blob: d3b861bc254b6193f195dedcf7b2a9084d77c9c3 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/ic/call-optimization.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> getter) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
if (!getter.is_null()) {
// Call the JavaScript getter with the receiver on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ ld(receiver,
FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ push(receiver);
ParameterCount actual(0);
ParameterCount expected(getter);
__ InvokeFunction(getter, expected, actual, CALL_FUNCTION,
NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ Ret();
}
void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- ra : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ push(value());
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ ld(receiver,
FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ Push(receiver, value());
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual, CALL_FUNCTION,
NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ pop(v0);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ Ret();
}
void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
Register slot) {
MacroAssembler* masm = this->masm();
__ Push(vector, slot);
}
void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
MacroAssembler* masm = this->masm();
__ Pop(vector, slot);
}
void PropertyHandlerCompiler::DiscardVectorAndSlot() {
MacroAssembler* masm = this->masm();
// Remove vector and slot.
__ Daddu(sp, sp, Operand(2 * kPointerSize));
}
void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
MacroAssembler* masm, Label* miss_label, Register receiver,
Handle<Name> name, Register scratch0, Register scratch1) {
DCHECK(name->IsUniqueName());
DCHECK(!receiver.is(scratch0));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
__ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
Label done;
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
Register map = scratch1;
__ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(scratch0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
__ Branch(miss_label, ne, scratch0, Operand(zero_reg));
// Check that receiver is a JSObject.
__ lbu(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(miss_label, lt, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
// Load properties array.
Register properties = scratch0;
__ ld(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ ld(map, FieldMemOperand(properties, HeapObject::kMapOffset));
Register tmp = properties;
__ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
__ Branch(miss_label, ne, map, Operand(tmp));
// Restore the temporarily used register.
__ ld(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
NameDictionaryLookupStub::GenerateNegativeLookup(
masm, miss_label, &done, receiver, properties, name, scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
}
void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register result, Label* miss) {
// Check we're still in the same context.
const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
__ ld(result, MemOperand(cp, offset));
__ ld(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset));
__ ld(result, MemOperand(result, Context::SlotOffset(index)));
// Load its initial map. The global functions all have initial maps.
__ ld(result,
FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
}
void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
MacroAssembler* masm, Register receiver, Register scratch1,
Register scratch2, Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, scratch1);
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
Register scratch, Label* miss) {
Handle<Cell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
DCHECK(cell->value()->IsTheHole());
__ li(scratch, Operand(cell));
__ ld(scratch, FieldMemOperand(scratch, Cell::kValueOffset));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(miss, ne, scratch, Operand(at));
}
static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
Register holder, Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
Register scratch = name;
__ li(scratch, Operand(interceptor));
__ Push(scratch, receiver, holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm, Register receiver, Register holder, Register name,
Handle<JSObject> holder_obj, IC::UtilityId id) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
NamedLoadHandlerCompiler::kInterceptorArgsLength);
}
// Generate call to api function.
void PropertyHandlerCompiler::GenerateFastApiCall(
MacroAssembler* masm, const CallOptimization& optimization,
Handle<Map> receiver_map, Register receiver, Register scratch_in,
bool is_store, int argc, Register* values) {
DCHECK(!receiver.is(scratch_in));
// Preparing to push, adjust sp.
__ Dsubu(sp, sp, Operand((argc + 1) * kPointerSize));
__ sd(receiver, MemOperand(sp, argc * kPointerSize)); // Push receiver.
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
Register arg = values[argc - 1 - i];
DCHECK(!receiver.is(arg));
DCHECK(!scratch_in.is(arg));
__ sd(arg, MemOperand(sp, (argc - 1 - i) * kPointerSize)); // Push arg.
}
DCHECK(optimization.is_simple_api_call());
// Abi for CallApiFunctionStub.
Register callee = a0;
Register call_data = a4;
Register holder = a2;
Register api_function_address = a1;
// Put holder in place.
CallOptimization::HolderLookup holder_lookup;
Handle<JSObject> api_holder =
optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup);
switch (holder_lookup) {
case CallOptimization::kHolderIsReceiver:
__ Move(holder, receiver);
break;
case CallOptimization::kHolderFound:
__ li(holder, api_holder);
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Isolate* isolate = masm->isolate();
Handle<JSFunction> function = optimization.constant_function();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data_obj(api_call_info->data(), isolate);
// Put callee in place.
