blob: 429282d69e15b1d8250b03d17c41e49c20fa52e2 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_S390
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- r2 : number of arguments excluding receiver
// -- r3 : target
// -- r5 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(r3);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
// JumpToExternalReference expects r2 to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ AddP(r2, r2, Operand(num_extra_args + 1));
// Insert extra arguments.
__ SmiTag(r2);
__ Push(r2, r3, r5);
__ SmiUntag(r2);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
exit_frame_type == BUILTIN_EXIT);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the current native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the current native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, r3);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
__ TestIfSmi(r4);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, cr0);
__ CompareObjectType(r4, r5, r6, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, r3);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
__ TestIfSmi(r4);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r4, r5, r6, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
__ LoadRR(r5, r3);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
Condition const cond_done = (kind == MathMaxMinKind::kMin) ? lt : gt;
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
DoubleRegister const reg = (kind == MathMaxMinKind::kMin) ? d2 : d1;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in r7 and the double value in d1.
__ LoadRoot(r7, root_index);
__ LoadDouble(d1, FieldMemOperand(r7, HeapNumber::kValueOffset));
// Setup state for loop
// r4: address of arg[0] + kPointerSize
// r5: number of slots to drop at exit (arguments + receiver)
__ AddP(r6, r2, Operand(1));
Label done_loop, loop;
__ LoadRR(r6, r2);
__ bind(&loop);
{
// Check if all parameters done.
__ SubP(r6, Operand(1));
__ blt(&done_loop);
// Load the next parameter tagged value into r2.
__ ShiftLeftP(r1, r6, Operand(kPointerSizeLog2));
__ LoadP(r4, MemOperand(sp, r1));
// Load the double value of the parameter into d2, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert, convert_smi, convert_number, done_convert;
__ bind(&convert);
__ JumpIfSmi(r4, &convert_smi);
__ LoadP(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
__ JumpIfRoot(r5, Heap::kHeapNumberMapRootIndex, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
DCHECK(!FLAG_enable_embedded_constant_pool);
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r2);
__ SmiTag(r6);
__ EnterBuiltinFrame(cp, r3, r2);
__ Push(r6, r7);
__ LoadRR(r2, r4);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LoadRR(r4, r2);
__ Pop(r6, r7);
__ LeaveBuiltinFrame(cp, r3, r2);
__ SmiUntag(r6);
__ SmiUntag(r2);
{
// Restore the double accumulator value (d1).
Label done_restore;
__ SmiToDouble(d1, r7);
__ JumpIfSmi(r7, &done_restore);
__ LoadDouble(d1, FieldMemOperand(r7, HeapNumber::kValueOffset));
__ bind(&done_restore);
}
}
__ b(&convert);
__ bind(&convert_number);
__ LoadDouble(d2, FieldMemOperand(r4, HeapNumber::kValueOffset));
__ b(&done_convert);
__ bind(&convert_smi);
__ SmiToDouble(d2, r4);
__ bind(&done_convert);
// Perform the actual comparison with the accumulator value on the left hand
// side (d1) and the next parameter value on the right hand side (d2).
Label compare_nan, compare_swap;
__ cdbr(d1, d2);
__ bunordered(&compare_nan);
__ b(cond_done, &loop);
__ b(CommuteCondition(cond_done), &compare_swap);
// Left and right hand side are equal, check for -0 vs. +0.
__ TestDoubleIsMinusZero(reg, r1, r0);
__ bne(&loop);
// Update accumulator. Result is on the right hand side.
__ bind(&compare_swap);
__ ldr(d1, d2);
__ LoadRR(r7, r4);
__ b(&loop);
// At least one side is NaN, which means that the result will be NaN too.
// We still need to visit the rest of the arguments.
__ bind(&compare_nan);
__ LoadRoot(r7, Heap::kNanValueRootIndex);
__ LoadDouble(d1, FieldMemOperand(r7, HeapNumber::kValueOffset));
__ b(&loop);
}
__ bind(&done_loop);
// Drop all slots, including the receiver.
__ AddP(r2, Operand(1));
__ Drop(r2);
__ LoadRR(r2, r7);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r2.
Label no_arguments;
{
__ LoadRR(r4, r2); // Store argc in r4.
__ CmpP(r2, Operand::Zero());
__ beq(&no_arguments);
__ SubP(r2, r2, Operand(1));
__ ShiftLeftP(r2, r2, Operand(kPointerSizeLog2));
__ LoadP(r2, MemOperand(sp, r2));
}
// 2a. Convert the first argument to a number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r4);
__ EnterBuiltinFrame(cp, r3, r4);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, r3, r4);
__ SmiUntag(r4);
}
{
// Drop all arguments including the receiver.
__ Drop(r4);
__ Ret(1);
}
// 2b. No arguments, return +0.
__ bind(&no_arguments);
__ LoadSmiLiteral(r2, Smi::kZero);
__ Ret(1);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- r5 : new target
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
// 2. Load the first argument into r4.
{
Label no_arguments, done;
__ LoadRR(r8, r2); // Store argc in r8.
__ CmpP(r2, Operand::Zero());
__ beq(&no_arguments);
__ SubP(r2, r2, Operand(1));
__ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
__ LoadP(r4, MemOperand(sp, r4));
__ b(&done);
__ bind(&no_arguments);
__ LoadSmiLiteral(r4, Smi::kZero);
__ bind(&done);
}
// 3. Make sure r4 is a number.
