blob: 12dedbdd7316a308602238b8f763cde48f16e4b5 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/pipeline.h"
#include "test/unittests/compiler/instruction-sequence-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
class RegisterAllocatorTest : public InstructionSequenceTest {
public:
void Allocate() {
WireBlocks();
Pipeline::AllocateRegistersForTesting(config(), sequence(), true);
}
};
TEST_F(RegisterAllocatorTest, CanAllocateThreeRegisters) {
// return p0 + p1;
StartBlock();
auto a_reg = Parameter();
auto b_reg = Parameter();
auto c_reg = EmitOI(Reg(1), Reg(a_reg, 1), Reg(b_reg, 0));
Return(c_reg);
EndBlock(Last());
Allocate();
}
TEST_F(RegisterAllocatorTest, SimpleLoop) {
// i = K;
// while(true) { i++ }
StartBlock();
auto i_reg = DefineConstant();
EndBlock();
{
StartLoop(1);
StartBlock();
auto phi = Phi(i_reg);
auto ipp = EmitOI(Same(), Reg(phi), Use(DefineConstant()));
Extend(phi, ipp);
EndBlock(Jump(0));
EndLoop();
}
Allocate();
}
TEST_F(RegisterAllocatorTest, SimpleBranch) {
// return i ? K1 : K2
StartBlock();
auto i = DefineConstant();
EndBlock(Branch(Reg(i), 1, 2));
StartBlock();
Return(DefineConstant());
EndBlock(Last());
StartBlock();
Return(DefineConstant());
EndBlock(Last());
Allocate();
}
TEST_F(RegisterAllocatorTest, SimpleDiamond) {
// return p0 ? p0 : p0
StartBlock();
auto param = Parameter();
EndBlock(Branch(Reg(param), 1, 2));
StartBlock();
EndBlock(Jump(2));
StartBlock();
EndBlock(Jump(1));
StartBlock();
Return(param);
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, SimpleDiamondPhi) {
// return i ? K1 : K2
StartBlock();
EndBlock(Branch(Reg(DefineConstant()), 1, 2));
StartBlock();
auto t_val = DefineConstant();
EndBlock(Jump(2));
StartBlock();
auto f_val = DefineConstant();
EndBlock(Jump(1));
StartBlock();
Return(Reg(Phi(t_val, f_val)));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, DiamondManyPhis) {
const int kPhis = kDefaultNRegs * 2;
StartBlock();
EndBlock(Branch(Reg(DefineConstant()), 1, 2));
StartBlock();
VReg t_vals[kPhis];
for (int i = 0; i < kPhis; ++i) {
t_vals[i] = DefineConstant();
}
EndBlock(Jump(2));
StartBlock();
VReg f_vals[kPhis];
for (int i = 0; i < kPhis; ++i) {
f_vals[i] = DefineConstant();
}
EndBlock(Jump(1));
StartBlock();
TestOperand merged[kPhis];
for (int i = 0; i < kPhis; ++i) {
merged[i] = Use(Phi(t_vals[i], f_vals[i]));
}
Return(EmitCall(Slot(-1), kPhis, merged));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, DoubleDiamondManyRedundantPhis) {
const int kPhis = kDefaultNRegs * 2;
// First diamond.
StartBlock();
VReg vals[kPhis];
for (int i = 0; i < kPhis; ++i) {
vals[i] = Parameter(Slot(-1 - i));
}
EndBlock(Branch(Reg(DefineConstant()), 1, 2));
StartBlock();
EndBlock(Jump(2));
StartBlock();
EndBlock(Jump(1));
// Second diamond.
StartBlock();
EndBlock(Branch(Reg(DefineConstant()), 1, 2));
StartBlock();
EndBlock(Jump(2));
StartBlock();
EndBlock(Jump(1));
StartBlock();
TestOperand merged[kPhis];
for (int i = 0; i < kPhis; ++i) {
merged[i] = Use(Phi(vals[i], vals[i]));
}
Return(EmitCall(Reg(0), kPhis, merged));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, RegressionPhisNeedTooManyRegisters) {
const size_t kNumRegs = 3;
const size_t kParams = kNumRegs + 1;
// Override number of registers.
SetNumRegs(kNumRegs, kNumRegs);
StartBlock();
auto constant = DefineConstant();
VReg parameters[kParams];
for (size_t i = 0; i < arraysize(parameters); ++i) {
parameters[i] = DefineConstant();
}
EndBlock();
PhiInstruction* phis[kParams];
{
StartLoop(2);
// Loop header.
StartBlock();
for (size_t i = 0; i < arraysize(parameters); ++i) {
phis[i] = Phi(parameters[i]);
}
// Perform some computations.
