|  | // Copyright 2015 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "src/typing-asm.h" | 
|  |  | 
|  | #include <limits> | 
|  |  | 
|  | #include "src/v8.h" | 
|  |  | 
|  | #include "src/ast/ast.h" | 
|  | #include "src/ast/scopes.h" | 
|  | #include "src/codegen.h" | 
|  | #include "src/type-cache.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | #define FAIL(node, msg)                                        \ | 
|  | do {                                                         \ | 
|  | valid_ = false;                                            \ | 
|  | int line = node->position() == RelocInfo::kNoPosition      \ | 
|  | ? -1                                        \ | 
|  | : script_->GetLineNumber(node->position()); \ | 
|  | base::OS::SNPrintF(error_message_, sizeof(error_message_), \ | 
|  | "asm: line %d: %s\n", line + 1, msg);   \ | 
|  | return;                                                    \ | 
|  | } while (false) | 
|  |  | 
|  |  | 
|  | #define RECURSE(call)               \ | 
|  | do {                              \ | 
|  | DCHECK(!HasStackOverflow());    \ | 
|  | call;                           \ | 
|  | if (HasStackOverflow()) return; \ | 
|  | if (!valid_) return;            \ | 
|  | } while (false) | 
|  |  | 
|  | AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script, | 
|  | FunctionLiteral* root) | 
|  | : zone_(zone), | 
|  | isolate_(isolate), | 
|  | script_(script), | 
|  | root_(root), | 
|  | valid_(true), | 
|  | allow_simd_(false), | 
|  | property_info_(nullptr), | 
|  | intish_(0), | 
|  | stdlib_types_(zone), | 
|  | stdlib_heap_types_(zone), | 
|  | stdlib_math_types_(zone), | 
|  | #define V(NAME, Name, name, lane_count, lane_type) \ | 
|  | stdlib_simd_##name##_types_(zone), | 
|  | SIMD128_TYPES(V) | 
|  | #undef V | 
|  | global_variable_type_(base::HashMap::PointersMatch, | 
|  | ZoneHashMap::kDefaultHashMapCapacity, | 
|  | ZoneAllocationPolicy(zone)), | 
|  | local_variable_type_(base::HashMap::PointersMatch, | 
|  | ZoneHashMap::kDefaultHashMapCapacity, | 
|  | ZoneAllocationPolicy(zone)), | 
|  | in_function_(false), | 
|  | building_function_tables_(false), | 
|  | visiting_exports_(false), | 
|  | cache_(TypeCache::Get()), | 
|  | bounds_(zone) { | 
|  | InitializeAstVisitor(isolate); | 
|  | InitializeStdlib(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool AsmTyper::Validate() { | 
|  | VisitAsmModule(root_); | 
|  | return valid_ && !HasStackOverflow(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitAsmModule(FunctionLiteral* fun) { | 
|  | Scope* scope = fun->scope(); | 
|  | if (!scope->is_function_scope()) FAIL(fun, "not at function scope"); | 
|  |  | 
|  | ExpressionStatement* use_asm = fun->body()->first()->AsExpressionStatement(); | 
|  | if (use_asm == nullptr) FAIL(fun, "missing \"use asm\""); | 
|  | Literal* use_asm_literal = use_asm->expression()->AsLiteral(); | 
|  | if (use_asm_literal == nullptr) FAIL(fun, "missing \"use asm\""); | 
|  | if (!use_asm_literal->raw_value()->AsString()->IsOneByteEqualTo("use asm")) | 
|  | FAIL(fun, "missing \"use asm\""); | 
|  |  | 
|  | // Module parameters. | 
|  | for (int i = 0; i < scope->num_parameters(); ++i) { | 
|  | Variable* param = scope->parameter(i); | 
|  | DCHECK(GetType(param) == nullptr); | 
|  | SetType(param, Type::None()); | 
|  | } | 
|  |  | 
|  | ZoneList<Declaration*>* decls = scope->declarations(); | 
|  |  | 
|  | // Set all globals to type Any. | 
|  | VariableDeclaration* decl = scope->function(); | 
|  | if (decl != nullptr) SetType(decl->proxy()->var(), Type::None()); | 
|  | RECURSE(VisitDeclarations(scope->declarations())); | 
|  |  | 
|  | // Validate global variables. | 
|  | RECURSE(VisitStatements(fun->body())); | 
|  |  | 
|  | // Validate function annotations. | 
|  | for (int i = 0; i < decls->length(); ++i) { | 
|  | FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); | 
|  | if (decl != nullptr) { | 
|  | RECURSE(VisitFunctionAnnotation(decl->fun())); | 
|  | Variable* var = decl->proxy()->var(); | 
|  | if (property_info_ != nullptr) { | 
|  | SetVariableInfo(var, property_info_); | 
|  | property_info_ = nullptr; | 
|  | } | 
|  | SetType(var, computed_type_); | 
|  | DCHECK(GetType(var) != nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build function tables. | 
|  | building_function_tables_ = true; | 
|  | RECURSE(VisitStatements(fun->body())); | 
|  | building_function_tables_ = false; | 
|  |  | 
|  | // Validate function bodies. | 
|  | for (int i = 0; i < decls->length(); ++i) { | 
|  | FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); | 
|  | if (decl != nullptr) { | 
|  | RECURSE(VisitWithExpectation(decl->fun(), Type::Any(), "UNREACHABLE")); | 
|  | if (!computed_type_->IsFunction()) { | 
|  | FAIL(decl->fun(), "function literal expected to be a function"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Validate exports. | 
|  | visiting_exports_ = true; | 
|  | ReturnStatement* stmt = fun->body()->last()->AsReturnStatement(); | 
|  | if (stmt == nullptr) { | 
|  | FAIL(fun->body()->last(), "last statement in module is not a return"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(stmt->expression(), Type::Object(), | 
|  | "expected object export")); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitVariableDeclaration(VariableDeclaration* decl) { | 
|  | Variable* var = decl->proxy()->var(); | 
|  | if (var->location() != VariableLocation::PARAMETER) { | 
|  | if (GetType(var) == nullptr) { | 
|  | SetType(var, Type::Any()); | 
|  | } else { | 
|  | DCHECK(!GetType(var)->IsFunction()); | 
|  | } | 
|  | } | 
|  | DCHECK(GetType(var) != nullptr); | 
|  | intish_ = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitFunctionDeclaration(FunctionDeclaration* decl) { | 
|  | if (in_function_) { | 
|  | FAIL(decl, "function declared inside another"); | 
|  | } | 
|  | // Set function type so global references to functions have some type | 
|  | // (so they can give a more useful error). | 
|  | Variable* var = decl->proxy()->var(); | 
|  | if (GetVariableInfo(var)) { | 
|  | // Detect previously-seen functions. | 
|  | FAIL(decl->fun(), "function repeated in module"); | 
|  | } | 
|  | SetType(var, Type::Function()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) { | 
|  | // Extract result type. | 
|  | ZoneList<Statement*>* body = fun->body(); | 
|  | Type* result_type = Type::Undefined(); | 
|  | if (body->length() > 0) { | 
|  | ReturnStatement* stmt = body->last()->AsReturnStatement(); | 
|  | if (stmt != nullptr) { | 
|  | Literal* literal = stmt->expression()->AsLiteral(); | 
|  | Type* old_expected = expected_type_; | 
|  | expected_type_ = Type::Any(); | 
|  | if (literal) { | 
|  | RECURSE(VisitLiteral(literal, true)); | 
|  | } else { | 
|  | RECURSE(VisitExpressionAnnotation(stmt->expression(), nullptr, true)); | 
|  | } | 
|  | expected_type_ = old_expected; | 
|  | result_type = computed_type_; | 
|  | } | 
|  | } | 
|  | Type* type = | 
|  | Type::Function(result_type, Type::Any(), fun->parameter_count(), zone()); | 
|  |  | 
|  | // Extract parameter types. | 
|  | bool good = true; | 
|  | for (int i = 0; i < fun->parameter_count(); ++i) { | 
|  | good = false; | 
|  | if (i >= body->length()) break; | 
|  | ExpressionStatement* stmt = body->at(i)->AsExpressionStatement(); | 
|  | if (stmt == nullptr) break; | 
|  | Assignment* expr = stmt->expression()->AsAssignment(); | 