{
Label done_convert;
__ JumpIfSmi(r4, &done_convert);
__ CompareObjectType(r4, r6, r6, HEAP_NUMBER_TYPE);
__ beq(&done_convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r8);
__ EnterBuiltinFrame(cp, r3, r8);
__ Push(r5);
__ LoadRR(r2, r4);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LoadRR(r4, r2);
__ Pop(r5);
__ LeaveBuiltinFrame(cp, r3, r8);
__ SmiUntag(r8);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ CmpP(r3, r5);
__ bne(&new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(r2, r3, r4, r6, r7, &new_object);
__ b(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r8);
__ EnterBuiltinFrame(cp, r3, r8);
__ Push(r4); // first argument
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(r4);
__ LeaveBuiltinFrame(cp, r3, r8);
__ SmiUntag(r8);
}
__ StoreP(r4, FieldMemOperand(r2, JSValue::kValueOffset), r0);
__ bind(&drop_frame_and_ret);
{
__ Drop(r8);
__ Ret(1);
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r2.
Label no_arguments;
{
__ LoadRR(r4, r2); // Store argc in r4
__ CmpP(r2, Operand::Zero());
__ beq(&no_arguments);
__ SubP(r2, r2, Operand(1));
__ ShiftLeftP(r2, r2, Operand(kPointerSizeLog2));
__ LoadP(r2, MemOperand(sp, r2));
}
// 2a. At least one argument, return r2 if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(r2, &to_string);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CompareObjectType(r2, r5, r5, FIRST_NONSTRING_TYPE);
__ bgt(&to_string);
__ beq(&symbol_descriptive_string);
__ b(&drop_frame_and_ret);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(r2, Heap::kempty_stringRootIndex);
__ Ret(1);
}
// 3a. Convert r2 to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r4);
__ EnterBuiltinFrame(cp, r3, r4);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, r3, r4);
__ SmiUntag(r4);
}
__ b(&drop_frame_and_ret);
// 3b. Convert symbol in r2 to a string.
__ bind(&symbol_descriptive_string);
{
__ Drop(r4);
__ Drop(1);
__ Push(r2);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
__ Drop(r4);
__ Ret(1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- r5 : new target
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
// 2. Load the first argument into r4.
{
Label no_arguments, done;
__ LoadRR(r8, r2); // Store argc in r8.
__ CmpP(r2, Operand::Zero());
__ beq(&no_arguments);
__ SubP(r2, r2, Operand(1));
__ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
__ LoadP(r4, MemOperand(sp, r4));
__ b(&done);
__ bind(&no_arguments);
__ LoadRoot(r4, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure r4 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(r4, &convert);
__ CompareObjectType(r4, r6, r6, FIRST_NONSTRING_TYPE);
__ blt(&done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r8);
__ EnterBuiltinFrame(cp, r3, r8);
__ Push(r5);
__ LoadRR(r2, r4);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LoadRR(r4, r2);
__ Pop(r5);
__ LeaveBuiltinFrame(cp, r3, r8);
__ SmiUntag(r8);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ CmpP(r3, r5);
__ bne(&new_object);
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(r2, r3, r4, r6, r7, &new_object);
__ b(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r8);
__ EnterBuiltinFrame(cp, r3, r8);
__ Push(r4); // first argument
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(r4);
__ LeaveBuiltinFrame(cp, r3, r8);
__ SmiUntag(r8);
}
__ StoreP(r4, FieldMemOperand(r2, JSValue::kValueOffset), r0);
__ bind(&drop_frame_and_ret);
{
__ Drop(r8);
__ Ret(1);
}
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ LoadP(ip, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(ip, FieldMemOperand(ip, SharedFunctionInfo::kCodeOffset));
__ AddP(ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r2 : argument count (preserved for callee)
// -- r3 : target function (preserved for callee)
// -- r5 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ SmiTag(r2);
__ Push(r2, r3, r5, r3);
__ CallRuntime(function_id, 1);
__ LoadRR(r4, r2);
// Restore target function and new target.
__ Pop(r2, r3, r5);
__ SmiUntag(r2);
}
__ AddP(ip, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
__ bge(&ok, Label::kNear);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
namespace {
void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
Label post_instantiation_deopt_entry;
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- r5 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
if (!create_implicit_receiver) {
__ SmiTag(r6, r2);
__ LoadAndTestP(r6, r6);
__ Push(cp, r6);
__ PushRoot(Heap::kTheHoleValueRootIndex);
} else {
__ SmiTag(r2);
__ Push(cp, r2);
// Allocate the new receiver object.
__ Push(r3, r5);
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ LoadRR(r6, r2);
__ Pop(r3, r5);
// ----------- S t a t e -------------
// -- r3: constructor function
// -- r5: new target
// -- r6: newly allocated object
// -----------------------------------
// Retrieve smi-tagged arguments count from the stack.
__ LoadP(r2, MemOperand(sp));
__ SmiUntag(r2);
__ LoadAndTestP(r2, r2);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(r6, r6);
}
// Deoptimizer re-enters stub code here.
