blob: 0d10153790b7c761b09a304ade49493598760441 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#include "src/v8.h"
#if V8_TARGET_ARCH_PPC
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/ppc/constants-ppc.h"
#include "src/ppc/frames-ppc.h"
#include "src/ppc/simulator-ppc.h"
#if defined(USE_SIMULATOR)
// Only build the simulator if not compiling for real PPC hardware.
namespace v8 {
namespace internal {
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The PPCDebugger class is used by the simulator while debugging simulated
// PowerPC code.
class PPCDebugger {
public:
explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
~PPCDebugger();
void Stop(Instruction* instr);
void Info(Instruction* instr);
void Debug();
private:
static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
static const Instr kNopInstr = (ORI); // ori, 0,0,0
Simulator* sim_;
intptr_t GetRegisterValue(int regnum);
double GetRegisterPairDoubleValue(int regnum);
double GetFPDoubleRegisterValue(int regnum);
bool GetValue(const char* desc, intptr_t* value);
bool GetFPDoubleValue(const char* desc, double* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* break_pc);
bool DeleteBreakpoint(Instruction* break_pc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
PPCDebugger::~PPCDebugger() {}
#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;
static void InitializeCoverage() {
char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
if (file_name != NULL) {
coverage_log = fopen(file_name, "aw+");
}
}
void PPCDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->SvcValue() & kStopCodeMask;
// Retrieve the encoded address, which comes just after this stop.
char** msg_address =
reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
char* msg = *msg_address;
DCHECK(msg != NULL);
// Update this stop description.
if (isWatchedStop(code) && !watched_stops_[code].desc) {
watched_stops_[code].desc = msg;
}
if (strlen(msg) > 0) {
if (coverage_log != NULL) {
fprintf(coverage_log, "%s\n", msg);
fflush(coverage_log);
}
// Overwrite the instruction and address with nops.
instr->SetInstructionBits(kNopInstr);
reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
}
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
}
#else // ndef GENERATED_CODE_COVERAGE
static void InitializeCoverage() {}
void PPCDebugger::Stop(Instruction* instr) {
// Get the stop code.
// use of kStopCodeMask not right on PowerPC
uint32_t code = instr->SvcValue() & kStopCodeMask;
// Retrieve the encoded address, which comes just after this stop.
char* msg =
*reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
// Update this stop description.
if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
sim_->watched_stops_[code].desc = msg;
}
// Print the stop message and code if it is not the default code.
if (code != kMaxStopCode) {
PrintF("Simulator hit stop %u: %s\n", code, msg);
} else {
PrintF("Simulator hit %s\n", msg);
}
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
Debug();
}
#endif
void PPCDebugger::Info(Instruction* instr) {
// Retrieve the encoded address immediately following the Info breakpoint.
char* msg =
*reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
PrintF("Simulator info %s\n", msg);
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
}
intptr_t PPCDebugger::GetRegisterValue(int regnum) {
return sim_->get_register(regnum);
}
double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
return sim_->get_double_from_register_pair(regnum);
}
double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
return sim_->get_double_from_d_register(regnum);
}
bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
int regnum = Registers::Number(desc);
if (regnum != kNoRegister) {
*value = GetRegisterValue(regnum);
return true;
} else {
if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" V8PRIxPTR,
reinterpret_cast<uintptr_t*>(value)) == 1;
} else {
return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
1;
}
}
return false;
}
bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
int regnum = FPRegisters::Number(desc);
if (regnum != kNoRegister) {
*value = sim_->get_double_from_d_register(regnum);
return true;
}
return false;
}
bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = break_pc;
sim_->break_instr_ = break_pc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void PPCDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void PPCDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void PPCDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
// Disable tracing while simulating
bool trace = ::v8::internal::FLAG_trace_sim;
::v8::internal::FLAG_trace_sim = false;
while (!done && !sim_->has_bad_pc()) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
intptr_t value;
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7d821008) {
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
} else {
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
for (int i = 1; i < value; i++) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
buffer.start());
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7d821008) {
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
} else {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
intptr_t value;
double dvalue;
if (strcmp(arg1, "all") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (i != 0 && !((i + 1) & 3)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
" "
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
sim_->special_reg_pc_, sim_->special_reg_lr_,