|  | if (expr == nullptr || expr->is_compound()) break; | 
|  | VariableProxy* proxy = expr->target()->AsVariableProxy(); | 
|  | if (proxy == nullptr) break; | 
|  | Variable* var = proxy->var(); | 
|  | if (var->location() != VariableLocation::PARAMETER || var->index() != i) | 
|  | break; | 
|  | RECURSE(VisitExpressionAnnotation(expr->value(), var, false)); | 
|  | if (property_info_ != nullptr) { | 
|  | SetVariableInfo(var, property_info_); | 
|  | property_info_ = nullptr; | 
|  | } | 
|  | SetType(var, computed_type_); | 
|  | type->AsFunction()->InitParameter(i, computed_type_); | 
|  | good = true; | 
|  | } | 
|  | if (!good) FAIL(fun, "missing parameter type annotations"); | 
|  |  | 
|  | SetResult(fun, type); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitExpressionAnnotation(Expression* expr, Variable* var, | 
|  | bool is_return) { | 
|  | // Normal +x or x|0 annotations. | 
|  | BinaryOperation* bin = expr->AsBinaryOperation(); | 
|  | if (bin != nullptr) { | 
|  | if (var != nullptr) { | 
|  | VariableProxy* proxy = bin->left()->AsVariableProxy(); | 
|  | if (proxy == nullptr) { | 
|  | FAIL(bin->left(), "expected variable for type annotation"); | 
|  | } | 
|  | if (proxy->var() != var) { | 
|  | FAIL(proxy, "annotation source doesn't match destination"); | 
|  | } | 
|  | } | 
|  | Literal* right = bin->right()->AsLiteral(); | 
|  | if (right != nullptr) { | 
|  | switch (bin->op()) { | 
|  | case Token::MUL:  // We encode +x as x*1.0 | 
|  | if (right->raw_value()->ContainsDot() && | 
|  | right->raw_value()->AsNumber() == 1.0) { | 
|  | SetResult(expr, cache_.kAsmDouble); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Token::BIT_OR: | 
|  | if (!right->raw_value()->ContainsDot() && | 
|  | right->raw_value()->AsNumber() == 0.0) { | 
|  | if (is_return) { | 
|  | SetResult(expr, cache_.kAsmSigned); | 
|  | } else { | 
|  | SetResult(expr, cache_.kAsmInt); | 
|  | } | 
|  | return; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | FAIL(expr, "invalid type annotation on binary op"); | 
|  | } | 
|  |  | 
|  | // Numbers or the undefined literal (for empty returns). | 
|  | if (expr->IsLiteral()) { | 
|  | RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Call* call = expr->AsCall(); | 
|  | if (call != nullptr) { | 
|  | VariableProxy* proxy = call->expression()->AsVariableProxy(); | 
|  | if (proxy != nullptr) { | 
|  | VariableInfo* info = GetVariableInfo(proxy->var()); | 
|  | if (!info || | 
|  | (!info->is_check_function && !info->is_constructor_function)) { | 
|  | if (allow_simd_) { | 
|  | FAIL(call->expression(), | 
|  | "only fround/SIMD.checks allowed on expression annotations"); | 
|  | } else { | 
|  | FAIL(call->expression(), | 
|  | "only fround allowed on expression annotations"); | 
|  | } | 
|  | } | 
|  | Type* type = info->type; | 
|  | DCHECK(type->IsFunction()); | 
|  | if (info->is_check_function) { | 
|  | DCHECK(type->AsFunction()->Arity() == 1); | 
|  | } | 
|  | if (call->arguments()->length() != type->AsFunction()->Arity()) { | 
|  | FAIL(call, "invalid argument count calling function"); | 
|  | } | 
|  | SetResult(expr, type->AsFunction()->Result()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | FAIL(expr, "invalid type annotation"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitStatements(ZoneList<Statement*>* stmts) { | 
|  | for (int i = 0; i < stmts->length(); ++i) { | 
|  | Statement* stmt = stmts->at(i); | 
|  | RECURSE(Visit(stmt)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitBlock(Block* stmt) { | 
|  | RECURSE(VisitStatements(stmt->statements())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) { | 
|  | RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(), | 
|  | "expression statement expected to be any")); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitEmptyStatement(EmptyStatement* stmt) {} | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitSloppyBlockFunctionStatement( | 
|  | SloppyBlockFunctionStatement* stmt) { | 
|  | Visit(stmt->statement()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitIfStatement(IfStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "if statement inside module body"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(stmt->condition(), cache_.kAsmSigned, | 
|  | "if condition expected to be integer")); | 
|  | RECURSE(Visit(stmt->then_statement())); | 
|  | RECURSE(Visit(stmt->else_statement())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitContinueStatement(ContinueStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "continue statement inside module body"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitBreakStatement(BreakStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "continue statement inside module body"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) { | 
|  | // Handle module return statement in VisitAsmModule. | 
|  | if (!in_function_) { | 
|  | return; | 
|  | } | 
|  | Literal* literal = stmt->expression()->AsLiteral(); | 
|  | if (literal) { | 
|  | VisitLiteral(literal, true); | 
|  | } else { | 
|  | RECURSE( | 
|  | VisitWithExpectation(stmt->expression(), Type::Any(), | 
|  | "return expression expected to have return type")); | 
|  | } | 
|  | if (!computed_type_->Is(return_type_) || !return_type_->Is(computed_type_)) { | 
|  | FAIL(stmt->expression(), "return type does not match function signature"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitWithStatement(WithStatement* stmt) { | 
|  | FAIL(stmt, "bad with statement"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitSwitchStatement(SwitchStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "switch statement inside module body"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(stmt->tag(), cache_.kAsmSigned, | 
|  | "switch expression non-integer")); | 
|  | ZoneList<CaseClause*>* clauses = stmt->cases(); | 
|  | ZoneSet<int32_t> cases(zone()); | 
|  | for (int i = 0; i < clauses->length(); ++i) { | 
|  | CaseClause* clause = clauses->at(i); | 
|  | if (clause->is_default()) { | 
|  | if (i != clauses->length() - 1) { | 
|  | FAIL(clause, "default case out of order"); | 
|  | } | 
|  | } else { | 
|  | Expression* label = clause->label(); | 
|  | RECURSE(VisitWithExpectation(label, cache_.kAsmSigned, | 
|  | "case label non-integer")); | 
|  | if (!label->IsLiteral()) FAIL(label, "non-literal case label"); | 
|  | Handle<Object> value = label->AsLiteral()->value(); | 
|  | int32_t value32; | 
|  | if (!value->ToInt32(&value32)) FAIL(label, "illegal case label value"); | 
|  | if (cases.find(value32) != cases.end()) { | 
|  | FAIL(label, "duplicate case value"); | 
|  | } | 
|  | cases.insert(value32); | 
|  | } | 
|  | // TODO(bradnelson): Detect duplicates. | 
|  | ZoneList<Statement*>* stmts = clause->statements(); | 
|  | RECURSE(VisitStatements(stmts)); | 
|  | } | 
|  | if (cases.size() > 0) { | 
|  | int64_t min_case = *cases.begin(); | 
|  | int64_t max_case = *cases.rbegin(); | 
|  | if (max_case - min_case > std::numeric_limits<int32_t>::max()) { | 
|  | FAIL(stmt, "case range too large"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitDoWhileStatement(DoWhileStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "do statement inside module body"); | 
|  | } | 
|  | RECURSE(Visit(stmt->body())); | 
|  | RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, | 