__ bind(&post_instantiation_deopt_entry);
// Set up pointer to last argument.
__ la(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// r2: number of arguments
// r3: constructor function
// r4: address of last argument (caller sp)
// r5: new target
// cr0: condition indicating whether r2 is zero
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, no_args;
__ beq(&no_args);
__ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
__ SubP(sp, sp, ip);
__ LoadRR(r1, r2);
__ bind(&loop);
__ lay(ip, MemOperand(ip, -kPointerSize));
__ LoadP(r0, MemOperand(ip, r4));
__ StoreP(r0, MemOperand(ip, sp));
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
// Call the function.
// r2: number of arguments
// r3: constructor function
// r5: new target
ParameterCount actual(r2);
__ InvokeFunction(r3, r5, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
}
// Restore context from the frame.
// r2: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r2: result
// sp[0]: receiver
// sp[1]: new.target
// sp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(r2, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ CompareObjectType(r2, r3, r5, FIRST_JS_RECEIVER_TYPE);
__ bge(&exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ LoadP(r2, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r2: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ LoadP(r3, MemOperand(sp, 1 * kPointerSize));
} else {
__ LoadP(r3, MemOperand(sp));
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(r2, &dont_throw);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ bind(&dont_throw);
}
__ SmiToPtrArrayOffset(r3, r3);
__ AddP(sp, sp, r3);
__ AddP(sp, sp, Operand(kPointerSize));
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, r3, r4);
}
__ Ret();
// Store offset of trampoline address for deoptimizer. This is the bailout
// point after the receiver instantiation but before the function invocation.
// We need to restore some registers in order to continue the above code.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
// ----------- S t a t e -------------
// -- r2 : newly allocated object
// -- sp[0] : constructor function
// -----------------------------------
__ pop(r3);
__ Push(r2, r2);
// Retrieve smi-tagged arguments count from the stack.
__ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(r2);
// Retrieve the new target value from the stack. This was placed into the
// frame description in place of the receiver by the optimizing compiler.
__ la(r5, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
__ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
__ LoadP(r5, MemOperand(r5, ip));
// Continue with constructor function invocation.
__ b(&post_instantiation_deopt_entry);
}
}
} // namespace
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the value to pass to the generator
// -- r3 : the JSGeneratorObject to resume
// -- r4 : the resume mode (tagged)
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(r3);
// Store input value into generator object.
__ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset),
r0);
__ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Store resume mode into generator object.
__ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kResumeModeOffset));
// Load suspended function and context.
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
__ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ mov(ip, Operand(debug_hook));
__ LoadB(ip, MemOperand(ip));
__ CmpSmiLiteral(ip, Smi::kZero, r0);
__ bne(&prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ mov(ip, Operand(debug_suspended_generator));
__ LoadP(ip, MemOperand(ip));
__ CmpP(ip, r3);
__ beq(&prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Push receiver.
__ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset));
__ Push(ip);
// ----------- S t a t e -------------
// -- r3 : the JSGeneratorObject to resume
// -- r4 : the resume mode (tagged)
// -- r6 : generator function
// -- cp : generator context
// -- lr : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadW(
r2, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label loop, done_loop;
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
#if V8_TARGET_ARCH_S390X
__ CmpP(r2, Operand::Zero());
__ beq(&done_loop);
#else
__ SmiUntag(r2);
__ LoadAndTestP(r2, r2);
__ beq(&done_loop);
#endif
__ LoadRR(r1, r2);
__ bind(&loop);
__ push(ip);
__ BranchOnCount(r1, &loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE);
__ Assert(eq, kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ LoadRR(r5, r3);
__ LoadRR(r3, r6);
__ LoadP(ip, FieldMemOperand(r3, JSFunction::kCodeEntryOffset));
__ JumpToJSEntry(ip);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3, r4, r6);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(r3, r4);
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3, r4);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(r3, r4);
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers r4; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r4, Heap::kRealStackLimitRootIndex);
// Make r4 the space we have left. The stack might already be overflowed
// here which will cause r4 to become negative.
__ SubP(r4, sp, r4);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ SmiToPtrArrayOffset(r0, argc);
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2));
}
__ CmpP(r4, r0);
__ bgt(&okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r2: new.target
// r3: function
// r4: receiver
// r5: argc
// r6: argv
// r0,r7-r9, cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
// FrameScope ends up calling MacroAssembler::EnterFrame here
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ mov(cp, Operand(context_address));
__ LoadP(cp, MemOperand(cp));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(r3, r4);
// Check if we have enough stack space to push all arguments.
// Clobbers r4.
Generate_CheckStackOverflow(masm, r5, kArgcIsUntaggedInt);
// Copy arguments to the stack in a loop from argv to sp.
// The arguments are actually placed in reverse order on sp
// compared to argv (i.e. arg1 is highest memory in sp).