sim_->special_reg_ctr_, sim_->special_reg_xer_,
sim_->condition_reg_);
} else if (strcmp(arg1, "alld") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
Registers::Name(i), value, value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (!((i + 1) % 2)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
" "
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
sim_->special_reg_pc_, sim_->special_reg_lr_,
sim_->special_reg_ctr_, sim_->special_reg_xer_,
sim_->condition_reg_);
} else if (strcmp(arg1, "allf") == 0) {
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
dvalue = GetFPDoubleRegisterValue(i);
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
}
} else if (arg1[0] == 'r' &&
(arg1[1] >= '0' && arg1[1] <= '9' &&
(arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
arg1[3] == '\0')))) {
int regnum = strtoul(&arg1[1], 0, 10);
if (regnum != kNoRegister) {
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
if (GetValue(arg1, &value)) {
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else if (GetFPDoubleValue(arg1, &dvalue)) {
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF("print <register>\n");
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
intptr_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "setpc") == 0) {
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
sim_->set_pc(value);
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
intptr_t* cur = NULL;
intptr_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
} else { // "mem"
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<intptr_t*>(value);
next_arg++;
}
intptr_t words; // likely inaccurate variable name for 64bit
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
intptr_t value = *cur;
Heap* current_heap = v8::internal::Isolate::Current()->heap();
if (((value & 1) == 0) || current_heap->Contains(obj)) {
PrintF(" (");
if ((value & 1) == 0) {
PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
byte* prev = NULL;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * Instruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * Instruction::kInstrSize);
}
}
} else {
intptr_t value1;
intptr_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
prev = cur;
cur += dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
buffer.start());
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
intptr_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "cr") == 0) {
PrintF("Condition reg: %08x\n", sim_->condition_reg_);
} else if (strcmp(cmd, "lr") == 0) {
PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
} else if (strcmp(cmd, "ctr") == 0) {
PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
} else if (strcmp(cmd, "xer") == 0) {
PrintF("XER: %08x\n", sim_->special_reg_xer_);
} else if (strcmp(cmd, "fpscr") == 0) {
PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
} else if (strcmp(cmd, "stop") == 0) {
intptr_t value;
intptr_t stop_pc =
sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->isStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
PrintF("Trace of executed instructions is %s\n",
::v8::internal::FLAG_trace_sim ? "on" : "off");
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi [num instructions]\n");
PrintF(" step one/num instruction(s) (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to display all integer registers\n");
PrintF(
" use register name 'alld' to display integer registers "
"with decimal values\n");
PrintF(" use register name 'rN' to display register number 'N'\n");
PrintF(" add argument 'fp' to print register pair double values\n");
PrintF(
" use register name 'allf' to display floating-point "
"registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("cr\n");
PrintF(" print condition register\n");
PrintF("lr\n");
PrintF(" print link register\n");
PrintF("ctr\n");
PrintF(" print ctr register\n");
PrintF("xer\n");
PrintF(" print XER\n");
PrintF("fpscr\n");
PrintF(" print FPSCR\n");
PrintF("stack [<num words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<num words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("trace (alias 't')\n");
PrintF(" toogle the tracing of all executed statements\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the PPCDebugger.\n");
PrintF(" The first %d stop codes are watched:\n",
Simulator::kNumOfWatchedStops);
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
// Restore tracing
::v8::internal::FLAG_trace_sim = trace;
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
v8::internal::HashMap::Entry* entry =
i_cache->Lookup(page, ICacheHash(page), true);
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
int size) {
DCHECK(size <= CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK((start & CachePage::kLineMask) == 0);
DCHECK((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(v8::internal::HashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0,
memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset), Instruction::kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new v8::internal::HashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
#if V8_TARGET_ARCH_PPC64
size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack
#else
size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
#endif
stack_ = reinterpret_cast<char*>(malloc(stack_size));
pc_modified_ = false;
icount_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumGPRs; i++) {
registers_[i] = 0;
}
condition_reg_ = 0;
fp_condition_reg_ = 0;
special_reg_pc_ = 0;
special_reg_lr_ = 0;
special_reg_ctr_ = 0;
// Initializing FP registers.