__ li(callee, function);
bool call_data_undefined = false;
// Put call_data in place.
if (isolate->heap()->InNewSpace(*call_data_obj)) {
__ li(call_data, api_call_info);
__ ld(call_data, FieldMemOperand(call_data, CallHandlerInfo::kDataOffset));
} else if (call_data_obj->IsUndefined()) {
call_data_undefined = true;
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
} else {
__ li(call_data, call_data_obj);
}
// Put api_function_address in place.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
ApiFunction fun(function_address);
ExternalReference::Type type = ExternalReference::DIRECT_API_CALL;
ExternalReference ref = ExternalReference(&fun, type, masm->isolate());
__ li(api_function_address, Operand(ref));
// Jump to stub.
CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
__ TailCallStub(&stub);
}
void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
// Push receiver, key and value for runtime call.
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(IC::kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
// Push receiver, key and value for runtime call.
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
#undef __
#define __ ACCESS_MASM(masm())
void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ li(this->name(), Operand(name));
}
}
void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) {
__ li(this->name(), Operand(name));
}
void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition,
Register scratch,
Label* miss) {
Handle<WeakCell> cell = Map::WeakCellForMap(transition);
Register map_reg = StoreTransitionDescriptor::MapRegister();
DCHECK(!map_reg.is(scratch));
__ LoadWeakValue(map_reg, cell, miss);
if (transition->CanBeDeprecated()) {
__ ld(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset));
__ And(at, scratch, Operand(Map::Deprecated::kMask));
__ Branch(miss, ne, at, Operand(zero_reg));
}
}
void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg,
int descriptor,
Register value_reg,
Register scratch,
Label* miss_label) {
DCHECK(!map_reg.is(scratch));
DCHECK(!map_reg.is(value_reg));
DCHECK(!value_reg.is(scratch));
__ LoadInstanceDescriptors(map_reg, scratch);
__ ld(scratch,
FieldMemOperand(scratch, DescriptorArray::GetValueOffset(descriptor)));
__ Branch(miss_label, ne, value_reg, Operand(scratch));
}
void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(HeapType* field_type,
Register value_reg,
Label* miss_label) {
__ JumpIfSmi(value_reg, miss_label);
HeapType::Iterator<Map> it = field_type->Classes();
if (!it.Done()) {
__ ld(scratch1(), FieldMemOperand(value_reg, HeapObject::kMapOffset));
Label do_store;
Handle<Map> current;
while (true) {
// Do the CompareMap() directly within the Branch() functions.
current = it.Current();
it.Advance();
if (it.Done()) {
__ Branch(miss_label, ne, scratch1(), Operand(current));
break;
}
__ Branch(&do_store, eq, scratch1(), Operand(current));
}
__ bind(&do_store);
}
}
Register PropertyHandlerCompiler::CheckPrototypes(
Register object_reg, Register holder_reg, Register scratch1,
Register scratch2, Handle<Name> name, Label* miss,
PrototypeCheckType check) {
Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));
// Make sure there's no overlap between holder and object registers.
DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
!scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
if (type()->IsConstant()) {
current = Handle<JSObject>::cast(type()->AsConstant()->Value());
}
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder()->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->is_dictionary_map() &&
!current_map->IsJSGlobalObjectMap()) {
DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
if (!name->IsUniqueName()) {
DCHECK(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
DCHECK(current.is_null() ||
current->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
scratch2);
__ ld(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ ld(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else {
Register map_reg = scratch1;
__ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
if (depth != 1 || check == CHECK_ALL_MAPS) {
Handle<WeakCell> cell = Map::WeakCellForMap(current_map);
__ GetWeakValue(scratch2, cell);
__ Branch(miss, ne, scratch2, Operand(map_reg));
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
// This allows us to install generated handlers for accesses to the
// global proxy (as opposed to using slow ICs). See corresponding code
// in LookupForRead().
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
} else if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
name, scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
__ ld(reg, FieldMemOperand(map_reg, Map::kPrototypeOffset));
}
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (depth != 0 || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ ld(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
Handle<WeakCell> cell = Map::WeakCellForMap(current_map);
__ GetWeakValue(scratch2, cell);
__ Branch(miss, ne, scratch2, Operand(scratch1));
}
// Perform security check for access to the global object.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// Return the register containing the holder.
return reg;
}
void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ Branch(&success);
__ bind(miss);
if (IC::ICUseVector(kind())) {
DCHECK(kind() == Code::LOAD_IC);
PopVectorAndSlot();
}
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ Branch(&success);
GenerateRestoreName(miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ li(v0, value);
__ Ret();
}
void NamedLoadHandlerCompiler::GenerateLoadCallback(
Register reg, Handle<ExecutableAccessorInfo> callback) {
// Build AccessorInfo::args_ list on the stack and push property name below
// the exit frame to make GC aware of them and store pointers to them.