|  | "do condition expected to be integer")); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitWhileStatement(WhileStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "while statement inside module body"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, | 
|  | "while condition expected to be integer")); | 
|  | RECURSE(Visit(stmt->body())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitForStatement(ForStatement* stmt) { | 
|  | if (!in_function_) { | 
|  | FAIL(stmt, "for statement inside module body"); | 
|  | } | 
|  | if (stmt->init() != nullptr) { | 
|  | RECURSE(Visit(stmt->init())); | 
|  | } | 
|  | if (stmt->cond() != nullptr) { | 
|  | RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, | 
|  | "for condition expected to be integer")); | 
|  | } | 
|  | if (stmt->next() != nullptr) { | 
|  | RECURSE(Visit(stmt->next())); | 
|  | } | 
|  | RECURSE(Visit(stmt->body())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitForInStatement(ForInStatement* stmt) { | 
|  | FAIL(stmt, "for-in statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitForOfStatement(ForOfStatement* stmt) { | 
|  | FAIL(stmt, "for-of statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitTryCatchStatement(TryCatchStatement* stmt) { | 
|  | FAIL(stmt, "try statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitTryFinallyStatement(TryFinallyStatement* stmt) { | 
|  | FAIL(stmt, "try statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) { | 
|  | FAIL(stmt, "debugger statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) { | 
|  | if (in_function_) { | 
|  | FAIL(expr, "invalid nested function"); | 
|  | } | 
|  | Scope* scope = expr->scope(); | 
|  | DCHECK(scope->is_function_scope()); | 
|  |  | 
|  | if (!bounds_.get(expr).upper->IsFunction()) { | 
|  | FAIL(expr, "invalid function literal"); | 
|  | } | 
|  |  | 
|  | Type* type = bounds_.get(expr).upper; | 
|  | Type* save_return_type = return_type_; | 
|  | return_type_ = type->AsFunction()->Result(); | 
|  | in_function_ = true; | 
|  | local_variable_type_.Clear(); | 
|  | RECURSE(VisitDeclarations(scope->declarations())); | 
|  | RECURSE(VisitStatements(expr->body())); | 
|  | in_function_ = false; | 
|  | return_type_ = save_return_type; | 
|  | RECURSE(IntersectResult(expr, type)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitNativeFunctionLiteral(NativeFunctionLiteral* expr) { | 
|  | FAIL(expr, "function info literal encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitDoExpression(DoExpression* expr) { | 
|  | FAIL(expr, "do-expression encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitConditional(Conditional* expr) { | 
|  | if (!in_function_) { | 
|  | FAIL(expr, "ternary operator inside module body"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(expr->condition(), Type::Number(), | 
|  | "condition expected to be integer")); | 
|  | if (!computed_type_->Is(cache_.kAsmInt)) { | 
|  | FAIL(expr->condition(), "condition must be of type int"); | 
|  | } | 
|  |  | 
|  | RECURSE(VisitWithExpectation( | 
|  | expr->then_expression(), expected_type_, | 
|  | "conditional then branch type mismatch with enclosing expression")); | 
|  | Type* then_type = StorageType(computed_type_); | 
|  | if (intish_ != 0 || !then_type->Is(cache_.kAsmComparable)) { | 
|  | FAIL(expr->then_expression(), "invalid type in ? then expression"); | 
|  | } | 
|  |  | 
|  | RECURSE(VisitWithExpectation( | 
|  | expr->else_expression(), expected_type_, | 
|  | "conditional else branch type mismatch with enclosing expression")); | 
|  | Type* else_type = StorageType(computed_type_); | 
|  | if (intish_ != 0 || !else_type->Is(cache_.kAsmComparable)) { | 
|  | FAIL(expr->else_expression(), "invalid type in ? else expression"); | 
|  | } | 
|  |  | 
|  | if (!then_type->Is(else_type) || !else_type->Is(then_type)) { | 
|  | FAIL(expr, "then and else expressions in ? must have the same type"); | 
|  | } | 
|  |  | 
|  | RECURSE(IntersectResult(expr, then_type)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitVariableProxy(VariableProxy* expr) { | 
|  | Variable* var = expr->var(); | 
|  | VariableInfo* info = GetVariableInfo(var); | 
|  | if (!in_function_ && !building_function_tables_ && !visiting_exports_) { | 
|  | if (var->location() != VariableLocation::PARAMETER || var->index() >= 3) { | 
|  | FAIL(expr, "illegal variable reference in module body"); | 
|  | } | 
|  | } | 
|  | if (info == nullptr || info->type == nullptr) { | 
|  | if (var->mode() == TEMPORARY) { | 
|  | SetType(var, Type::Any()); | 
|  | info = GetVariableInfo(var); | 
|  | } else { | 
|  | FAIL(expr, "unbound variable"); | 
|  | } | 
|  | } | 
|  | if (property_info_ != nullptr) { | 
|  | SetVariableInfo(var, property_info_); | 
|  | property_info_ = nullptr; | 
|  | } | 
|  | Type* type = Type::Intersect(info->type, expected_type_, zone()); | 
|  | if (type->Is(cache_.kAsmInt)) type = cache_.kAsmInt; | 
|  | intish_ = 0; | 
|  | RECURSE(IntersectResult(expr, type)); | 
|  | } | 
|  |  | 
|  | void AsmTyper::VisitLiteral(Literal* expr, bool is_return) { | 
|  | intish_ = 0; | 
|  | Handle<Object> value = expr->value(); | 
|  | if (value->IsNumber()) { | 
|  | int32_t i; | 
|  | uint32_t u; | 
|  | if (expr->raw_value()->ContainsDot()) { | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmDouble)); | 
|  | } else if (!is_return && value->ToUint32(&u)) { | 
|  | if (u <= 0x7fffffff) { | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmFixnum)); | 
|  | } else { | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmUnsigned)); | 
|  | } | 
|  | } else if (value->ToInt32(&i)) { | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmSigned)); | 
|  | } else { | 
|  | FAIL(expr, "illegal number"); | 
|  | } | 
|  | } else if (!is_return && value->IsString()) { | 
|  | RECURSE(IntersectResult(expr, Type::String())); | 
|  | } else if (value->IsUndefined(isolate_)) { | 
|  | RECURSE(IntersectResult(expr, Type::Undefined())); | 
|  | } else { | 
|  | FAIL(expr, "illegal literal"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitLiteral(Literal* expr) { VisitLiteral(expr, false); } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitRegExpLiteral(RegExpLiteral* expr) { | 
|  | FAIL(expr, "regular expression encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitObjectLiteral(ObjectLiteral* expr) { | 
|  | if (in_function_) { | 
|  | FAIL(expr, "object literal in function"); | 
|  | } | 
|  | // Allowed for asm module's export declaration. | 
|  | ZoneList<ObjectLiteralProperty*>* props = expr->properties(); | 
|  | for (int i = 0; i < props->length(); ++i) { | 
|  | ObjectLiteralProperty* prop = props->at(i); | 
|  | RECURSE(VisitWithExpectation(prop->value(), Type::Any(), | 
|  | "object property expected to be a function")); | 
|  | if (!computed_type_->IsFunction()) { | 
|  | FAIL(prop->value(), "non-function in function table"); | 
|  | } | 
|  | } | 
|  | RECURSE(IntersectResult(expr, Type::Object())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) { | 
|  | if (in_function_) { | 
|  | FAIL(expr, "array literal inside a function"); | 
|  | } | 
|  | // Allowed for function tables. | 
|  | ZoneList<Expression*>* values = expr->values(); | 
|  | Type* elem_type = Type::None(); | 
|  | for (int i = 0; i < values->length(); ++i) { | 
|  | Expression* value = values->at(i); | 
|  | RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE")); | 
|  | if (!computed_type_->IsFunction()) { | 
|  | FAIL(value, "array component expected to be a function"); | 