for (int i = 0; i < kNumFPRs; i++) {
fp_registers_[i] = 0.0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64;
InitializeCoverage();
last_debugger_input_ = NULL;
}
Simulator::~Simulator() {}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a svc (Supervisor Call) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(void* external_function, ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
type_(type),
next_(NULL) {
Isolate* isolate = Isolate::Current();
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->FlushICache(
isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
return reinterpret_cast<void*>(&swi_instruction_);
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(void* external_function,
ExternalReference::Type type) {
Isolate* isolate = Isolate::Current();
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) {
DCHECK_EQ(current->type(), type);
return current;
}
}
return new Redirection(external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(intptr_t reg) {
Redirection* redirection = FromSwiInstruction(
reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
return redirection->external_function();
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
};
void* Simulator::RedirectExternalReference(void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state.
void Simulator::set_register(int reg, intptr_t value) {
DCHECK((reg >= 0) && (reg < kNumGPRs));
registers_[reg] = value;
}
// Get the register from the architecture state.
intptr_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumGPRs));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= kNumGPRs) return 0;
// End stupid code.
return registers_[reg];
}
double Simulator::get_double_from_register_pair(int reg) {
DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
double dm_val = 0.0;
#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[sizeof(fp_registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
#endif
return (dm_val);
}
// Raw access to the PC register.
void Simulator::set_pc(intptr_t value) {
pc_modified_ = true;
special_reg_pc_ = value;
}
bool Simulator::has_bad_pc() const {
return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
intptr_t Simulator::get_pc() const { return special_reg_pc_; }
// Runtime FP routines take:
// - two double arguments
// - one double argument and zero or one integer arguments.
// All are consructed here from d1, d2 and r3.
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
*x = get_double_from_d_register(1);
*y = get_double_from_d_register(2);
*z = get_register(3);
}
// The return value is in d1.
void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; }
void Simulator::TrashCallerSaveRegisters() {
// We don't trash the registers with the return value.
#if 0 // A good idea to trash volatile registers, needs to be done
registers_[2] = 0x50Bad4U;
registers_[3] = 0x50Bad4U;
registers_[12] = 0x50Bad4U;
#endif
}
uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
return *ptr;
}
int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
return *ptr;
}
void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
*ptr = value;
return;
}
void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
*ptr = value;
return;
}
uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
uint8_t Simulator::ReadBU(intptr_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
int8_t Simulator::ReadB(intptr_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::WriteB(intptr_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteB(intptr_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
intptr_t* Simulator::ReadDW(intptr_t addr) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return ptr;
}
void Simulator::WriteDW(intptr_t addr, int64_t value) {
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
*ptr = value;
return;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
// Leave a safety margin of 1024 bytes to prevent overrunning the stack when
// pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED();
}
// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xffffffffU - uleft;
return (uright > urest) ||
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}
// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft);
}
// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition) {
bool overflow;
if (addition) {
// operands have the same sign
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// and operands and result have different sign
&&
((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// operands have different signs
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// and first operand and result have different signs
&&
((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
#if !V8_TARGET_ARCH_PPC64
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the r4 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
intptr_t arg2, intptr_t arg3,
intptr_t arg4, intptr_t arg5);
#else
// For 64-bit, we need to be more explicit.
typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
intptr_t arg2, intptr_t arg3,
intptr_t arg4, intptr_t arg5);
struct ObjectPair {
intptr_t x;
intptr_t y;
};
typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)(
intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
intptr_t arg5);
#endif
// These prototypes handle the four types of FP calls.
typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
intptr_t arg1, void* arg2);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
int svc = instr->SvcValue();
switch (svc) {
case kCallRtRedirected: {
// Check if stack is aligned. Error if not aligned is reported below to
// include information on the function called.