// r3: function
// r5: argc
// r6: argv, i.e. points to first arg
// r7: scratch reg to hold scaled argc
// r8: scratch reg to hold arg handle
// r9: scratch reg to hold index into argv
Label argLoop, argExit;
intptr_t zero = 0;
__ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2));
__ SubRR(sp, r7); // Buy the stack frame to fit args
__ LoadImmP(r9, Operand(zero)); // Initialize argv index
__ bind(&argLoop);
__ CmpPH(r7, Operand(zero));
__ beq(&argExit, Label::kNear);
__ lay(r7, MemOperand(r7, -kPointerSize));
__ LoadP(r8, MemOperand(r9, r6)); // read next parameter
__ la(r9, MemOperand(r9, kPointerSize)); // r9++;
__ LoadP(r0, MemOperand(r8)); // dereference handle
__ StoreP(r0, MemOperand(r7, sp)); // push parameter
__ b(&argLoop);
__ bind(&argExit);
// Setup new.target and argc.
__ LoadRR(r6, r2);
__ LoadRR(r2, r5);
__ LoadRR(r5, r6);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
__ LoadRR(r7, r6);
__ LoadRR(r8, r6);
__ LoadRR(r9, r6);
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
}
__ b(r14);
// r2: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ LoadP(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadlW(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ AddP(sp, sp, args_count);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r3: the JS function object being called.
// o r5: the new target
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(r3);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ LoadP(r2, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
Label array_done;
Register debug_info = r4;
DCHECK(!debug_info.is(r2));
__ LoadP(debug_info,
FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset));
// Load original bytecode array or the debug copy.
__ LoadP(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
__ TestIfSmi(debug_info);
__ beq(&array_done);
__ LoadP(kInterpreterBytecodeArrayRegister,
FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex));
__ bind(&array_done);
// Check whether we should continue to use the interpreter.
Label switch_to_different_code_kind;
__ LoadP(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset));
__ CmpP(r2, Operand(masm->CodeObject())); // Self-reference to this code.
__ bne(&switch_to_different_code_kind);
// Increment invocation count for the function.
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kFeedbackVectorOffset));
__ LoadP(r6, FieldMemOperand(r6, Cell::kValueOffset));
__ LoadP(r1, FieldMemOperand(
r6, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
__ AddSmiLiteral(r1, r1, Smi::FromInt(1), r0);
__ StoreP(r1, FieldMemOperand(
r6, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ TestIfSmi(kInterpreterBytecodeArrayRegister);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge));
__ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
r0);
// Load the initial bytecode offset.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push new.target, bytecode array and Smi tagged bytecode array offset.
__ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
__ Push(r5, kInterpreterBytecodeArrayRegister, r4);
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ SubP(r5, sp, r4);
__ LoadRoot(r0, Heap::kRealStackLimitRootIndex);
__ CmpLogicalP(r5, r0);
__ bge(&ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
Label loop, no_args;
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ ShiftRightP(r4, r4, Operand(kPointerSizeLog2));
__ LoadAndTestP(r4, r4);
__ beq(&no_args);
__ LoadRR(r1, r4);
__ bind(&loop);
__ push(r5);
__ SubP(r1, Operand(1));
__ bne(&loop);
__ bind(&no_args);
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(ip, r3, Operand(kPointerSizeLog2));
__ LoadP(ip, MemOperand(kInterpreterDispatchTableRegister, ip));
__ Call(ip);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in r2.
LeaveInterpreterFrame(masm, r4);
__ Ret();
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kCodeOffset));
__ AddP(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
__ StoreP(r6, FieldMemOperand(r3, JSFunction::kCodeEntryOffset), r0);
__ RecordWriteCodeEntryField(r3, r6, r7);
__ JumpToJSEntry(r6);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ SubP(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2));
__ CmpP(scratch, r0);
__ ble(stack_overflow); // Signed comparison.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register count, Register scratch,
Label* stack_overflow) {
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, num_args, scratch, stack_overflow);
Label loop;
__ AddP(index, index, Operand(kPointerSize)); // Bias up for LoadPU
__ LoadRR(r0, count);
__ bind(&loop);
__ LoadP(scratch, MemOperand(index, -kPointerSize));
__ lay(index, MemOperand(index, -kPointerSize));
__ push(scratch);
__ SubP(r0, Operand(1));
__ bne(&loop);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r4 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
// Calculate number of arguments (AddP one for receiver).
__ AddP(r5, r2, Operand(1));
// Push the arguments.
Generate_InterpreterPushArgs(masm, r5, r4, r5, r6, &stack_overflow);
// Call the target.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(masm->isolate()->builtins()->CallWithSpread(),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- r2 : argument count (not including receiver)
// -- r5 : new target
// -- r3 : constructor to call
// -- r4 : allocation site feedback if available, undefined otherwise.
// -- r6 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver to be constructed.
__ LoadImmP(r0, Operand::Zero());
__ push(r0);
// Push the arguments (skip if none).
Label skip;
__ CmpP(r2, Operand::Zero());
__ beq(&skip);
Generate_InterpreterPushArgs(masm, r2, r6, r2, r7, &stack_overflow);
__ bind(&skip);
__ AssertUndefinedOrAllocationSite(r4, r7);
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ AssertFunction(r3);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset));
// Jump to the construct function.
__ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(ip);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argument count (not including receiver)
// -- r3 : target to call verified to be Array function
// -- r4 : allocation site feedback if available, undefined otherwise.
// -- r5 : address of the first argument
// -----------------------------------
Label stack_overflow;
__ AddP(r6, r2, Operand(1)); // Add one for receiver.
// Push the arguments. r6, r8, r3 will be modified.