|  | } | 
|  | elem_type = Type::Union(elem_type, computed_type_, zone()); | 
|  | } | 
|  | array_size_ = values->length(); | 
|  | RECURSE(IntersectResult(expr, Type::Array(elem_type, zone()))); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitAssignment(Assignment* expr) { | 
|  | // Handle function tables and everything else in different passes. | 
|  | if (!in_function_) { | 
|  | if (expr->value()->IsArrayLiteral()) { | 
|  | if (!building_function_tables_) { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | if (building_function_tables_) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (expr->is_compound()) FAIL(expr, "compound assignment encountered"); | 
|  | Type* type = expected_type_; | 
|  | RECURSE(VisitWithExpectation( | 
|  | expr->value(), type, "assignment value expected to match surrounding")); | 
|  | Type* target_type = StorageType(computed_type_); | 
|  |  | 
|  | if (expr->target()->IsVariableProxy()) { | 
|  | // Assignment to a local or context variable. | 
|  | VariableProxy* proxy = expr->target()->AsVariableProxy(); | 
|  | if (intish_ != 0) { | 
|  | FAIL(expr, "intish or floatish assignment"); | 
|  | } | 
|  | if (in_function_ && target_type->IsArray()) { | 
|  | FAIL(expr, "assignment to array variable"); | 
|  | } | 
|  | expected_type_ = target_type; | 
|  | Variable* var = proxy->var(); | 
|  | VariableInfo* info = GetVariableInfo(var); | 
|  | if (info == nullptr || info->type == nullptr) { | 
|  | if (var->mode() == TEMPORARY) { | 
|  | SetType(var, Type::Any()); | 
|  | info = GetVariableInfo(var); | 
|  | } else { | 
|  | FAIL(proxy, "unbound variable"); | 
|  | } | 
|  | } | 
|  | if (property_info_ != nullptr) { | 
|  | SetVariableInfo(var, property_info_); | 
|  | property_info_ = nullptr; | 
|  | } | 
|  | Type* type = Type::Intersect(info->type, expected_type_, zone()); | 
|  | if (type->Is(cache_.kAsmInt)) type = cache_.kAsmInt; | 
|  | info->type = type; | 
|  | intish_ = 0; | 
|  | RECURSE(IntersectResult(proxy, type)); | 
|  | } else if (expr->target()->IsProperty()) { | 
|  | // Assignment to a property: should be a heap assignment {H[x] = y}. | 
|  | int32_t value_intish = intish_; | 
|  | Property* property = expr->target()->AsProperty(); | 
|  | RECURSE(VisitWithExpectation(property->obj(), Type::Any(), | 
|  | "bad propety object")); | 
|  | if (!computed_type_->IsArray()) { | 
|  | FAIL(property->obj(), "array expected"); | 
|  | } | 
|  | if (value_intish != 0 && computed_type_->Is(cache_.kFloat64Array)) { | 
|  | FAIL(expr, "floatish assignment to double array"); | 
|  | } | 
|  | VisitHeapAccess(property, true, target_type); | 
|  | } | 
|  | RECURSE(IntersectResult(expr, target_type)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitYield(Yield* expr) { | 
|  | FAIL(expr, "yield expression encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitThrow(Throw* expr) { | 
|  | FAIL(expr, "throw statement encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | int AsmTyper::ElementShiftSize(Type* type) { | 
|  | if (type->Is(cache_.kAsmSize8)) return 0; | 
|  | if (type->Is(cache_.kAsmSize16)) return 1; | 
|  | if (type->Is(cache_.kAsmSize32)) return 2; | 
|  | if (type->Is(cache_.kAsmSize64)) return 3; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | Type* AsmTyper::StorageType(Type* type) { | 
|  | if (type->Is(cache_.kAsmInt)) { | 
|  | return cache_.kAsmInt; | 
|  | } else { | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitHeapAccess(Property* expr, bool assigning, | 
|  | Type* assignment_type) { | 
|  | ArrayType* array_type = computed_type_->AsArray(); | 
|  | //  size_t size = array_size_; | 
|  | Type* type = array_type->Element(); | 
|  | if (type->IsFunction()) { | 
|  | if (assigning) { | 
|  | FAIL(expr, "assigning to function table is illegal"); | 
|  | } | 
|  | // TODO(bradnelson): Fix the parser and then un-comment this part | 
|  | // BinaryOperation* bin = expr->key()->AsBinaryOperation(); | 
|  | // if (bin == nullptr || bin->op() != Token::BIT_AND) { | 
|  | //   FAIL(expr->key(), "expected & in call"); | 
|  | // } | 
|  | // RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned, | 
|  | //                              "array index expected to be integer")); | 
|  | // Literal* right = bin->right()->AsLiteral(); | 
|  | // if (right == nullptr || right->raw_value()->ContainsDot()) { | 
|  | //   FAIL(right, "call mask must be integer"); | 
|  | // } | 
|  | // RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned, | 
|  | //                              "call mask expected to be integer")); | 
|  | // if (static_cast<size_t>(right->raw_value()->AsNumber()) != size - 1) { | 
|  | //   FAIL(right, "call mask must match function table"); | 
|  | // } | 
|  | // bin->set_bounds(Bounds(cache_.kAsmSigned)); | 
|  | RECURSE(VisitWithExpectation(expr->key(), cache_.kAsmSigned, | 
|  | "must be integer")); | 
|  | RECURSE(IntersectResult(expr, type)); | 
|  | } else { | 
|  | Literal* literal = expr->key()->AsLiteral(); | 
|  | if (literal) { | 
|  | RECURSE(VisitWithExpectation(literal, cache_.kAsmSigned, | 
|  | "array index expected to be integer")); | 
|  | } else { | 
|  | int expected_shift = ElementShiftSize(type); | 
|  | if (expected_shift == 0) { | 
|  | RECURSE(Visit(expr->key())); | 
|  | } else { | 
|  | BinaryOperation* bin = expr->key()->AsBinaryOperation(); | 
|  | if (bin == nullptr || bin->op() != Token::SAR) { | 
|  | FAIL(expr->key(), "expected >> in heap access"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned, | 
|  | "array index expected to be integer")); | 
|  | Literal* right = bin->right()->AsLiteral(); | 
|  | if (right == nullptr || right->raw_value()->ContainsDot()) { | 
|  | FAIL(bin->right(), "heap access shift must be integer"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned, | 
|  | "array shift expected to be integer")); | 
|  | int n = static_cast<int>(right->raw_value()->AsNumber()); | 
|  | if (expected_shift < 0 || n != expected_shift) { | 
|  | FAIL(right, "heap access shift must match element size"); | 
|  | } | 
|  | } | 
|  | bounds_.set(expr->key(), Bounds(cache_.kAsmSigned)); | 
|  | } | 
|  | Type* result_type; | 
|  | if (type->Is(cache_.kAsmIntArrayElement)) { | 
|  | result_type = cache_.kAsmIntQ; | 
|  | intish_ = kMaxUncombinedAdditiveSteps; | 
|  | } else if (type->Is(cache_.kAsmFloat)) { | 
|  | if (assigning) { | 
|  | result_type = cache_.kAsmFloatDoubleQ; | 
|  | } else { | 
|  | result_type = cache_.kAsmFloatQ; | 
|  | } | 
|  | intish_ = 0; | 
|  | } else if (type->Is(cache_.kAsmDouble)) { | 
|  | if (assigning) { | 
|  | result_type = cache_.kAsmFloatDoubleQ; | 
|  | if (intish_ != 0) { | 
|  | FAIL(expr, "Assignment of floatish to Float64Array"); | 
|  | } | 
|  | } else { | 
|  | result_type = cache_.kAsmDoubleQ; | 
|  | } | 
|  | intish_ = 0; | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | if (assigning) { | 
|  | if (!assignment_type->Is(result_type)) { | 
|  | FAIL(expr, "illegal type in assignment"); | 
|  | } | 
|  | } else { | 
|  | RECURSE(IntersectResult(expr, expected_type_)); | 
|  | RECURSE(IntersectResult(expr, result_type)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool AsmTyper::IsStdlibObject(Expression* expr) { | 
|  | VariableProxy* proxy = expr->AsVariableProxy(); | 
|  | if (proxy == nullptr) { | 
|  | return false; | 
|  | } | 
|  | Variable* var = proxy->var(); | 
|  | VariableInfo* info = GetVariableInfo(var); | 