bool stack_aligned =
(get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
0;
Redirection* redirection = Redirection::FromSwiInstruction(instr);
const int kArgCount = 6;
int arg0_regnum = 3;
#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
intptr_t result_buffer = 0;
if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
result_buffer = get_register(r3);
arg0_regnum++;
}
#endif
intptr_t arg[kArgCount];
for (int i = 0; i < kArgCount; i++) {
arg[i] = get_register(arg0_regnum + i);
}
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
intptr_t saved_lr = special_reg_lr_;
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
if (fp_call) {
double dval0, dval1; // one or two double parameters
intptr_t ival; // zero or one integer parameters
int iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
FUNCTION_ADDR(generic_target), dval0, dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
FUNCTION_ADDR(generic_target), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
FUNCTION_ADDR(generic_target), dval0, ival);
break;
default:
UNREACHABLE();
break;
}
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(r3, iresult);
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", iresult);
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg[0]);
} else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
target(arg[0], Redirection::ReverseRedirection(arg[1]));
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
#if !ABI_PASSES_HANDLES_IN_REGS
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
#endif
target(arg[0], arg[1]);
} else if (redirection->type() ==
ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR " %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
#if !ABI_PASSES_HANDLES_IN_REGS
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
#endif
target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
} else {
// builtin call.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
PrintF(
"Call to host function at %p,\n"
"\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
arg[5]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
#if !V8_TARGET_ARCH_PPC64
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
int32_t lo_res = static_cast<int32_t>(result);
int32_t hi_res = static_cast<int32_t>(result >> 32);
#if V8_TARGET_BIG_ENDIAN
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x\n", hi_res);
}
set_register(r3, hi_res);
set_register(r4, lo_res);
#else
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x\n", lo_res);
}
set_register(r3, lo_res);
set_register(r4, hi_res);
#endif
#else
if (redirection->type() == ExternalReference::BUILTIN_CALL) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
intptr_t result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08" V8PRIxPTR "\n", result);
}
set_register(r3, result);
} else {
DCHECK(redirection->type() ==
ExternalReference::BUILTIN_OBJECTPAIR_CALL);
SimulatorRuntimeObjectPairCall target =
reinterpret_cast<SimulatorRuntimeObjectPairCall>(external);
struct ObjectPair result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x,
result.y);
}
#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS
set_register(r3, result.x);
set_register(r4, result.y);
#else
memcpy(reinterpret_cast<void*>(result_buffer), &result,
sizeof(struct ObjectPair));
#endif
}
#endif
}
set_pc(saved_lr);
break;
}
case kBreakpoint: {
PPCDebugger dbg(this);
dbg.Debug();
break;
}
case kInfo: {
PPCDebugger dbg(this);
dbg.Info(instr);
break;
}
// stop uses all codes greater than 1 << 23.
default: {
if (svc >= (1 << 23)) {
uint32_t code = svc & kStopCodeMask;
if (isWatchedStop(code)) {
IncreaseStopCounter(code);
}
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
PPCDebugger dbg(this);
dbg.Stop(instr);
} else {
set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
}
} else {
// This is not a valid svc code.
UNREACHABLE();
break;
}
}
}
}
// Stop helper functions.
bool Simulator::isStopInstruction(Instruction* instr) {
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
}
bool Simulator::isWatchedStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
return code < kNumOfWatchedStops;
}
bool Simulator::isEnabledStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
// Unwatched stops are always enabled.