Generate_InterpreterPushArgs(masm, r6, r5, r6, r7, &stack_overflow);
// Array constructor expects constructor in r5. It is same as r3 here.
__ LoadRR(r5, r3);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ Move(r4, masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ TestIfSmi(kInterpreterBytecodeArrayRegister);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(ip, r3, Operand(kPointerSizeLog2));
__ LoadP(ip, MemOperand(kInterpreterDispatchTableRegister, ip));
__ Jump(ip);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ LoadP(r3, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadP(r4,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister, r3, r4);
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ Move(r4, r2); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ StoreP(r4,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argument count (preserved for callee)
// -- r5 : new target (preserved for callee)
// -- r3 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Label try_shared;
Label loop_top, loop_bottom;
Register closure = r3;
Register map = r8;
Register index = r4;
// Do we have a valid feedback vector?
__ LoadP(index, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ LoadP(index, FieldMemOperand(index, Cell::kValueOffset));
__ JumpIfRoot(index, Heap::kUndefinedValueRootIndex, &gotta_call_runtime);
__ LoadP(map,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(map,
FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ LoadP(index, FieldMemOperand(map, FixedArray::kLengthOffset));
__ CmpSmiLiteral(index, Smi::FromInt(2), r0);
__ blt(&try_shared);
// Find literals.
// r9 : native context
// r4 : length / index
// r8 : optimized code map
// r5 : new target
// r3 : closure
Register native_context = r9;
__ LoadP(native_context, NativeContextMemOperand());
__ bind(&loop_top);
Register temp = r1;
Register array_pointer = r7;
// Does the native context match?
__ SmiToPtrArrayOffset(array_pointer, index);
__ AddP(array_pointer, map, array_pointer);
__ LoadP(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousContext));
__ LoadP(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
__ CmpP(temp, native_context);
__ bne(&loop_bottom, Label::kNear);
// Code available?
Register entry = r6;
__ LoadP(entry,
FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ LoadP(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Found code. Get it into the closure and return.
// Store code entry in the closure.
__ AddP(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ StoreP(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset), r0);
__ RecordWriteCodeEntryField(closure, entry, r7);
// Link the closure into the optimized function list.
// r6 : code entry
// r9: native context
// r3 : closure
__ LoadP(
r7, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ StoreP(r7, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset),
r0);
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, r7, temp,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ StoreP(
closure,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST), r0);
// Save closure before the write barrier.
__ LoadRR(r7, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, r7, temp,
kLRHasNotBeenSaved, kDontSaveFPRegs);
__ JumpToJSEntry(entry);
__ bind(&loop_bottom);
__ SubSmiLiteral(index, index, Smi::FromInt(SharedFunctionInfo::kEntryLength),
r0);
__ CmpSmiLiteral(index, Smi::FromInt(1), r0);
__ bgt(&loop_top);
// We found no code.
__ b(&gotta_call_runtime);
__ bind(&try_shared);
__ LoadP(entry,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Is the shared function marked for tier up?
__ LoadlB(temp, FieldMemOperand(
entry, SharedFunctionInfo::kMarkedForTierUpByteOffset));
__ TestBit(temp, SharedFunctionInfo::kMarkedForTierUpBitWithinByte, r0);
__ bne(&gotta_call_runtime);
// If SFI points to anything other than CompileLazy, install that.
__ LoadP(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ mov(r7, Operand(masm->CodeObject()));
__ CmpP(entry, r7);
__ beq(&gotta_call_runtime);
// Install the SFI's code entry.
__ AddP(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ StoreP(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset), r0);
__ RecordWriteCodeEntryField(closure, entry, r7);
__ JumpToJSEntry(entry);
__ bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argument count (preserved for callee)
// -- r3 : new target (preserved for callee)
// -- r5 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ Move(r6, r2);
// Push a copy of the target function and the new target.
__ SmiTag(r2);
// Push another copy as a parameter to the runtime call.
__ Push(r2, r3, r5, r3);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ CmpP(r6, Operand(j));
__ b(ne, &over);
}
for (int i = j - 1; i >= 0; --i) {
__ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(r6);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(r2, &failed);
__ Drop(2);
__ pop(r6);
__ SmiUntag(r6);
scope.GenerateLeaveFrame();
__ AddP(r6, r6, Operand(1));
__ Drop(r6);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ Pop(r2, r3, r5);
__ SmiUntag(r2);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Point r2 at the start of the PlatformCodeAge sequence.
__ CleanseP(r14);
__ SubP(r14, Operand(kCodeAgingSequenceLength));
__ LoadRR(r2, r14);
__ pop(r14);
// The following registers must be saved and restored when calling through to
// the runtime:
// r2 - contains return address (beginning of patch sequence)
// r3 - isolate
// r5 - new target
// lr - return address
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit());
__ PrepareCallCFunction(2, 0, r4);
__ mov(r3, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit());
__ LoadRR(ip, r2);
__ Jump(ip);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Point r2 at the start of the PlatformCodeAge sequence.
__ CleanseP(r14);
__ SubP(r14, Operand(kCodeAgingSequenceLength));
__ LoadRR(r2, r14);
__ pop(r14);
// The following registers must be saved and restored when calling through to
// the runtime:
// r2 - contains return address (beginning of patch sequence)
// r3 - isolate
// r5 - new target
// lr - return address
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit());
__ PrepareCallCFunction(2, 0, r4);
__ mov(r3, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit());
__ LoadRR(ip, r2);
// Perform prologue operations usually performed by the young code stub.