|  | if (info) { | 
|  | if (info->standard_member == kStdlib) return true; | 
|  | } | 
|  | if (var->location() != VariableLocation::PARAMETER || var->index() != 0) { | 
|  | return false; | 
|  | } | 
|  | info = MakeVariableInfo(var); | 
|  | info->type = Type::Object(); | 
|  | info->standard_member = kStdlib; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | Expression* AsmTyper::GetReceiverOfPropertyAccess(Expression* expr, | 
|  | const char* name) { | 
|  | Property* property = expr->AsProperty(); | 
|  | if (property == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | Literal* key = property->key()->AsLiteral(); | 
|  | if (key == nullptr || !key->IsPropertyName() || | 
|  | !key->AsPropertyName()->IsUtf8EqualTo(CStrVector(name))) { | 
|  | return nullptr; | 
|  | } | 
|  | return property->obj(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool AsmTyper::IsMathObject(Expression* expr) { | 
|  | Expression* obj = GetReceiverOfPropertyAccess(expr, "Math"); | 
|  | return obj && IsStdlibObject(obj); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool AsmTyper::IsSIMDObject(Expression* expr) { | 
|  | Expression* obj = GetReceiverOfPropertyAccess(expr, "SIMD"); | 
|  | return obj && IsStdlibObject(obj); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool AsmTyper::IsSIMDTypeObject(Expression* expr, const char* name) { | 
|  | Expression* obj = GetReceiverOfPropertyAccess(expr, name); | 
|  | return obj && IsSIMDObject(obj); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitProperty(Property* expr) { | 
|  | if (IsMathObject(expr->obj())) { | 
|  | VisitLibraryAccess(&stdlib_math_types_, expr); | 
|  | return; | 
|  | } | 
|  | #define V(NAME, Name, name, lane_count, lane_type)               \ | 
|  | if (IsSIMDTypeObject(expr->obj(), #Name)) {                    \ | 
|  | VisitLibraryAccess(&stdlib_simd_##name##_types_, expr);      \ | 
|  | return;                                                      \ | 
|  | }                                                              \ | 
|  | if (IsSIMDTypeObject(expr, #Name)) {                           \ | 
|  | VariableInfo* info = stdlib_simd_##name##_constructor_type_; \ | 
|  | SetResult(expr, info->type);                                 \ | 
|  | property_info_ = info;                                       \ | 
|  | return;                                                      \ | 
|  | } | 
|  | SIMD128_TYPES(V) | 
|  | #undef V | 
|  | if (IsStdlibObject(expr->obj())) { | 
|  | VisitLibraryAccess(&stdlib_types_, expr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | property_info_ = nullptr; | 
|  |  | 
|  | // Only recurse at this point so that we avoid needing | 
|  | // stdlib.Math to have a real type. | 
|  | RECURSE( | 
|  | VisitWithExpectation(expr->obj(), Type::Any(), "bad property object")); | 
|  |  | 
|  | // For heap view or function table access. | 
|  | if (computed_type_->IsArray()) { | 
|  | VisitHeapAccess(expr, false, nullptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VariableProxy* proxy = expr->obj()->AsVariableProxy(); | 
|  | if (proxy != nullptr) { | 
|  | Variable* var = proxy->var(); | 
|  | if (var->location() == VariableLocation::PARAMETER && var->index() == 1) { | 
|  | // foreign.x - Function represent as () -> Any | 
|  | if (Type::Any()->Is(expected_type_)) { | 
|  | SetResult(expr, Type::Function(Type::Any(), zone())); | 
|  | } else { | 
|  | SetResult(expr, expected_type_); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | FAIL(expr, "invalid property access"); | 
|  | } | 
|  |  | 
|  | void AsmTyper::CheckPolymorphicStdlibArguments( | 
|  | enum StandardMember standard_member, ZoneList<Expression*>* args) { | 
|  | if (args->length() == 0) { | 
|  | return; | 
|  | } | 
|  | // Handle polymorphic stdlib functions specially. | 
|  | Expression* arg0 = args->at(0); | 
|  | Type* arg0_type = bounds_.get(arg0).upper; | 
|  | switch (standard_member) { | 
|  | case kMathFround: { | 
|  | if (!arg0_type->Is(cache_.kAsmFloat) && | 
|  | !arg0_type->Is(cache_.kAsmDouble) && | 
|  | !arg0_type->Is(cache_.kAsmSigned) && | 
|  | !arg0_type->Is(cache_.kAsmUnsigned)) { | 
|  | FAIL(arg0, "illegal function argument type"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kMathCeil: | 
|  | case kMathFloor: | 
|  | case kMathSqrt: { | 
|  | if (!arg0_type->Is(cache_.kAsmFloat) && | 
|  | !arg0_type->Is(cache_.kAsmDouble)) { | 
|  | FAIL(arg0, "illegal function argument type"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kMathAbs: | 
|  | case kMathMin: | 
|  | case kMathMax: { | 
|  | if (!arg0_type->Is(cache_.kAsmFloat) && | 
|  | !arg0_type->Is(cache_.kAsmDouble) && | 
|  | !arg0_type->Is(cache_.kAsmSigned)) { | 
|  | FAIL(arg0, "illegal function argument type"); | 
|  | } | 
|  | if (args->length() > 1) { | 
|  | Type* other = Type::Intersect(bounds_.get(args->at(0)).upper, | 
|  | bounds_.get(args->at(1)).upper, zone()); | 
|  | if (!other->Is(cache_.kAsmFloat) && !other->Is(cache_.kAsmDouble) && | 
|  | !other->Is(cache_.kAsmSigned)) { | 
|  | FAIL(arg0, "function arguments types don't match"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { break; } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmTyper::VisitCall(Call* expr) { | 
|  | Type* expected_type = expected_type_; | 
|  | RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), | 
|  | "callee expected to be any")); | 
|  | StandardMember standard_member = kNone; | 
|  | VariableProxy* proxy = expr->expression()->AsVariableProxy(); | 
|  | if (proxy) { | 
|  | standard_member = VariableAsStandardMember(proxy->var()); | 
|  | } | 
|  | if (!in_function_ && (proxy == nullptr || standard_member != kMathFround)) { | 
|  | FAIL(expr, "calls forbidden outside function bodies"); | 
|  | } | 
|  | if (proxy == nullptr && !expr->expression()->IsProperty()) { | 
|  | FAIL(expr, "calls must be to bound variables or function tables"); | 
|  | } | 
|  | if (computed_type_->IsFunction()) { | 
|  | FunctionType* fun_type = computed_type_->AsFunction(); | 
|  | Type* result_type = fun_type->Result(); | 
|  | ZoneList<Expression*>* args = expr->arguments(); | 
|  | if (Type::Any()->Is(result_type)) { | 
|  | // For foreign calls. | 
|  | for (int i = 0; i < args->length(); ++i) { | 
|  | Expression* arg = args->at(i); | 
|  | RECURSE(VisitWithExpectation( | 
|  | arg, Type::Any(), "foreign call argument expected to be any")); | 
|  | // Checking for asm extern types explicitly, as the type system | 
|  | // doesn't correctly check their inheritance relationship. | 
|  | if (!computed_type_->Is(cache_.kAsmSigned) && | 
|  | !computed_type_->Is(cache_.kAsmFixnum) && | 
|  | !computed_type_->Is(cache_.kAsmDouble)) { | 
|  | FAIL(arg, | 
|  | "foreign call argument expected to be int, double, or fixnum"); | 
|  | } | 
|  | } | 
|  | intish_ = 0; | 
|  | bounds_.set(expr->expression(), | 
|  | Bounds(Type::Function(Type::Any(), zone()))); | 
|  | RECURSE(IntersectResult(expr, expected_type)); | 
|  | } else { | 
|  | if (fun_type->Arity() != args->length()) { | 
|  | FAIL(expr, "call with wrong arity"); | 
|  | } | 
|  | for (int i = 0; i < args->length(); ++i) { | 
|  | Expression* arg = args->at(i); | 
|  | RECURSE(VisitWithExpectation( | 
|  | arg, fun_type->Parameter(i), | 
|  | "call argument expected to match callee parameter")); | 
|  | if (standard_member != kNone && standard_member != kMathFround && | 
|  | i == 0) { | 