return !isWatchedStop(code) ||
!(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (!isEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (isEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK(code <= kMaxStopCode);
DCHECK(isWatchedStop(code));
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
DCHECK(code <= kMaxStopCode);
if (!isWatchedStop(code)) {
PrintF("Stop not watched.");
} else {
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
}
void Simulator::SetCR0(intptr_t result, bool setSO) {
int bf = 0;
if (result < 0) {
bf |= 0x80000000;
}
if (result > 0) {
bf |= 0x40000000;
}
if (result == 0) {
bf |= 0x20000000;
}
if (setSO) {
bf |= 0x10000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
void Simulator::ExecuteBranchConditional(Instruction* instr) {
int bo = instr->Bits(25, 21) << 21;
int offset = (instr->Bits(15, 2) << 18) >> 16;
int condition_bit = instr->Bits(20, 16);
int condition_mask = 0x80000000 >> condition_bit;
switch (bo) {
case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
UNIMPLEMENTED();
case BF: { // Branch if condition false
if (!(condition_reg_ & condition_mask)) {
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = get_pc() + 4;
}
set_pc(get_pc() + offset);
}
break;
}
case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
UNIMPLEMENTED();
case BT: { // Branch if condition true
if (condition_reg_ & condition_mask) {
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = get_pc() + 4;
}
set_pc(get_pc() + offset);
}
break;
}
case DCBNZ: // Decrement CTR; branch if CTR != 0
case DCBEZ: // Decrement CTR; branch if CTR == 0
special_reg_ctr_ -= 1;
if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) {
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = get_pc() + 4;
}
set_pc(get_pc() + offset);
}
break;
case BA: { // Branch always
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = get_pc() + 4;
}
set_pc(get_pc() + offset);
break;
}
default:
UNIMPLEMENTED(); // Invalid encoding
}
}
// Handle execution based on instruction types.
void Simulator::ExecuteExt1(Instruction* instr) {
switch (instr->Bits(10, 1) << 1) {
case MCRF:
UNIMPLEMENTED(); // Not used by V8.
case BCLRX: {
// need to check BO flag
intptr_t old_pc = get_pc();
set_pc(special_reg_lr_);
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = old_pc + 4;
}
break;
}
case BCCTRX: {
// need to check BO flag
intptr_t old_pc = get_pc();
set_pc(special_reg_ctr_);
if (instr->Bit(0) == 1) { // LK flag set
special_reg_lr_ = old_pc + 4;
}
break;
}
case CRNOR:
case RFI:
case CRANDC:
UNIMPLEMENTED();
case ISYNC: {
// todo - simulate isync
break;
}
case CRXOR: {
int bt = instr->Bits(25, 21);
int ba = instr->Bits(20, 16);
int bb = instr->Bits(15, 11);
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
int bt_val = ba_val ^ bb_val;
bt_val = bt_val << (31 - bt); // shift bit to correct destination
condition_reg_ &= ~(0x80000000 >> bt);
condition_reg_ |= bt_val;
break;
}
case CREQV: {
int bt = instr->Bits(25, 21);
int ba = instr->Bits(20, 16);
int bb = instr->Bits(15, 11);
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
int bt_val = 1 - (ba_val ^ bb_val);
bt_val = bt_val << (31 - bt); // shift bit to correct destination
condition_reg_ &= ~(0x80000000 >> bt);
condition_reg_ |= bt_val;
break;
}
case CRNAND:
case CRAND:
case CRORC:
case CROR:
default: {
UNIMPLEMENTED(); // Not used by V8.
}
}
}
bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
bool found = true;
int opcode = instr->Bits(10, 1) << 1;
switch (opcode) {
case SRWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb);
intptr_t result = rs_val >> (rb_val & 0x3f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SRDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uintptr_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb);
intptr_t result = rs_val >> (rb_val & 0x7f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#endif
case SRAW: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t result = rs_val >> (rb_val & 0x3f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SRAD: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t result = rs_val >> (rb_val & 0x7f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#endif
case SRAWIX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int sh = instr->Bits(15, 11);
int32_t rs_val = get_register(rs);
intptr_t result = rs_val >> sh;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case EXTSW: {
const int shift = kBitsPerPointer - 32;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
#endif
case EXTSH: {
