blob: 56d166f578cf3dce56e84b1140471082781b7d8b [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler-dispatcher/compiler-dispatcher-job.h"
#include "src/assert-scope.h"
#include "src/compilation-info.h"
#include "src/compiler-dispatcher/compiler-dispatcher-tracer.h"
#include "src/compiler.h"
#include "src/flags.h"
#include "src/global-handles.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parser.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/unicode-cache.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
namespace {
class OneByteWrapper : public v8::String::ExternalOneByteStringResource {
public:
OneByteWrapper(const void* data, int length) : data_(data), length_(length) {}
~OneByteWrapper() override = default;
const char* data() const override {
return reinterpret_cast<const char*>(data_);
}
size_t length() const override { return static_cast<size_t>(length_); }
private:
const void* data_;
int length_;
DISALLOW_COPY_AND_ASSIGN(OneByteWrapper);
};
class TwoByteWrapper : public v8::String::ExternalStringResource {
public:
TwoByteWrapper(const void* data, int length) : data_(data), length_(length) {}
~TwoByteWrapper() override = default;
const uint16_t* data() const override {
return reinterpret_cast<const uint16_t*>(data_);
}
size_t length() const override { return static_cast<size_t>(length_); }
private:
const void* data_;
int length_;
DISALLOW_COPY_AND_ASSIGN(TwoByteWrapper);
};
} // namespace
CompilerDispatcherJob::CompilerDispatcherJob(Isolate* isolate,
CompilerDispatcherTracer* tracer,
Handle<SharedFunctionInfo> shared,
size_t max_stack_size)
: status_(CompileJobStatus::kInitial),
isolate_(isolate),
tracer_(tracer),
context_(Handle<Context>::cast(
isolate_->global_handles()->Create(isolate->context()))),
shared_(Handle<SharedFunctionInfo>::cast(
isolate_->global_handles()->Create(*shared))),
max_stack_size_(max_stack_size),
trace_compiler_dispatcher_jobs_(FLAG_trace_compiler_dispatcher_jobs) {
DCHECK(!shared_->is_toplevel());
HandleScope scope(isolate_);
Handle<Script> script(Script::cast(shared_->script()), isolate_);
Handle<String> source(String::cast(script->source()), isolate_);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p] created for ", static_cast<void*>(this));
shared_->ShortPrint();
PrintF(" in initial state.\n");
}
}
CompilerDispatcherJob::CompilerDispatcherJob(
Isolate* isolate, CompilerDispatcherTracer* tracer, Handle<Script> script,
Handle<SharedFunctionInfo> shared, FunctionLiteral* literal,
std::shared_ptr<Zone> parse_zone,
std::shared_ptr<DeferredHandles> parse_handles,
std::shared_ptr<DeferredHandles> compile_handles, size_t max_stack_size)
: status_(CompileJobStatus::kAnalyzed),
isolate_(isolate),
tracer_(tracer),
context_(Handle<Context>::cast(
isolate_->global_handles()->Create(isolate->context()))),
shared_(Handle<SharedFunctionInfo>::cast(
isolate_->global_handles()->Create(*shared))),
max_stack_size_(max_stack_size),
parse_info_(new ParseInfo(shared_)),
parse_zone_(parse_zone),
compile_info_(new CompilationInfo(parse_info_->zone(), parse_info_.get(),
Handle<JSFunction>::null())),
trace_compiler_dispatcher_jobs_(FLAG_trace_compiler_dispatcher_jobs) {
parse_info_->set_literal(literal);
parse_info_->set_script(script);
parse_info_->set_deferred_handles(parse_handles);
compile_info_->set_deferred_handles(compile_handles);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p] created for ", static_cast<void*>(this));
shared_->ShortPrint();
PrintF(" in Analyzed state.\n");
}
}
CompilerDispatcherJob::~CompilerDispatcherJob() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status_ == CompileJobStatus::kInitial ||
status_ == CompileJobStatus::kDone);
i::GlobalHandles::Destroy(Handle<Object>::cast(shared_).location());
i::GlobalHandles::Destroy(Handle<Object>::cast(context_).location());
}
bool CompilerDispatcherJob::IsAssociatedWith(
Handle<SharedFunctionInfo> shared) const {
return *shared_ == *shared;
}
void CompilerDispatcherJob::PrepareToParseOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status() == CompileJobStatus::kInitial);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kPrepareToParse);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Preparing to parse\n",
static_cast<void*>(this));
}
HandleScope scope(isolate_);
unicode_cache_.reset(new UnicodeCache());
Handle<Script> script(Script::cast(shared_->script()), isolate_);
DCHECK(script->type() != Script::TYPE_NATIVE);
Handle<String> source(String::cast(script->source()), isolate_);
parse_info_.reset(new ParseInfo(isolate_->allocator()));
if (source->IsExternalTwoByteString() || source->IsExternalOneByteString()) {
character_stream_.reset(ScannerStream::For(
source, shared_->start_position(), shared_->end_position()));
} else {
source = String::Flatten(source);
const void* data;
int offset = 0;
int length = source->length();
// Objects in lo_space don't move, so we can just read the contents from
// any thread.