|  | result_type = computed_type_; | 
|  | } | 
|  | } | 
|  | RECURSE(CheckPolymorphicStdlibArguments(standard_member, args)); | 
|  | intish_ = 0; | 
|  | RECURSE(IntersectResult(expr, result_type)); | 
|  | } | 
|  | } else { | 
|  | FAIL(expr, "invalid callee"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitCallNew(CallNew* expr) { | 
|  | if (in_function_) { | 
|  | FAIL(expr, "new not allowed in module function"); | 
|  | } | 
|  | RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), | 
|  | "expected stdlib function")); | 
|  | if (computed_type_->IsFunction()) { | 
|  | FunctionType* fun_type = computed_type_->AsFunction(); | 
|  | ZoneList<Expression*>* args = expr->arguments(); | 
|  | if (fun_type->Arity() != args->length()) | 
|  | FAIL(expr, "call with wrong arity"); | 
|  | for (int i = 0; i < args->length(); ++i) { | 
|  | Expression* arg = args->at(i); | 
|  | RECURSE(VisitWithExpectation( | 
|  | arg, fun_type->Parameter(i), | 
|  | "constructor argument expected to match callee parameter")); | 
|  | } | 
|  | RECURSE(IntersectResult(expr, fun_type->Result())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | FAIL(expr, "ill-typed new operator"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitCallRuntime(CallRuntime* expr) { | 
|  | FAIL(expr, "runtime call not allowed"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) { | 
|  | if (!in_function_) { | 
|  | FAIL(expr, "unary operator inside module body"); | 
|  | } | 
|  | switch (expr->op()) { | 
|  | case Token::NOT:  // Used to encode != and !== | 
|  | RECURSE(VisitWithExpectation(expr->expression(), cache_.kAsmInt, | 
|  | "operand expected to be integer")); | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmSigned)); | 
|  | return; | 
|  | case Token::DELETE: | 
|  | FAIL(expr, "delete operator encountered"); | 
|  | case Token::VOID: | 
|  | FAIL(expr, "void operator encountered"); | 
|  | case Token::TYPEOF: | 
|  | FAIL(expr, "typeof operator encountered"); | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitCountOperation(CountOperation* expr) { | 
|  | FAIL(expr, "increment or decrement operator encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr, | 
|  | Type* left_expected, | 
|  | Type* right_expected, | 
|  | Type* result_type, bool conversion) { | 
|  | RECURSE(VisitWithExpectation(expr->left(), Type::Number(), | 
|  | "left bitwise operand expected to be a number")); | 
|  | int32_t left_intish = intish_; | 
|  | Type* left_type = computed_type_; | 
|  | if (!left_type->Is(left_expected)) { | 
|  | FAIL(expr->left(), "left bitwise operand expected to be an integer"); | 
|  | } | 
|  | if (left_intish > kMaxUncombinedAdditiveSteps) { | 
|  | FAIL(expr->left(), "too many consecutive additive ops"); | 
|  | } | 
|  |  | 
|  | RECURSE( | 
|  | VisitWithExpectation(expr->right(), Type::Number(), | 
|  | "right bitwise operand expected to be a number")); | 
|  | int32_t right_intish = intish_; | 
|  | Type* right_type = computed_type_; | 
|  | if (!right_type->Is(right_expected)) { | 
|  | FAIL(expr->right(), "right bitwise operand expected to be an integer"); | 
|  | } | 
|  | if (right_intish > kMaxUncombinedAdditiveSteps) { | 
|  | FAIL(expr->right(), "too many consecutive additive ops"); | 
|  | } | 
|  |  | 
|  | intish_ = 0; | 
|  |  | 
|  | if (left_type->Is(cache_.kAsmFixnum) && right_type->Is(cache_.kAsmInt)) { | 
|  | left_type = right_type; | 
|  | } | 
|  | if (right_type->Is(cache_.kAsmFixnum) && left_type->Is(cache_.kAsmInt)) { | 
|  | right_type = left_type; | 
|  | } | 
|  | if (!conversion) { | 
|  | if (!left_type->Is(cache_.kAsmIntQ) || !right_type->Is(cache_.kAsmIntQ)) { | 
|  | FAIL(expr, "ill-typed bitwise operation"); | 
|  | } | 
|  | } | 
|  | RECURSE(IntersectResult(expr, result_type)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) { | 
|  | if (!in_function_) { | 
|  | if (expr->op() != Token::BIT_OR && expr->op() != Token::MUL) { | 
|  | FAIL(expr, "illegal binary operator inside module body"); | 
|  | } | 
|  | if (!(expr->left()->IsProperty() || expr->left()->IsVariableProxy()) || | 
|  | !expr->right()->IsLiteral()) { | 
|  | FAIL(expr, "illegal computation inside module body"); | 
|  | } | 
|  | DCHECK(expr->right()->AsLiteral() != nullptr); | 
|  | const AstValue* right_value = expr->right()->AsLiteral()->raw_value(); | 
|  | if (expr->op() == Token::BIT_OR) { | 
|  | if (right_value->AsNumber() != 0.0 || right_value->ContainsDot()) { | 
|  | FAIL(expr, "illegal integer annotation value"); | 
|  | } | 
|  | } | 
|  | if (expr->op() == Token::MUL) { | 
|  | if (right_value->AsNumber() != 1.0 && right_value->ContainsDot()) { | 
|  | FAIL(expr, "illegal double annotation value"); | 
|  | } | 
|  | } | 
|  | } | 
|  | switch (expr->op()) { | 
|  | case Token::COMMA: { | 
|  | RECURSE(VisitWithExpectation(expr->left(), Type::Any(), | 
|  | "left comma operand expected to be any")); | 
|  | RECURSE(VisitWithExpectation(expr->right(), Type::Any(), | 
|  | "right comma operand expected to be any")); | 
|  | RECURSE(IntersectResult(expr, computed_type_)); | 
|  | return; | 
|  | } | 
|  | case Token::OR: | 
|  | case Token::AND: | 
|  | FAIL(expr, "illegal logical operator"); | 
|  | case Token::BIT_OR: { | 
|  | // BIT_OR allows Any since it is used as a type coercion. | 
|  | RECURSE(VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmIntQ, | 
|  | cache_.kAsmSigned, true)); | 
|  | if (expr->left()->IsCall() && expr->op() == Token::BIT_OR && | 
|  | Type::Number()->Is(bounds_.get(expr->left()).upper)) { | 
|  | // Force the return types of foreign functions. | 
|  | bounds_.set(expr->left(), Bounds(cache_.kAsmSigned)); | 
|  | } | 
|  | if (in_function_ && | 
|  | !bounds_.get(expr->left()).upper->Is(cache_.kAsmIntQ)) { | 
|  | FAIL(expr->left(), "intish required"); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case Token::BIT_XOR: { | 
|  | // Handle booleans specially to handle de-sugared ! | 
|  | Literal* left = expr->left()->AsLiteral(); | 
|  | if (left && left->value()->IsBoolean()) { | 
|  | if (left->ToBooleanIsTrue()) { | 
|  | bounds_.set(left, Bounds(cache_.kSingletonOne)); | 
|  | RECURSE(VisitWithExpectation(expr->right(), cache_.kAsmIntQ, | 
|  | "not operator expects an integer")); | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmSigned)); | 
|  | return; | 
|  | } else { | 
|  | FAIL(left, "unexpected false"); | 
|  | } | 
|  | } | 
|  | // BIT_XOR allows Any since it is used as a type coercion (via ~~). | 
|  | RECURSE(VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmIntQ, | 
|  | cache_.kAsmSigned, true)); | 
|  | return; | 
|  | } | 
|  | case Token::SHR: { | 
|  | RECURSE(VisitIntegerBitwiseOperator( | 
|  | expr, cache_.kAsmIntQ, cache_.kAsmIntQ, cache_.kAsmUnsigned, false)); | 
|  | return; | 
|  | } | 
|  | case Token::SHL: | 
|  | case Token::SAR: | 
|  | case Token::BIT_AND: { | 
|  | RECURSE(VisitIntegerBitwiseOperator( | 
|  | expr, cache_.kAsmIntQ, cache_.kAsmIntQ, cache_.kAsmSigned, false)); | 
|  | return; | 
|  | } | 
|  | case Token::ADD: | 
|  | case Token::SUB: | 
|  | case Token::MUL: | 
|  | case Token::DIV: | 
|  | case Token::MOD: { | 
|  | RECURSE(VisitWithExpectation( | 
|  | expr->left(), Type::Number(), | 
|  | "left arithmetic operand expected to be number")); | 
|  | Type* left_type = computed_type_; | 
|  | int32_t left_intish = intish_; | 
|  | RECURSE(VisitWithExpectation( | 
|  | expr->right(), Type::Number(), | 