const int shift = kBitsPerPointer - 16;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
case EXTSB: {
const int shift = kBitsPerPointer - 8;
int ra = instr->RAValue();
int rs = instr->RSValue();
intptr_t rs_val = get_register(rs);
intptr_t ra_val = (rs_val << shift) >> shift;
set_register(ra, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
break;
}
case LFSUX:
case LFSX: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
int32_t val = ReadW(ra_val + rb_val, instr);
float* fptr = reinterpret_cast<float*>(&val);
set_d_register_from_double(frt, static_cast<double>(*fptr));
if (opcode == LFSUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case LFDUX:
case LFDX: {
int frt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val));
set_d_register_from_double(frt, *dptr);
if (opcode == LFDUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STFSUX: {
case STFSX:
int frs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
float frs_val = static_cast<float>(get_double_from_d_register(frs));
int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
WriteW(ra_val + rb_val, *p, instr);
if (opcode == STFSUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STFDUX: {
case STFDX:
int frs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
double frs_val = get_double_from_d_register(frs);
int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
WriteDW(ra_val + rb_val, *p);
if (opcode == STFDUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case SYNC: {
// todo - simulate sync
break;
}
case ICBI: {
// todo - simulate icbi
break;
}
default: {
found = false;
break;
}
}
if (found) return found;
found = true;
opcode = instr->Bits(10, 2) << 2;
switch (opcode) {
case SRADIX: {
int ra = instr->RAValue();
int rs = instr->RSValue();
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
intptr_t rs_val = get_register(rs);
intptr_t result = rs_val >> sh;
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
default: {
found = false;
break;
}
}
return found;
}
bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
bool found = true;
int opcode = instr->Bits(9, 1) << 1;
switch (opcode) {
case TW: {
// used for call redirection in simulation mode
SoftwareInterrupt(instr);
break;
}
case CMP: {
int ra = instr->RAValue();
int rb = instr->RBValue();
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
int32_t ra_val = get_register(ra);
int32_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case SUBFCX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ~ra_val + rb_val + 1;
set_register(rt, alu_out);
// If the sign of rb and alu_out don't match, carry = 0
if ((alu_out ^ rb_val) & 0x80000000) {
special_reg_xer_ &= ~0xF0000000;
} else {
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
}
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case ADDCX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
uintptr_t alu_out = ra_val + rb_val;
// Check overflow
if (~ra_val < rb_val) {
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
} else {
special_reg_xer_ &= ~0xF0000000;
}
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
// todo - handle OE bit
break;
}
case MULHWX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
alu_out >>= 32;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(static_cast<intptr_t>(alu_out));
}
// todo - handle OE bit
break;
}
case NEGX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
intptr_t ra_val = get_register(ra);
intptr_t alu_out = 1 + ~ra_val;
#if V8_TARGET_ARCH_PPC64
intptr_t one = 1; // work-around gcc
intptr_t kOverflowVal = (one << 63);
#else
intptr_t kOverflowVal = kMinInt;
#endif
set_register(rt, alu_out);
if (instr->Bit(10)) { // OE bit set
if (ra_val == kOverflowVal) {
special_reg_xer_ |= 0xC0000000; // set SO,OV
} else {
special_reg_xer_ &= ~0x40000000; // clear OV
}
}
if (instr->Bit(0)) { // RC bit set
bool setSO = (special_reg_xer_ & 0x80000000);
SetCR0(alu_out, setSO);
}
break;
}
case SLWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uint32_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb);
uint32_t result = rs_val << (rb_val & 0x3f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case SLDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
uintptr_t rs_val = get_register(rs);
uintptr_t rb_val = get_register(rb);
uintptr_t result = rs_val << (rb_val & 0x7f);
set_register(ra, result);
if (instr->Bit(0)) { // RC bit set
SetCR0(result);
}
break;
}
case MFVSRD: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
double frt_val = get_double_from_d_register(frt);
int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