if (isolate_->heap()->lo_space()->Contains(*source)) {
// We need to globalize the handle to the flattened string here, in
// case it's not referenced from anywhere else.
source_ =
Handle<String>::cast(isolate_->global_handles()->Create(*source));
DisallowHeapAllocation no_allocation;
String::FlatContent content = source->GetFlatContent();
DCHECK(content.IsFlat());
data =
content.IsOneByte()
? reinterpret_cast<const void*>(content.ToOneByteVector().start())
: reinterpret_cast<const void*>(content.ToUC16Vector().start());
} else {
// Otherwise, create a copy of the part of the string we'll parse in the
// zone.
length = (shared_->end_position() - shared_->start_position());
offset = shared_->start_position();
int byte_len = length * (source->IsOneByteRepresentation() ? 1 : 2);
data = parse_info_->zone()->New(byte_len);
DisallowHeapAllocation no_allocation;
String::FlatContent content = source->GetFlatContent();
DCHECK(content.IsFlat());
if (content.IsOneByte()) {
MemCopy(const_cast<void*>(data),
&content.ToOneByteVector().at(shared_->start_position()),
byte_len);
} else {
MemCopy(const_cast<void*>(data),
&content.ToUC16Vector().at(shared_->start_position()),
byte_len);
}
}
Handle<String> wrapper;
if (source->IsOneByteRepresentation()) {
ExternalOneByteString::Resource* resource =
new OneByteWrapper(data, length);
source_wrapper_.reset(resource);
wrapper = isolate_->factory()
->NewExternalStringFromOneByte(resource)
.ToHandleChecked();
} else {
ExternalTwoByteString::Resource* resource =
new TwoByteWrapper(data, length);
source_wrapper_.reset(resource);
wrapper = isolate_->factory()
->NewExternalStringFromTwoByte(resource)
.ToHandleChecked();
}
wrapper_ =
Handle<String>::cast(isolate_->global_handles()->Create(*wrapper));
character_stream_.reset(
ScannerStream::For(wrapper_, shared_->start_position() - offset,
shared_->end_position() - offset));
}
parse_info_->set_isolate(isolate_);
parse_info_->set_character_stream(character_stream_.get());
parse_info_->set_hash_seed(isolate_->heap()->HashSeed());
parse_info_->set_is_named_expression(shared_->is_named_expression());
parse_info_->set_compiler_hints(shared_->compiler_hints());
parse_info_->set_start_position(shared_->start_position());
parse_info_->set_end_position(shared_->end_position());
parse_info_->set_unicode_cache(unicode_cache_.get());
parse_info_->set_language_mode(shared_->language_mode());
parse_info_->set_function_literal_id(shared_->function_literal_id());
parser_.reset(new Parser(parse_info_.get()));
MaybeHandle<ScopeInfo> outer_scope_info;
if (!shared_->outer_scope_info()->IsTheHole(isolate_) &&
ScopeInfo::cast(shared_->outer_scope_info())->length() > 0) {
outer_scope_info = handle(ScopeInfo::cast(shared_->outer_scope_info()));
}
parser_->DeserializeScopeChain(parse_info_.get(), outer_scope_info);
Handle<String> name(String::cast(shared_->name()));
parse_info_->set_function_name(
parse_info_->ast_value_factory()->GetString(name));
status_ = CompileJobStatus::kReadyToParse;
}
void CompilerDispatcherJob::Parse() {
DCHECK(status() == CompileJobStatus::kReadyToParse);
COMPILER_DISPATCHER_TRACE_SCOPE_WITH_NUM(
tracer_, kParse,
parse_info_->end_position() - parse_info_->start_position());
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Parsing\n", static_cast<void*>(this));
}
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
// Nullify the Isolate temporarily so that the parser doesn't accidentally
// use it.