|  | "right arithmetic operand expected to be number")); | 
|  | Type* right_type = computed_type_; | 
|  | int32_t right_intish = intish_; | 
|  | Type* type = Type::Union(left_type, right_type, zone()); | 
|  | if (type->Is(cache_.kAsmInt)) { | 
|  | if (expr->op() == Token::MUL) { | 
|  | int32_t i; | 
|  | Literal* left = expr->left()->AsLiteral(); | 
|  | Literal* right = expr->right()->AsLiteral(); | 
|  | if (left != nullptr && left->value()->IsNumber() && | 
|  | left->value()->ToInt32(&i)) { | 
|  | if (right_intish != 0) { | 
|  | FAIL(expr, "intish not allowed in multiply"); | 
|  | } | 
|  | } else if (right != nullptr && right->value()->IsNumber() && | 
|  | right->value()->ToInt32(&i)) { | 
|  | if (left_intish != 0) { | 
|  | FAIL(expr, "intish not allowed in multiply"); | 
|  | } | 
|  | } else { | 
|  | FAIL(expr, "multiply must be by an integer literal"); | 
|  | } | 
|  | i = abs(i); | 
|  | if (i >= (1 << 20)) { | 
|  | FAIL(expr, "multiply must be by value in -2^20 < n < 2^20"); | 
|  | } | 
|  | intish_ = i; | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmInt)); | 
|  | return; | 
|  | } else { | 
|  | intish_ = left_intish + right_intish + 1; | 
|  | if (expr->op() == Token::ADD || expr->op() == Token::SUB) { | 
|  | if (intish_ > kMaxUncombinedAdditiveSteps) { | 
|  | FAIL(expr, "too many consecutive additive ops"); | 
|  | } | 
|  | } else { | 
|  | if (intish_ > kMaxUncombinedMultiplicativeSteps) { | 
|  | FAIL(expr, "too many consecutive multiplicative ops"); | 
|  | } | 
|  | } | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmInt)); | 
|  | return; | 
|  | } | 
|  | } else if (expr->op() == Token::MUL && expr->right()->IsLiteral() && | 
|  | right_type->Is(cache_.kAsmDouble) && | 
|  | expr->right()->AsLiteral()->raw_value()->ContainsDot() && | 
|  | expr->right()->AsLiteral()->raw_value()->AsNumber() == 1.0) { | 
|  | // For unary +, expressed as x * 1.0 | 
|  | if (expr->left()->IsCall() && | 
|  | Type::Number()->Is(bounds_.get(expr->left()).upper)) { | 
|  | // Force the return types of foreign functions. | 
|  | bounds_.set(expr->left(), Bounds(cache_.kAsmDouble)); | 
|  | left_type = bounds_.get(expr->left()).upper; | 
|  | } | 
|  | if (!(expr->left()->IsProperty() && | 
|  | Type::Number()->Is(bounds_.get(expr->left()).upper))) { | 
|  | if (!left_type->Is(cache_.kAsmSigned) && | 
|  | !left_type->Is(cache_.kAsmUnsigned) && | 
|  | !left_type->Is(cache_.kAsmFixnum) && | 
|  | !left_type->Is(cache_.kAsmFloatQ) && | 
|  | !left_type->Is(cache_.kAsmDoubleQ)) { | 
|  | FAIL( | 
|  | expr->left(), | 
|  | "unary + only allowed on signed, unsigned, float?, or double?"); | 
|  | } | 
|  | } | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmDouble)); | 
|  | return; | 
|  | } else if (expr->op() == Token::MUL && left_type->Is(cache_.kAsmDouble) && | 
|  | expr->right()->IsLiteral() && | 
|  | !expr->right()->AsLiteral()->raw_value()->ContainsDot() && | 
|  | expr->right()->AsLiteral()->raw_value()->AsNumber() == -1.0) { | 
|  | // For unary -, expressed as x * -1 | 
|  | bounds_.set(expr->right(), Bounds(cache_.kAsmDouble)); | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmDouble)); | 
|  | return; | 
|  | } else if (type->Is(cache_.kAsmFloat) && expr->op() != Token::MOD) { | 
|  | if (left_intish != 0 || right_intish != 0) { | 
|  | FAIL(expr, "float operation before required fround"); | 
|  | } | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmFloat)); | 
|  | intish_ = 1; | 
|  | return; | 
|  | } else if (type->Is(cache_.kAsmDouble)) { | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmDouble)); | 
|  | return; | 
|  | } else { | 
|  | FAIL(expr, "ill-typed arithmetic operation"); | 
|  | } | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitCompareOperation(CompareOperation* expr) { | 
|  | if (!in_function_) { | 
|  | FAIL(expr, "comparison inside module body"); | 
|  | } | 
|  | Token::Value op = expr->op(); | 
|  | if (op != Token::EQ && op != Token::NE && op != Token::LT && | 
|  | op != Token::LTE && op != Token::GT && op != Token::GTE) { | 
|  | FAIL(expr, "illegal comparison operator"); | 
|  | } | 
|  |  | 
|  | RECURSE( | 
|  | VisitWithExpectation(expr->left(), Type::Number(), | 
|  | "left comparison operand expected to be number")); | 
|  | Type* left_type = computed_type_; | 
|  | if (!left_type->Is(cache_.kAsmComparable)) { | 
|  | FAIL(expr->left(), "bad type on left side of comparison"); | 
|  | } | 
|  |  | 
|  | RECURSE( | 
|  | VisitWithExpectation(expr->right(), Type::Number(), | 
|  | "right comparison operand expected to be number")); | 
|  | Type* right_type = computed_type_; | 
|  | if (!right_type->Is(cache_.kAsmComparable)) { | 
|  | FAIL(expr->right(), "bad type on right side of comparison"); | 
|  | } | 
|  |  | 
|  | if (!left_type->Is(right_type) && !right_type->Is(left_type)) { | 
|  | FAIL(expr, "left and right side of comparison must match"); | 
|  | } | 
|  |  | 
|  | RECURSE(IntersectResult(expr, cache_.kAsmSigned)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitThisFunction(ThisFunction* expr) { | 
|  | FAIL(expr, "this function not allowed"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitDeclarations(ZoneList<Declaration*>* decls) { | 
|  | for (int i = 0; i < decls->length(); ++i) { | 
|  | Declaration* decl = decls->at(i); | 
|  | RECURSE(Visit(decl)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitImportDeclaration(ImportDeclaration* decl) { | 
|  | FAIL(decl, "import declaration encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitExportDeclaration(ExportDeclaration* decl) { | 
|  | FAIL(decl, "export declaration encountered"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitClassLiteral(ClassLiteral* expr) { | 
|  | FAIL(expr, "class literal not allowed"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitSpread(Spread* expr) { FAIL(expr, "spread not allowed"); } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitSuperPropertyReference(SuperPropertyReference* expr) { | 
|  | FAIL(expr, "super property reference not allowed"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) { | 
|  | FAIL(expr, "call reference not allowed"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::InitializeStdlibSIMD() { | 
|  | #define V(NAME, Name, name, lane_count, lane_type)                            \ | 
|  | {                                                                           \ | 
|  | Type* type = Type::Function(Type::Name(isolate_, zone()), Type::Any(),    \ | 
|  | lane_count, zone());                          \ | 
|  | for (int i = 0; i < lane_count; ++i) {                                    \ | 
|  | type->AsFunction()->InitParameter(i, Type::Number());                   \ | 
|  | }                                                                         \ | 
|  | stdlib_simd_##name##_constructor_type_ = new (zone()) VariableInfo(type); \ | 
|  | stdlib_simd_##name##_constructor_type_->is_constructor_function = true;   \ | 
|  | } | 
|  | SIMD128_TYPES(V) | 
|  | #undef V | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::InitializeStdlib() { | 
|  | if (allow_simd_) { | 
|  | InitializeStdlibSIMD(); | 
|  | } | 
|  | Type* number_type = Type::Number(); | 
|  | Type* double_type = cache_.kAsmDouble; | 
|  | Type* double_fn1_type = Type::Function(double_type, double_type, zone()); | 
|  | Type* double_fn2_type = | 
|  | Type::Function(double_type, double_type, double_type, zone()); | 
