blob: 5137806f1298b8dc58e1f400ef577620c83f0dc5 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_OPERATOR_H_
#define V8_COMPILER_OPERATOR_H_
#include "src/base/flags.h"
#include "src/ostreams.h"
#include "src/unique.h"
namespace v8 {
namespace internal {
namespace compiler {
// An operator represents description of the "computation" of a node in the
// compiler IR. A computation takes values (i.e. data) as input and produces
// zero or more values as output. The side-effects of a computation must be
// captured by additional control and data dependencies which are part of the
// IR graph.
// Operators are immutable and describe the statically-known parts of a
// computation. Thus they can be safely shared by many different nodes in the
// IR graph, or even globally between graphs. Operators can have "static
// parameters" which are compile-time constant parameters to the operator, such
// as the name for a named field access, the ID of a runtime function, etc.
// Static parameters are private to the operator and only semantically
// meaningful to the operator itself.
class Operator : public ZoneObject {
public:
typedef uint8_t Opcode;
// Properties inform the operator-independent optimizer about legal
// transformations for nodes that have this operator.
enum Property {
kNoProperties = 0,
kReducible = 1 << 0, // Participates in strength reduction.
kCommutative = 1 << 1, // OP(a, b) == OP(b, a) for all inputs.
kAssociative = 1 << 2, // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs.
kIdempotent = 1 << 3, // OP(a); OP(a) == OP(a).
kNoRead = 1 << 4, // Has no scheduling dependency on Effects
kNoWrite = 1 << 5, // Does not modify any Effects and thereby
// create new scheduling dependencies.
kNoThrow = 1 << 6, // Can never generate an exception.
kFoldable = kNoRead | kNoWrite,
kEliminatable = kNoWrite | kNoThrow,
kPure = kNoRead | kNoWrite | kNoThrow | kIdempotent
};
typedef base::Flags<Property, uint8_t> Properties;
Operator(Opcode opcode, Properties properties, const char* mnemonic)
: opcode_(opcode), properties_(properties), mnemonic_(mnemonic) {}
virtual ~Operator();
// A small integer unique to all instances of a particular kind of operator,
// useful for quick matching for specific kinds of operators. For fast access
// the opcode is stored directly in the operator object.
Opcode opcode() const { return opcode_; }
// Returns a constant string representing the mnemonic of the operator,
// without the static parameters. Useful for debugging.
const char* mnemonic() const { return mnemonic_; }
// Check if this operator equals another operator. Equivalent operators can
// be merged, and nodes with equivalent operators and equivalent inputs
// can be merged.
virtual bool Equals(const Operator* other) const = 0;
// Compute a hashcode to speed up equivalence-set checking.
// Equal operators should always have equal hashcodes, and unequal operators
// should have unequal hashcodes with high probability.
virtual int HashCode() const = 0;
// Check whether this operator has the given property.
bool HasProperty(Property property) const {
return (properties() & property) == property;
}
// Number of data inputs to the operator, for verifying graph structure.
virtual int InputCount() const = 0;
// Number of data outputs from the operator, for verifying graph structure.
virtual int OutputCount() const = 0;
Properties properties() const { return properties_; }
// TODO(titzer): API for input and output types, for typechecking graph.
protected:
// Print the full operator into the given stream, including any
// static parameters. Useful for debugging and visualizing the IR.
virtual OStream& PrintTo(OStream& os) const = 0; // NOLINT
friend OStream& operator<<(OStream& os, const Operator& op);
private:
Opcode opcode_;
Properties properties_;
const char* mnemonic_;
DISALLOW_COPY_AND_ASSIGN(Operator);
};
DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties)
OStream& operator<<(OStream& os, const Operator& op);
// An implementation of Operator that has no static parameters. Such operators
// have just a name, an opcode, and a fixed number of inputs and outputs.
// They can represented by singletons and shared globally.
class SimpleOperator : public Operator {
public:
SimpleOperator(Opcode opcode, Properties properties, int input_count,
int output_count, const char* mnemonic);
~SimpleOperator();
virtual bool Equals(const Operator* that) const FINAL {
return opcode() == that->opcode();
}
virtual int HashCode() const FINAL { return opcode(); }
virtual int InputCount() const FINAL { return input_count_; }
virtual int OutputCount() const FINAL { return output_count_; }
private:
virtual OStream& PrintTo(OStream& os) const FINAL { // NOLINT
return os << mnemonic();
}
int input_count_;
int output_count_;
DISALLOW_COPY_AND_ASSIGN(SimpleOperator);
};
// Template specialization implements a kind of type class for dealing with the
// static parameters of Operator1 automatically.
template <typename T>
struct StaticParameterTraits {
static OStream& PrintTo(OStream& os, T val) { // NOLINT
return os << "??";
}
static int HashCode(T a) { return 0; }
static bool Equals(T a, T b) {
return false; // Not every T has a ==. By default, be conservative.
}
};
// Specialization for static parameters of type {int}.
template <>
struct StaticParameterTraits<int> {
static OStream& PrintTo(OStream& os, int val) { // NOLINT
return os << val;
}
static int HashCode(int a) { return a; }
static bool Equals(int a, int b) { return a == b; }
};
// Specialization for static parameters of type {double}.
template <>
struct StaticParameterTraits<double> {
static OStream& PrintTo(OStream& os, double val) { // NOLINT
return os << val;
}
static int HashCode(double a) {
return static_cast<int>(bit_cast<int64_t>(a));
}
static bool Equals(double a, double b) {
return bit_cast<int64_t>(a) == bit_cast<int64_t>(b);
}
};
// Specialization for static parameters of type {Unique<Object>}.
template <>
struct StaticParameterTraits<Unique<Object> > {
static OStream& PrintTo(OStream& os, Unique<Object> val) { // NOLINT
return os << Brief(*val.handle());
}
static int HashCode(Unique<Object> a) {
return static_cast<int>(a.Hashcode());
}
static bool Equals(Unique<Object> a, Unique<Object> b) { return a == b; }
};
// Specialization for static parameters of type {Unique<Name>}.
template <>
struct StaticParameterTraits<Unique<Name> > {
static OStream& PrintTo(OStream& os, Unique<Name> val) { // NOLINT
return os << Brief(*val.handle());
}
static int HashCode(Unique<Name> a) { return static_cast<int>(a.Hashcode()); }
static bool Equals(Unique<Name> a, Unique<Name> b) { return a == b; }
};
#if DEBUG
// Specialization for static parameters of type {Handle<Object>} to prevent any
// direct usage of Handles in constants.
template <>
struct StaticParameterTraits<Handle<Object> > {
static OStream& PrintTo(OStream& os, Handle<Object> val) { // NOLINT
UNREACHABLE(); // Should use Unique<Object> instead
return os;
}
static int HashCode(Handle<Object> a) {
UNREACHABLE(); // Should use Unique<Object> instead
return 0;
}
static bool Equals(Handle<Object> a, Handle<Object> b) {
UNREACHABLE(); // Should use Unique<Object> instead
return false;
}
};
#endif
// A templatized implementation of Operator that has one static parameter of
// type {T}. If a specialization of StaticParameterTraits<{T}> exists, then
// operators of this kind can automatically be hashed, compared, and printed.
template <typename T>
class Operator1 : public Operator {
public:
Operator1(Opcode opcode, Properties properties, int input_count,
int output_count, const char* mnemonic, T parameter)
: Operator(opcode, properties, mnemonic),
input_count_(input_count),
output_count_(output_count),
parameter_(parameter) {}
const T& parameter() const { return parameter_; }
virtual bool Equals(const Operator* other) const OVERRIDE {
if (opcode() != other->opcode()) return false;
const Operator1<T>* that = static_cast<const Operator1<T>*>(other);
return StaticParameterTraits<T>::Equals(this->parameter_, that->parameter_);
}
virtual int HashCode() const OVERRIDE {
return opcode() + 33 * StaticParameterTraits<T>::HashCode(this->parameter_);
}
virtual int InputCount() const OVERRIDE { return input_count_; }
virtual int OutputCount() const OVERRIDE { return output_count_; }
virtual OStream& PrintParameter(OStream& os) const { // NOLINT
return StaticParameterTraits<T>::PrintTo(os << "[", parameter_) << "]";
}
protected:
virtual OStream& PrintTo(OStream& os) const FINAL { // NOLINT
return PrintParameter(os << mnemonic());
}
private:
int input_count_;
int output_count_;
T parameter_;
};
// Helper to extract parameters from Operator1<*> operator.
template <typename T>
static inline const T& OpParameter(const Operator* op) {
return reinterpret_cast<const Operator1<T>*>(op)->parameter();
}
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_OPERATOR_H_