// something like phi[i] += const
for (size_t i = 0; i < arraysize(parameters); ++i) {
auto result = EmitOI(Same(), Reg(phis[i]), Use(constant));
Extend(phis[i], result);
}
EndBlock(Branch(Reg(DefineConstant()), 1, 2));
// Jump back to loop header.
StartBlock();
EndBlock(Jump(-1));
EndLoop();
}
StartBlock();
Return(DefineConstant());
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, SpillPhi) {
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
auto left = Define(Reg(0));
EndBlock(Jump(2));
StartBlock();
auto right = Define(Reg(0));
EndBlock();
StartBlock();
auto phi = Phi(left, right);
EmitCall(Slot(-1));
Return(Reg(phi));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, MoveLotsOfConstants) {
StartBlock();
VReg constants[kDefaultNRegs];
for (size_t i = 0; i < arraysize(constants); ++i) {
constants[i] = DefineConstant();
}
TestOperand call_ops[kDefaultNRegs * 2];
for (int i = 0; i < kDefaultNRegs; ++i) {
call_ops[i] = Reg(constants[i], i);
}
for (int i = 0; i < kDefaultNRegs; ++i) {
call_ops[i + kDefaultNRegs] = Slot(constants[i], i);
}
EmitCall(Slot(-1), arraysize(call_ops), call_ops);
EndBlock(Last());
Allocate();
}
TEST_F(RegisterAllocatorTest, SplitBeforeInstruction) {
const int kNumRegs = 6;
SetNumRegs(kNumRegs, kNumRegs);
StartBlock();
// Stack parameters/spilled values.
auto p_0 = Define(Slot(-1));
auto p_1 = Define(Slot(-2));
// Fill registers.
VReg values[kNumRegs];
for (size_t i = 0; i < arraysize(values); ++i) {
values[i] = Define(Reg(static_cast<int>(i)));
}
// values[0] will be split in the second half of this instruction.
// Models Intel mod instructions.
EmitOI(Reg(0), Reg(p_0, 1), UniqueReg(p_1));
EmitI(Reg(values[0], 0));
EndBlock(Last());
Allocate();
}
TEST_F(RegisterAllocatorTest, NestedDiamondPhiMerge) {
// Outer diamond.
StartBlock();
EndBlock(Branch(Imm(), 1, 5));
// Diamond 1
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
auto ll = Define(Reg());
EndBlock(Jump(2));
StartBlock();
auto lr = Define(Reg());
EndBlock();
StartBlock();
auto l_phi = Phi(ll, lr);
EndBlock(Jump(5));
// Diamond 2
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
auto rl = Define(Reg());
EndBlock(Jump(2));
StartBlock();
auto rr = Define(Reg());
EndBlock();
StartBlock();
auto r_phi = Phi(rl, rr);
EndBlock();
// Outer diamond merge.
StartBlock();
auto phi = Phi(l_phi, r_phi);
Return(Reg(phi));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, NestedDiamondPhiMergeDifferent) {
// Outer diamond.
StartBlock();
EndBlock(Branch(Imm(), 1, 5));
// Diamond 1
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
auto ll = Define(Reg(0));
EndBlock(Jump(2));
StartBlock();
auto lr = Define(Reg(1));
EndBlock();
StartBlock();
auto l_phi = Phi(ll, lr);
EndBlock(Jump(5));
// Diamond 2
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
auto rl = Define(Reg(2));
EndBlock(Jump(2));
StartBlock();
auto rr = Define(Reg(3));
EndBlock();
StartBlock();
auto r_phi = Phi(rl, rr);
EndBlock();
// Outer diamond merge.
StartBlock();
auto phi = Phi(l_phi, r_phi);
Return(Reg(phi));
EndBlock();
Allocate();
}
TEST_F(RegisterAllocatorTest, RegressionSplitBeforeAndMove) {
StartBlock();
// Fill registers.
VReg values[kDefaultNRegs];
for (size_t i = 0; i < arraysize(values); ++i) {
if (i == 0 || i == 1) continue; // Leave a hole for c_1 to take.
values[i] = Define(Reg(static_cast<int>(i)));
}
auto c_0 = DefineConstant();
auto c_1 = DefineConstant();
EmitOI(Reg(1), Reg(c_0, 0), UniqueReg(c_1));
// Use previous values to force c_1 to split before the previous instruction.
for (size_t i = 0; i < arraysize(values); ++i) {
if (i == 0 || i == 1) continue;
EmitI(Reg(values[i], static_cast<int>(i)));
}
EndBlock(Last());
Allocate();
}
TEST_F(RegisterAllocatorTest, RegressionSpillTwice) {
StartBlock();
auto p_0 = Parameter(Reg(1));
EmitCall(Slot(-2), Unique(p_0), Reg(p_0, 1));
EndBlock(Last());
Allocate();
}
} // namespace compiler
} // namespace internal
} // namespace v8