set_register(ra, *p);
break;
}
case MFVSRWZ: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
double frt_val = get_double_from_d_register(frt);
int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
set_register(ra, static_cast<uint32_t>(*p));
break;
}
case MTVSRD: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t ra_val = get_register(ra);
double* p = reinterpret_cast<double*>(&ra_val);
set_d_register_from_double(frt, *p);
break;
}
case MTVSRWA: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
int64_t ra_val = static_cast<int32_t>(get_register(ra));
double* p = reinterpret_cast<double*>(&ra_val);
set_d_register_from_double(frt, *p);
break;
}
case MTVSRWZ: {
DCHECK(!instr->Bit(0));
int frt = instr->RTValue();
int ra = instr->RAValue();
uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
double* p = reinterpret_cast<double*>(&ra_val);
set_d_register_from_double(frt, *p);
break;
}
#endif
default: {
found = false;
break;
}
}
return found;
}
void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
int opcode = instr->Bits(9, 1) << 1;
switch (opcode) {
case CNTLZWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x80000000;
for (; n < 32; n++) {
if (bit & rs_val) break;
count++;
bit >>= 1;
}
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
#if V8_TARGET_ARCH_PPC64
case CNTLZDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
uintptr_t rs_val = get_register(rs);
uintptr_t count = 0;
int n = 0;
uintptr_t bit = 0x8000000000000000UL;
for (; n < 64; n++) {
if (bit & rs_val) break;
count++;
bit >>= 1;
}
set_register(ra, count);
if (instr->Bit(0)) { // RC Bit set
int bf = 0;
if (count > 0) {
bf |= 0x40000000;
}
if (count == 0) {
bf |= 0x20000000;
}
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}
break;
}
#endif
case ANDX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val & rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
break;
}
case ANDCX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val & ~rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
break;
}
case CMPL: {
int ra = instr->RAValue();
int rb = instr->RBValue();
int cr = instr->Bits(25, 23);
uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
int L = instr->Bit(21);
if (L) {
#endif
uintptr_t ra_val = get_register(ra);
uintptr_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
#if V8_TARGET_ARCH_PPC64
} else {
uint32_t ra_val = get_register(ra);
uint32_t rb_val = get_register(rb);
if (ra_val < rb_val) {
bf |= 0x80000000;
}
if (ra_val > rb_val) {
bf |= 0x40000000;
}
if (ra_val == rb_val) {
bf |= 0x20000000;
}
}
#endif
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
uint32_t condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
break;
}
case SUBFX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rb_val - ra_val;
// todo - figure out underflow
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC Bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case ADDZEX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
intptr_t ra_val = get_register(ra);
if (special_reg_xer_ & 0x20000000) {
ra_val += 1;
}
set_register(rt, ra_val);
if (instr->Bit(0)) { // RC bit set
SetCR0(ra_val);
}
// todo - handle OE bit
break;
}
case NORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = ~(rs_val | rb_val);
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case MULLW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
int32_t alu_out = ra_val * rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#if V8_TARGET_ARCH_PPC64
case MULLD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t alu_out = ra_val * rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#endif
case DIVW: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int32_t ra_val = get_register(ra);
int32_t rb_val = get_register(rb);
bool overflow = (ra_val == kMinInt && rb_val == -1);
// result is undefined if divisor is zero or if operation
// is 0x80000000 / -1.
int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(10)) { // OE bit set
if (overflow) {
special_reg_xer_ |= 0xC0000000; // set SO,OV
} else {
special_reg_xer_ &= ~0x40000000; // clear OV
}
}
if (instr->Bit(0)) { // RC bit set
bool setSO = (special_reg_xer_ & 0x80000000);
SetCR0(alu_out, setSO);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case DIVD: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
int64_t ra_val = get_register(ra);
int64_t rb_val = get_register(rb);
int64_t one = 1; // work-around gcc
int64_t kMinLongLong = (one << 63);
// result is undefined if divisor is zero or if operation
// is 0x80000000_00000000 / -1.