parse_info_->set_isolate(nullptr);
uintptr_t stack_limit = GetCurrentStackPosition() - max_stack_size_ * KB;
parser_->set_stack_limit(stack_limit);
parser_->ParseOnBackground(parse_info_.get());
parse_info_->set_isolate(isolate_);
status_ = CompileJobStatus::kParsed;
}
bool CompilerDispatcherJob::FinalizeParsingOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status() == CompileJobStatus::kParsed);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kFinalizeParsing);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Finalizing parsing\n",
static_cast<void*>(this));
}
if (!source_.is_null()) {
i::GlobalHandles::Destroy(Handle<Object>::cast(source_).location());
source_ = Handle<String>::null();
}
if (!wrapper_.is_null()) {
i::GlobalHandles::Destroy(Handle<Object>::cast(wrapper_).location());
wrapper_ = Handle<String>::null();
}
Handle<Script> script(Script::cast(shared_->script()), isolate_);
parse_info_->set_script(script);
if (parse_info_->literal() == nullptr) {
parser_->ReportErrors(isolate_, script);
status_ = CompileJobStatus::kFailed;
} else {
status_ = CompileJobStatus::kReadyToAnalyze;
}
parser_->UpdateStatistics(isolate_, script);
DeferredHandleScope scope(isolate_);
{
parse_info_->ReopenHandlesInNewHandleScope();
if (!shared_->outer_scope_info()->IsTheHole(isolate_) &&
ScopeInfo::cast(shared_->outer_scope_info())->length() > 0) {
Handle<ScopeInfo> outer_scope_info(
handle(ScopeInfo::cast(shared_->outer_scope_info())));
parse_info_->set_outer_scope_info(outer_scope_info);
}
parse_info_->set_shared_info(shared_);
// Internalize ast values on the main thread.
parse_info_->ast_value_factory()->Internalize(isolate_);
parser_->HandleSourceURLComments(isolate_, script);
parse_info_->set_character_stream(nullptr);
parse_info_->set_unicode_cache(nullptr);
parser_.reset();
unicode_cache_.reset();
character_stream_.reset();
}
parse_info_->set_deferred_handles(scope.Detach());
return status_ != CompileJobStatus::kFailed;
}
bool CompilerDispatcherJob::AnalyzeOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status() == CompileJobStatus::kReadyToAnalyze);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kAnalyze);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Analyzing\n", static_cast<void*>(this));
}
compile_info_.reset(new CompilationInfo(
parse_info_->zone(), parse_info_.get(), Handle<JSFunction>::null()));
DeferredHandleScope scope(isolate_);
{
if (Compiler::Analyze(parse_info_.get())) {
status_ = CompileJobStatus::kAnalyzed;
} else {
status_ = CompileJobStatus::kFailed;
if (!isolate_->has_pending_exception()) isolate_->StackOverflow();
}
}
compile_info_->set_deferred_handles(scope.Detach());
return status_ != CompileJobStatus::kFailed;
}
bool CompilerDispatcherJob::PrepareToCompileOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status() == CompileJobStatus::kAnalyzed);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kPrepareToCompile);
compile_job_.reset(
Compiler::PrepareUnoptimizedCompilationJob(compile_info_.get()));
if (!compile_job_.get()) {
if (!isolate_->has_pending_exception()) isolate_->StackOverflow();
status_ = CompileJobStatus::kFailed;
return false;
}
CHECK(compile_job_->can_execute_on_background_thread());
status_ = CompileJobStatus::kReadyToCompile;
return true;
}
void CompilerDispatcherJob::Compile() {
DCHECK(status() == CompileJobStatus::kReadyToCompile);
COMPILER_DISPATCHER_TRACE_SCOPE_WITH_NUM(
tracer_, kCompile, parse_info_->literal()->ast_node_count());
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Compiling\n", static_cast<void*>(this));
}
// Disallowing of handle dereference and heap access dealt with in
// CompilationJob::ExecuteJob.
uintptr_t stack_limit = GetCurrentStackPosition() - max_stack_size_ * KB;
compile_job_->set_stack_limit(stack_limit);
CompilationJob::Status status = compile_job_->ExecuteJob();
USE(status);
// Always transition to kCompiled - errors will be reported by
// FinalizeCompilingOnMainThread.
status_ = CompileJobStatus::kCompiled;
}
bool CompilerDispatcherJob::FinalizeCompilingOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
DCHECK(status() == CompileJobStatus::kCompiled);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kFinalizeCompiling);
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Finalizing compiling\n",
static_cast<void*>(this));
}
{
HandleScope scope(isolate_);
if (compile_job_->state() == CompilationJob::State::kFailed ||
!Compiler::FinalizeCompilationJob(compile_job_.release())) {
if (!isolate_->has_pending_exception()) isolate_->StackOverflow();
status_ = CompileJobStatus::kFailed;
return false;
}
}
compile_job_.reset();
compile_info_.reset();
parse_zone_.reset();
parse_info_.reset();
status_ = CompileJobStatus::kDone;
return true;
}
void CompilerDispatcherJob::ResetOnMainThread() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
if (trace_compiler_dispatcher_jobs_) {
PrintF("CompilerDispatcherJob[%p]: Resetting\n", static_cast<void*>(this));
}
compile_job_.reset();
compile_info_.reset();
parse_zone_.reset();
parser_.reset();
unicode_cache_.reset();
character_stream_.reset();
parse_info_.reset();
if (!source_.is_null()) {
i::GlobalHandles::Destroy(Handle<Object>::cast(source_).location());
source_ = Handle<String>::null();
}
if (!wrapper_.is_null()) {
i::GlobalHandles::Destroy(Handle<Object>::cast(wrapper_).location());
wrapper_ = Handle<String>::null();
}
status_ = CompileJobStatus::kInitial;
}
double CompilerDispatcherJob::EstimateRuntimeOfNextStepInMs() const {
switch (status_) {
case CompileJobStatus::kInitial:
return tracer_->EstimatePrepareToParseInMs();
case CompileJobStatus::kReadyToParse:
return tracer_->EstimateParseInMs(parse_info_->end_position() -
parse_info_->start_position());
case CompileJobStatus::kParsed:
return tracer_->EstimateFinalizeParsingInMs();
case CompileJobStatus::kReadyToAnalyze:
return tracer_->EstimateAnalyzeInMs();
case CompileJobStatus::kAnalyzed:
return tracer_->EstimatePrepareToCompileInMs();
case CompileJobStatus::kReadyToCompile:
return tracer_->EstimateCompileInMs(
parse_info_->literal()->ast_node_count());
case CompileJobStatus::kCompiled:
return tracer_->EstimateFinalizeCompilingInMs();
case CompileJobStatus::kFailed:
case CompileJobStatus::kDone:
return 0.0;
}
UNREACHABLE();
return 0.0;
}
void CompilerDispatcherJob::ShortPrint() {
DCHECK(ThreadId::Current().Equals(isolate_->thread_id()));
shared_->ShortPrint();
}
} // namespace internal
} // namespace v8