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
DCHECK(!scratch2().is(reg));
DCHECK(!scratch3().is(reg));
DCHECK(!scratch4().is(reg));
__ push(receiver());
if (heap()->InNewSpace(callback->data())) {
__ li(scratch3(), callback);
__ ld(scratch3(),
FieldMemOperand(scratch3(), ExecutableAccessorInfo::kDataOffset));
} else {
__ li(scratch3(), Handle<Object>(callback->data(), isolate()));
}
__ Dsubu(sp, sp, 6 * kPointerSize);
__ sd(scratch3(), MemOperand(sp, 5 * kPointerSize));
__ LoadRoot(scratch3(), Heap::kUndefinedValueRootIndex);
__ sd(scratch3(), MemOperand(sp, 4 * kPointerSize));
__ sd(scratch3(), MemOperand(sp, 3 * kPointerSize));
__ li(scratch4(), Operand(ExternalReference::isolate_address(isolate())));
__ sd(scratch4(), MemOperand(sp, 2 * kPointerSize));
__ sd(reg, MemOperand(sp, 1 * kPointerSize));
__ sd(name(), MemOperand(sp, 0 * kPointerSize));
__ Daddu(scratch2(), sp, 1 * kPointerSize);
__ mov(a2, scratch2()); // Saved in case scratch2 == a1.
// Abi for CallApiGetter.
Register getter_address_reg = ApiGetterDescriptor::function_address();
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
ExternalReference ref = ExternalReference(&fun, type, isolate());
__ li(getter_address_reg, Operand(ref));
CallApiGetterStub stub(isolate());
__ TailCallStub(&stub);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
LookupIterator* it, Register holder_reg) {
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from the
// holder and it is needed should the interceptor return without any result.
// The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
// case might cause a miss during the prototype check.
bool must_perform_prototype_check =
!holder().is_identical_to(it->GetHolder<JSObject>());
bool must_preserve_receiver_reg =
!receiver().is(holder_reg) &&
(it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ Push(receiver(), holder_reg, this->name());
} else {
__ Push(holder_reg, this->name());
}
InterceptorVectorSlotPush(holder_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method).
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), holder(),
IC::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ LoadRoot(scratch1(), Heap::kNoInterceptorResultSentinelRootIndex);
__ Branch(&interceptor_failed, eq, v0, Operand(scratch1()));
frame_scope.GenerateLeaveFrame();
__ Ret();
__ bind(&interceptor_failed);
InterceptorVectorSlotPop(holder_reg);
if (must_preserve_receiver_reg) {
__ Pop(receiver(), holder_reg, this->name());
} else {
__ Pop(holder_reg, this->name());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(it, holder_reg);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
// Call the runtime system to load the interceptor.
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
holder());
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
__ TailCallExternalReference(
ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
Handle<JSObject> object, Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register holder_reg = Frontend(name);
__ Push(receiver(), holder_reg); // Receiver.
__ li(at, Operand(callback)); // Callback info.
__ push(at);
__ li(at, Operand(name));
__ Push(at, value());
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 5, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
Handle<Name> name) {
__ Push(receiver(), this->name(), value());
// Do tail-call to the runtime system.
ExternalReference store_ic_property = ExternalReference(
IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
__ TailCallExternalReference(store_ic_property, 3, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Register NamedStoreHandlerCompiler::value() {
return StoreDescriptor::ValueRegister();
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
Label miss;
if (IC::ICUseVector(kind())) {
PushVectorAndSlot();
}
FrontendHeader(receiver(), name, &miss);
// Get the value from the cell.
Register result = StoreDescriptor::ValueRegister();
Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell);
__ LoadWeakValue(result, weak_cell, &miss);
__ ld(result, FieldMemOperand(result, Cell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (is_configurable) {
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&miss, eq, result, Operand(at));
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1, a1, a3);
if (IC::ICUseVector(kind())) {
DiscardVectorAndSlot();
}
__ Ret(USE_DELAY_SLOT);
__ mov(v0, result);
FrontendFooter(name, &miss);
// Return the generated code.
return GetCode(kind(), Code::NORMAL, name);
}
#undef __
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS64