tests[k];
for (i = 0; i < NUM_DFP_VALS; i++) {
int data_class_OR_group, BF = 0;
Bool repeat = True;
if (test_def.precision == LONG_TEST) {
test_val.u64_val = dfp64_vals[i];
} else {
test_val.u128.valu = dfp128_vals[i * 2];
test_val.u128.vall = dfp128_vals[(i * 2) + 1];
}
again:
for (data_class_OR_group = 0; data_class_OR_group < 6; data_class_OR_group++) {
unsigned int condreg;
unsigned int flags;
SET_FPSCR_ZERO;
SET_CR_XER_ZERO;
/* There is an ABI change in how 128 bit arguments are aligned
* with GCC 5.0. The compiler generates a "note" about this
* starting with GCC 4.8. To avoid generating the "note", pass
* the address of the 128-bit arguments rather then the value.
*/
(*func)(BF, data_class_OR_group, &test_val, &dummy);
GET_CR(flags);
condreg = ((flags >> (4 * (7-BF)))) & 0xf;
printf("%s (DC/DG=%d) %s", test_def.name, data_class_OR_group,
test_def.op);
if (test_def.precision == QUAD_TEST) {
printf("%016llx %016llx", test_val.u128.valu, test_val.u128.vall);
} else {
printf("%016llx", test_val.u64_val);
}
//%016llx
printf(" => %x (BF=%d)\n", condreg, BF);
}
if (repeat) {
repeat = False;
BF = 5;
goto again;
}
}
k++;
printf( "\n" );
}
}
static dfp_test_t
dfp_ExpTest_tests[] = {
{ &_test_dtstex, "dtstex", dfp_2args_x1, 25, LONG_TEST, "[tExp]"},
{ &_test_dtstexq, "dtstexq", dfp_2args_x1, 25, QUAD_TEST, "[tExp]"},
{ NULL, NULL, NULL, 0, 0, NULL}
};
static void test_dfp_ExpTest_ops(void)
{
dfp_val_t test_val1, test_val2;
test_funcp_t func;
int k = 0;
while ((func = dfp_ExpTest_tests[k].test_func)) {
/* BF is a 3-bit instruction field that indicates the CR field in which the
* result of the test should be placed. We won't iterate through all
* 8 possible BF values since storing compare results to a given field is
* a well-tested mechanism in VEX. But we will test two BF values, just as
* a sniff-test.
*/
int i, repeat = 1, BF = 4;
dfp_test_t test_def = dfp_ExpTest_tests[k];
again:
for (i = 0; i < test_def.num_tests; i++) {
unsigned int condreg;
unsigned int flags;
if (test_def.precision == LONG_TEST) {
test_val1.u64_val = dfp64_vals[test_def.targs[i].fra_idx];
test_val2.u64_val = dfp64_vals[test_def.targs[i].frb_idx];
} else {
test_val1.u128.valu = dfp128_vals[test_def.targs[i].fra_idx * 2];
test_val1.u128.vall = dfp128_vals[(test_def.targs[i].fra_idx * 2) + 1];
test_val2.u128.valu = dfp128_vals[test_def.targs[i].frb_idx * 2];
test_val2.u128.vall = dfp128_vals[(test_def.targs[i].frb_idx * 2) + 1];
}
SET_FPSCR_ZERO;
SET_CR_XER_ZERO;
/* There is an ABI change in how 128 bit arguments are aligned
* with GCC 5.0. The compiler generates a "note" about this
* starting with GCC 4.8. To avoid generating the "note", pass
* the address of the 128-bit arguments rather then the value.
*/
(*func)(BF, 0, &test_val1, &test_val2);
GET_CR(flags);
condreg = ((flags >> (4 * (7-BF)))) & 0xf;
printf("%s ", test_def.name);
if (test_def.precision == LONG_TEST) {
printf("%016llx %s %016llx ",
test_val1.u64_val, test_def.op, test_val2.u64_val);
} else {
printf("%016llx %016llx %s %016llx %016llx ",
test_val1.u128.valu, test_val1.u128.vall, test_def.op, test_val2.u128.valu, test_val2.u128.vall);
}
printf(" => %x (BF=%d)\n", condreg, BF);
}
if (repeat) {
repeat = 0;
BF = 7;
goto again;
}
k++;
printf( "\n" );
}
}
static test_table_t
all_tests[] =
{
{ &test_dfp_ExpTest_ops,
"Test DFP exponent test instructions"},
{ &test_dfp_ClassAndGroupTest_ops,
"Test DFP class and group test instructions"},
{ NULL, NULL }
};
#endif // HAS_DFP
int main() {
#if defined(HAS_DFP)
test_table_t aTest;
test_driver_func_t func;
int i = 0;
while ((func = all_tests[i].test_category)) {
aTest = all_tests[i];
printf( "%s\n", aTest.name );
(*func)();
i++;
}
#endif // HAS_DFP
return 0;
}