int64_t alu_out =
(rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
? -1
: ra_val / rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
#endif
case ADDX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
// int oe = instr->Bit(10);
intptr_t ra_val = get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = ra_val + rb_val;
set_register(rt, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
// todo - handle OE bit
break;
}
case XORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val ^ rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case ORX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
intptr_t alu_out = rs_val | rb_val;
set_register(ra, alu_out);
if (instr->Bit(0)) { // RC bit set
SetCR0(alu_out);
}
break;
}
case MFSPR: {
int rt = instr->RTValue();
int spr = instr->Bits(20, 11);
if (spr != 256) {
UNIMPLEMENTED(); // Only LRLR supported
}
set_register(rt, special_reg_lr_);
break;
}
case MTSPR: {
int rt = instr->RTValue();
intptr_t rt_val = get_register(rt);
int spr = instr->Bits(20, 11);
if (spr == 256) {
special_reg_lr_ = rt_val;
} else if (spr == 288) {
special_reg_ctr_ = rt_val;
} else if (spr == 32) {
special_reg_xer_ = rt_val;
} else {
UNIMPLEMENTED(); // Only LR supported
}
break;
}
case MFCR: {
int rt = instr->RTValue();
set_register(rt, condition_reg_);
break;
}
case STWUX:
case STWX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int32_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteW(ra_val + rb_val, rs_val, instr);
if (opcode == STWUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STBUX:
case STBX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int8_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteB(ra_val + rb_val, rs_val);
if (opcode == STBUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case STHUX:
case STHX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
int16_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteH(ra_val + rb_val, rs_val, instr);
if (opcode == STHUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
case LWZX:
case LWZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadWU(ra_val + rb_val, instr));
if (opcode == LWZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
#if V8_TARGET_ARCH_PPC64
case LDX:
case LDUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
intptr_t* result = ReadDW(ra_val + rb_val);
set_register(rt, *result);
if (opcode == LDUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case STDX:
case STDUX: {
int rs = instr->RSValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rs_val = get_register(rs);
intptr_t rb_val = get_register(rb);
WriteDW(ra_val + rb_val, rs_val);
if (opcode == STDUX) {
DCHECK(ra != 0);
set_register(ra, ra_val + rb_val);
}
break;
}
#endif
case LBZX:
case LBZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
if (opcode == LBZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case LHZX:
case LHZUX: {
int rt = instr->RTValue();
int ra = instr->RAValue();
int rb = instr->RBValue();
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
intptr_t rb_val = get_register(rb);
set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
if (opcode == LHZUX) {
DCHECK(ra != 0 && ra != rt);
set_register(ra, ra_val + rb_val);
}
break;
}
case DCBF: {
// todo - simulate dcbf
break;
}
default: {
PrintF("Unimplemented: %08x\n", instr->InstructionBits());
UNIMPLEMENTED(); // Not used by V8.
}
}
}
void Simulator::ExecuteExt2(Instruction* instr) {
// Check first the 10-1 bit versions
if (ExecuteExt2_10bit(instr)) return;
// Now look at the lesser encodings
if (ExecuteExt2_9bit_part1(instr)) return;
ExecuteExt2_9bit_part2(instr);
}
void Simulator::ExecuteExt4(Instruction* instr) {
switch (instr->Bits(5, 1) << 1) {
case FDIV: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val / frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FSUB: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val - frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FADD: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frt_val = fra_val + frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FSQRT: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
double frt_val = std::sqrt(frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FSEL: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
set_d_register_from_double(frt, frt_val);
return;
}
case FMUL: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frc_val = get_double_from_d_register(frc);
double frt_val = fra_val * frc_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FMSUB: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = (fra_val * frc_val) - frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
case FMADD: {
int frt = instr->RTValue();
int fra = instr->RAValue();
int frb = instr->RBValue();
int frc = instr->RCValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
double frc_val = get_double_from_d_register(frc);
double frt_val = (fra_val * frc_val) + frb_val;
set_d_register_from_double(frt, frt_val);
return;
}
}
int opcode = instr->Bits(10, 1) << 1;
switch (opcode) {
case FCMPU: {
int fra = instr->RAValue();
int frb = instr->RBValue();
double fra_val = get_double_from_d_register(fra);
double frb_val = get_double_from_d_register(frb);
int cr = instr->Bits(25, 23);
int bf = 0;
if (fra_val < frb_val) {
bf |= 0x80000000;
}
if (fra_val > frb_val) {
bf |= 0x40000000;
}
if (fra_val == frb_val) {
bf |= 0x20000000;
}
if (std::isunordered(fra_val, frb_val)) {
bf |= 0x10000000;
}
int condition_mask = 0xF0000000 >> (cr * 4);
int condition = bf >> (cr * 4);
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
return;
}
case FRSP: {
int frt = instr->RTValue();
int frb = instr->RBValue();
double frb_val = get_double_from_d_register(frb);
// frsp round 8-byte double-precision value to 8-byte
// single-precision value, ignore the round here