__ PushStandardFrame(r3);
// Jump to point after the code-age stub.
__ AddP(r2, ip, Operand(kNoCodeAgeSequenceLength));
__ Jump(r2);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ MultiPush(kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ MultiPop(kJSCallerSaved | kCalleeSaved);
}
__ la(sp, MemOperand(sp, kPointerSize)); // Ignore state
__ Ret(); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ LoadSmiLiteral(r2, Smi::FromInt(static_cast<int>(type)));
__ push(r2);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Get the full codegen state from the stack and untag it -> r8.
__ LoadP(r8, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(r8);
// Switch on the state.
Label with_tos_register, unknown_state;
__ CmpP(
r8,
Operand(static_cast<intptr_t>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ bne(&with_tos_register);
__ la(sp, MemOperand(sp, 1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code());
__ LoadP(r2, MemOperand(sp, 1 * kPointerSize));
__ CmpP(
r8,
Operand(static_cast<intptr_t>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ bne(&unknown_state);
__ la(sp, MemOperand(sp, 2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// Clobbers registers {r6, r7, r8, r9}.
void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Label* receiver_check_failed) {
Register signature = r6;
Register map = r7;
Register constructor = r8;
Register scratch = r9;
// If there is no signature, return the holder.
__ LoadP(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
Label receiver_check_passed;
__ JumpIfRoot(signature, Heap::kUndefinedValueRootIndex,
&receiver_check_passed);
// Walk the prototype chain.
__ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, scratch, scratch);
__ CmpP(scratch, Operand(JS_FUNCTION_TYPE));
Label next_prototype;
__ bne(&next_prototype);
Register type = constructor;
__ LoadP(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(type,
FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ CmpP(signature, type);
__ beq(&receiver_check_passed);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ CompareObjectType(type, scratch, scratch, FUNCTION_TEMPLATE_INFO_TYPE);
__ bne(&next_prototype);
// Otherwise load the parent function template and iterate.
__ LoadP(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
__ b(&function_template_loop);
// Load the next prototype.
__ bind(&next_prototype);
__ LoadlW(scratch, FieldMemOperand(map, Map::kBitField3Offset));
__ DecodeField<Map::HasHiddenPrototype>(scratch);
__ beq(receiver_check_failed);
__ LoadP(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ b(&prototype_loop_start);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments excluding receiver
// -- r3 : callee
// -- lr : return address
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
// Load the FunctionTemplateInfo.
__ LoadP(r5, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
__ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
__ LoadP(r4, MemOperand(sp, r1));
CompatibleReceiverCheck(masm, r4, r5, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ LoadP(r6, FieldMemOperand(r5, FunctionTemplateInfo::kCallCodeOffset));
__ LoadP(r6, FieldMemOperand(r6, CallHandlerInfo::kFastHandlerOffset));
__ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
// Drop the arguments (including the receiver);
__ AddP(r1, r1, Operand(kPointerSize));
__ AddP(sp, sp, r1);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r2);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CmpSmiLiteral(r2, Smi::kZero, r0);
__ bne(&skip);
__ Ret();
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ LoadP(
r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
__ SmiUntag(r3);
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ AddP(r2, r3);
__ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ LoadRR(r14, r0);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
// 1. Load receiver into r3, argArray into r2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label skip;
Register arg_size = r4;
Register new_sp = r5;
Register scratch = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ LoadRR(scratch, r2);
__ LoadP(r3, MemOperand(new_sp, 0)); // receiver
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize)); // thisArg
__ beq(&skip);
__ LoadP(r2, MemOperand(new_sp, 2 * -kPointerSize)); // argArray
__ bind(&skip);
__ LoadRR(sp, new_sp);
__ StoreP(scratch, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r2 : argArray
// -- r3 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(r3, &receiver_not_callable);
__ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::kIsCallable);
__ beq(&receiver_not_callable);
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments);
__ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments);
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target).
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ LoadImmP(r2, Operand::Zero());
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ bind(&receiver_not_callable);
{
__ StoreP(r3, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r2: actual number of arguments
{
Label done;
__ CmpP(r2, Operand::Zero());
__ bne(&done, Label::kNear);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ AddP(r2, Operand(1));
__ bind(&done);
}
// r2: actual number of arguments
// 2. Get the callable to call (passed as receiver) from the stack.
__ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
__ LoadP(r3, MemOperand(sp, r4));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r2: actual number of arguments
// r3: callable
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ AddP(r4, sp, r4);
__ bind(&loop);
__ LoadP(ip, MemOperand(r4, -kPointerSize));
__ StoreP(ip, MemOperand(r4));
__ SubP(r4, Operand(kPointerSize));
__ CmpP(r4, sp);
__ bne(&loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ SubP(r2, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : argumentsList
// -- sp[4] : thisArgument
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label skip;
Register arg_size = r4;
Register new_sp = r5;
Register scratch = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ LoadRR(scratch, r3);
__ LoadRR(r2, r3);
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target
__ beq(&skip);
__ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize)); // thisArgument
__ CmpP(arg_size, Operand(2 * kPointerSize));
__ beq(&skip);
__ LoadP(r2, MemOperand(new_sp, 3 * -kPointerSize)); // argumentsList
__ bind(&skip);
__ LoadRR(sp, new_sp);
__ StoreP(scratch, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r2 : argumentsList
// -- r3 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(r3, &target_not_callable);
__ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::kIsCallable);
__ beq(&target_not_callable);
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target).
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ bind(&target_not_callable);
{
__ StoreP(r3, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : new.target (optional)
// -- sp[4] : argumentsList
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r2 (if present),
// new.target into r5 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label skip;
Register arg_size = r4;
Register new_sp = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ LoadRR(r2, r3);
__ LoadRR(r5, r3);
__ StoreP(r3, MemOperand(new_sp, 0)); // receiver (undefined)
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target
__ LoadRR(r5, r3); // new.target defaults to target
__ beq(&skip);
__ LoadP(r2, MemOperand(new_sp, 2 * -kPointerSize)); // argumentsList
__ CmpP(arg_size, Operand(2 * kPointerSize));
__ beq(&skip);
__ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize)); // new.target
__ bind(&skip);
__ LoadRR(sp, new_sp);
}
// ----------- S t a t e -------------
// -- r2 : argumentsList
// -- r5 : new.target
// -- r3 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(r3, &target_not_constructor);
__ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::kIsConstructor);
__ beq(&target_not_constructor);
// 3. Make sure the target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(r5, &new_target_not_constructor);
__ LoadP(r6, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::kIsConstructor);
__ beq(&new_target_not_constructor);
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ bind(&target_not_constructor);
{
__ StoreP(r3, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ bind(&new_target_not_constructor);
{
__ StoreP(r5, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r2);
__ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Stack updated as such:
// old SP --->
// R14 Return Addr
// Old FP <--- New FP
// Argument Adapter SMI
// Function
// ArgC as SMI <--- New SP
__ lay(sp, MemOperand(sp, -5 * kPointerSize));
// Cleanse the top nibble of 31-bit pointers.
__ CleanseP(r14);
__ StoreP(r14, MemOperand(sp, 4 * kPointerSize));
__ StoreP(fp, MemOperand(sp, 3 * kPointerSize));
__ StoreP(r6, MemOperand(sp, 2 * kPointerSize));
__ StoreP(r3, MemOperand(sp, 1 * kPointerSize));
__ StoreP(r2, MemOperand(sp, 0 * kPointerSize));
__ la(fp, MemOperand(sp, StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ LoadP(r3, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
int stack_adjustment = kPointerSize; // adjust for receiver
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
__ SmiToPtrArrayOffset(r3, r3);
__ lay(sp, MemOperand(sp, r3));
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argumentsList
// -- r3 : target
// -- r5 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_holey_array, create_runtime,
done_create;
__ JumpIfSmi(r2, &create_runtime);
// Load the map of argumentsList into r4.
__ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset));
// Load native context into r6.
__ LoadP(r6, NativeContextMemOperand());
// Check if argumentsList is an (unmodified) arguments object.
__ LoadP(ip, ContextMemOperand(r6, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ CmpP(ip, r4);
__ beq(&create_arguments);
__ LoadP(ip, ContextMemOperand(r6, Context::STRICT_ARGUMENTS_MAP_INDEX));
__ CmpP(ip, r4);
__ beq(&create_arguments);
// Check if argumentsList is a fast JSArray.
__ CompareInstanceType(r4, ip, JS_ARRAY_TYPE);
__ beq(&create_array);
// Ask the runtime to create the list (actually a FixedArray).
__ bind(&create_runtime);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3, r5, r2);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ Pop(r3, r5);
__ LoadP(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ SmiUntag(r4);
}
__ b(&done_create);
// Try to create the list from an arguments object.
__ bind(&create_arguments);
__ LoadP(r4, FieldMemOperand(r2, JSArgumentsObject::kLengthOffset));
__ LoadP(r6, FieldMemOperand(r2, JSObject::kElementsOffset));
__ LoadP(ip, FieldMemOperand(r6, FixedArray::kLengthOffset));
__ CmpP(r4, ip);
__ bne(&create_runtime);
__ SmiUntag(r4);
__ LoadRR(r2, r6);
__ b(&done_create);
// For holey JSArrays we need to check that the array prototype chain
// protector is intact and our prototype is the Array.prototype actually.
__ bind(&create_holey_array);
__ LoadP(r4, FieldMemOperand(r4, Map::kPrototypeOffset));
__ LoadP(r6, ContextMemOperand(r6, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ CmpP(r4, r6);
__ bne(&create_runtime);
__ LoadRoot(r6, Heap::kArrayProtectorRootIndex);
__ LoadP(r4, FieldMemOperand(r6, PropertyCell::kValueOffset));
__ CmpSmiLiteral(r4, Smi::FromInt(Isolate::kProtectorValid), r0);
__ bne(&create_runtime);
__ LoadP(r4, FieldMemOperand(r2, JSArray::kLengthOffset));
__ LoadP(r2, FieldMemOperand(r2, JSArray::kElementsOffset));
__ SmiUntag(r4);
__ b(&done_create);
// Try to create the list from a JSArray object.