|  |  | 
|  | Type* fround_type = Type::Function(cache_.kAsmFloat, number_type, zone()); | 
|  | Type* imul_type = | 
|  | Type::Function(cache_.kAsmSigned, cache_.kAsmInt, cache_.kAsmInt, zone()); | 
|  | // TODO(bradnelson): currently only approximating the proper intersection type | 
|  | // (which we cannot currently represent). | 
|  | Type* number_fn1_type = Type::Function(number_type, number_type, zone()); | 
|  | Type* number_fn2_type = | 
|  | Type::Function(number_type, number_type, number_type, zone()); | 
|  |  | 
|  | struct Assignment { | 
|  | const char* name; | 
|  | StandardMember standard_member; | 
|  | Type* type; | 
|  | }; | 
|  |  | 
|  | const Assignment math[] = {{"PI", kMathPI, double_type}, | 
|  | {"E", kMathE, double_type}, | 
|  | {"LN2", kMathLN2, double_type}, | 
|  | {"LN10", kMathLN10, double_type}, | 
|  | {"LOG2E", kMathLOG2E, double_type}, | 
|  | {"LOG10E", kMathLOG10E, double_type}, | 
|  | {"SQRT2", kMathSQRT2, double_type}, | 
|  | {"SQRT1_2", kMathSQRT1_2, double_type}, | 
|  | {"imul", kMathImul, imul_type}, | 
|  | {"abs", kMathAbs, number_fn1_type}, | 
|  | {"ceil", kMathCeil, number_fn1_type}, | 
|  | {"floor", kMathFloor, number_fn1_type}, | 
|  | {"fround", kMathFround, fround_type}, | 
|  | {"pow", kMathPow, double_fn2_type}, | 
|  | {"exp", kMathExp, double_fn1_type}, | 
|  | {"log", kMathLog, double_fn1_type}, | 
|  | {"min", kMathMin, number_fn2_type}, | 
|  | {"max", kMathMax, number_fn2_type}, | 
|  | {"sqrt", kMathSqrt, number_fn1_type}, | 
|  | {"cos", kMathCos, double_fn1_type}, | 
|  | {"sin", kMathSin, double_fn1_type}, | 
|  | {"tan", kMathTan, double_fn1_type}, | 
|  | {"acos", kMathAcos, double_fn1_type}, | 
|  | {"asin", kMathAsin, double_fn1_type}, | 
|  | {"atan", kMathAtan, double_fn1_type}, | 
|  | {"atan2", kMathAtan2, double_fn2_type}}; | 
|  | for (unsigned i = 0; i < arraysize(math); ++i) { | 
|  | stdlib_math_types_[math[i].name] = new (zone()) VariableInfo(math[i].type); | 
|  | stdlib_math_types_[math[i].name]->standard_member = math[i].standard_member; | 
|  | } | 
|  | stdlib_math_types_["fround"]->is_check_function = true; | 
|  |  | 
|  | stdlib_types_["Infinity"] = new (zone()) VariableInfo(double_type); | 
|  | stdlib_types_["Infinity"]->standard_member = kInfinity; | 
|  | stdlib_types_["NaN"] = new (zone()) VariableInfo(double_type); | 
|  | stdlib_types_["NaN"]->standard_member = kNaN; | 
|  | Type* buffer_type = Type::Any(); | 
|  | #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \ | 
|  | stdlib_types_[#TypeName "Array"] = new (zone()) VariableInfo(  \ | 
|  | Type::Function(cache_.k##TypeName##Array, buffer_type, zone())); | 
|  | TYPED_ARRAYS(TYPED_ARRAY) | 
|  | #undef TYPED_ARRAY | 
|  |  | 
|  | #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size)     \ | 
|  | stdlib_heap_types_[#TypeName "Array"] = new (zone()) VariableInfo( \ | 
|  | Type::Function(cache_.k##TypeName##Array, buffer_type, zone())); | 
|  | TYPED_ARRAYS(TYPED_ARRAY) | 
|  | #undef TYPED_ARRAY | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitLibraryAccess(ObjectTypeMap* map, Property* expr) { | 
|  | Literal* key = expr->key()->AsLiteral(); | 
|  | if (key == nullptr || !key->IsPropertyName()) | 
|  | FAIL(expr, "invalid key used on stdlib member"); | 
|  | Handle<String> name = key->AsPropertyName(); | 
|  | VariableInfo* info = LibType(map, name); | 
|  | if (info == nullptr || info->type == nullptr) | 
|  | FAIL(expr, "unknown stdlib function"); | 
|  | SetResult(expr, info->type); | 
|  | property_info_ = info; | 
|  | } | 
|  |  | 
|  |  | 
|  | AsmTyper::VariableInfo* AsmTyper::LibType(ObjectTypeMap* map, | 
|  | Handle<String> name) { | 
|  | base::SmartArrayPointer<char> aname = name->ToCString(); | 
|  | ObjectTypeMap::iterator i = map->find(std::string(aname.get())); | 
|  | if (i == map->end()) { | 
|  | return nullptr; | 
|  | } | 
|  | return i->second; | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::SetType(Variable* variable, Type* type) { | 
|  | VariableInfo* info = MakeVariableInfo(variable); | 
|  | info->type = type; | 
|  | } | 
|  |  | 
|  |  | 
|  | Type* AsmTyper::GetType(Variable* variable) { | 
|  | VariableInfo* info = GetVariableInfo(variable); | 
|  | if (!info) return nullptr; | 
|  | return info->type; | 
|  | } | 
|  |  | 
|  | AsmTyper::VariableInfo* AsmTyper::GetVariableInfo(Variable* variable) { | 
|  | ZoneHashMap* map = | 
|  | in_function_ ? &local_variable_type_ : &global_variable_type_; | 
|  | ZoneHashMap::Entry* entry = | 
|  | map->Lookup(variable, ComputePointerHash(variable)); | 
|  | if (!entry && in_function_) { | 
|  | entry = | 
|  | global_variable_type_.Lookup(variable, ComputePointerHash(variable)); | 
|  | } | 
|  | return entry ? reinterpret_cast<VariableInfo*>(entry->value) : nullptr; | 
|  | } | 
|  |  | 
|  | AsmTyper::VariableInfo* AsmTyper::MakeVariableInfo(Variable* variable) { | 
|  | ZoneHashMap* map = | 
|  | in_function_ ? &local_variable_type_ : &global_variable_type_; | 
|  | ZoneHashMap::Entry* entry = map->LookupOrInsert( | 
|  | variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone())); | 
|  | if (!entry->value) entry->value = new (zone()) VariableInfo; | 
|  | return reinterpret_cast<VariableInfo*>(entry->value); | 
|  | } | 
|  |  | 
|  | void AsmTyper::SetVariableInfo(Variable* variable, const VariableInfo* info) { | 
|  | VariableInfo* dest = MakeVariableInfo(variable); | 
|  | dest->type = info->type; | 
|  | dest->is_check_function = info->is_check_function; | 
|  | dest->is_constructor_function = info->is_constructor_function; | 
|  | dest->standard_member = info->standard_member; | 
|  | } | 
|  |  | 
|  |  | 
|  | AsmTyper::StandardMember AsmTyper::VariableAsStandardMember( | 
|  | Variable* variable) { | 
|  | VariableInfo* info = GetVariableInfo(variable); | 
|  | if (!info) return kNone; | 
|  | return info->standard_member; | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::SetResult(Expression* expr, Type* type) { | 
|  | computed_type_ = type; | 
|  | bounds_.set(expr, Bounds(computed_type_)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::IntersectResult(Expression* expr, Type* type) { | 
|  | computed_type_ = type; | 
|  | Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); | 
|  | if (Type::Representation(bounded_type, zone())->Is(Type::None())) { | 
|  | #ifdef DEBUG | 
|  | PrintF("Computed type: "); | 
|  | computed_type_->Print(); | 
|  | PrintF("Expected type: "); | 
|  | expected_type_->Print(); | 
|  | #endif | 
|  | FAIL(expr, "type mismatch"); | 
|  | } | 
|  | bounds_.set(expr, Bounds(bounded_type)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitWithExpectation(Expression* expr, Type* expected_type, | 
|  | const char* msg) { | 
|  | Type* save = expected_type_; | 
|  | expected_type_ = expected_type; | 
|  | RECURSE(Visit(expr)); | 
|  | Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); | 
|  | if (Type::Representation(bounded_type, zone())->Is(Type::None())) { | 
|  | #ifdef DEBUG | 
|  | PrintF("Computed type: "); | 
|  | computed_type_->Print(); | 
|  | PrintF("Expected type: "); | 
|  | expected_type_->Print(); | 
|  | #endif | 
|  | FAIL(expr, msg); | 
|  | } | 
|  | expected_type_ = save; | 
|  | } | 
|  |  | 
|  |  | 
|  | void AsmTyper::VisitRewritableExpression(RewritableExpression* expr) { | 
|  | RECURSE(Visit(expr->expression())); | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 |