// -- r4 and r6 must be preserved till bne create_holey_array.
__ bind(&create_array);
__ LoadlB(r7, FieldMemOperand(r4, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(r7);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
__ CmpP(r7, Operand(FAST_HOLEY_ELEMENTS));
__ bgt(&create_runtime);
// Only FAST_XXX after this point, FAST_HOLEY_XXX are odd values.
__ TestBit(r7, Map::kHasNonInstancePrototype, r0);
__ bne(&create_holey_array);
// FAST_SMI_ELEMENTS or FAST_ELEMENTS after this point.
__ LoadP(r4, FieldMemOperand(r2, JSArray::kLengthOffset));
__ LoadP(r2, FieldMemOperand(r2, JSArray::kElementsOffset));
__ SmiUntag(r4);
__ bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(ip, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ SubP(ip, sp, ip);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, r4, Operand(kPointerSizeLog2));
__ CmpP(ip, r0); // Signed comparison.
__ bgt(&done);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// ----------- S t a t e -------------
// -- r3 : target
// -- r2 : args (a FixedArray built from argumentsList)
// -- r4 : len (number of elements to push from args)
// -- r5 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
Label loop, no_args, skip;
__ CmpP(r4, Operand::Zero());
__ beq(&no_args);
__ AddP(r2, r2,
Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
__ LoadRR(r1, r4);
__ bind(&loop);
__ LoadP(ip, MemOperand(r2, kPointerSize));
__ la(r2, MemOperand(r2, kPointerSize));
__ CompareRoot(ip, Heap::kTheHoleValueRootIndex);
__ bne(&skip, Label::kNear);
__ LoadRR(ip, r8);
__ bind(&skip);
__ push(ip);
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
__ LoadRR(r2, r4);
}
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
__ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET, eq);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r3 : the target to call (can be any Object)
// -- r4 : start index (to support rest parameters)
// -- lr : return address.
// -- sp[0] : thisArgument
// -----------------------------------
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ beq(&arguments_adaptor);
{
__ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadP(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset));
__ LoadW(r2, FieldMemOperand(
r2, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRR(r5, fp);
}
__ b(&arguments_done);
__ bind(&arguments_adaptor);
{
// Load the length from the ArgumentsAdaptorFrame.
__ LoadP(r2, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
Label stack_empty, stack_done, stack_overflow;
__ SmiUntag(r2);
__ SubP(r2, r2, r4);
__ CmpP(r2, Operand::Zero());
__ ble(&stack_empty);
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r2, r4, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ AddP(r5, r5, Operand(kPointerSize));
__ LoadRR(r4, r2);
__ bind(&loop);
{
__ ShiftLeftP(ip, r4, Operand(kPointerSizeLog2));
__ LoadP(ip, MemOperand(r5, ip));
__ push(ip);
__ SubP(r4, r4, Operand(1));
__ CmpP(r4, Operand::Zero());
__ bne(&loop);
}
}
}
__ b(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_empty);
{
// We just pass the receiver, which is already on the stack.
__ mov(r2, Operand::Zero());
}
__ bind(&stack_done);
__ Jump(code, RelocInfo::CODE_TARGET);
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!)
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is active.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ mov(scratch1, Operand(is_tail_call_elimination_enabled));
__ LoadlB(scratch1, MemOperand(scratch1));
__ CmpP(scratch1, Operand::Zero());
__ beq(&done);
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ LoadP(scratch3,
MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpP(scratch3, Operand(StackFrame::TypeToMarker(StackFrame::STUB)));
__ bne(&no_interpreter_frame);
__ LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(
scratch3,
MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpP(scratch3,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ bne(&no_arguments_adaptor);
// Drop current frame and load arguments count from arguments adaptor frame.
__ LoadRR(fp, scratch2);
__ LoadP(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ b(&formal_parameter_count_loaded);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ LoadP(scratch1,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
__ LoadP(scratch1,
FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ LoadW(caller_args_count_reg,
FieldMemOperand(scratch1,
SharedFunctionInfo::kFormalParameterCountOffset));
#if !V8_TARGET_ARCH_S390X
__ SmiUntag(caller_args_count_reg);
#endif
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r3);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset));
__ TestBitMask(r5, FunctionKind::kClassConstructor
<< SharedFunctionInfo::kFunctionKindShift,
r0);
__ bne(&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ AndP(r0, r5, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
(1 << SharedFunctionInfo::kNativeBit)));
__ bne(&done_convert);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
} else {
Label convert_to_object, convert_receiver;
__ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2));
__ LoadP(r5, MemOperand(sp, r5));
__ JumpIfSmi(r5, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r2);
__ Push(r2, r3);
__ LoadRR(r2, r5);
__ Push(cp);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ LoadRR(r5, r2);
__ Pop(r2, r3);
__ SmiUntag(r2);
}
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2));
__ StoreP(r5, MemOperand(sp, r6));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r2, r5, r6, r7);
}
__ LoadW(
r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
#if !V8_TARGET_ARCH_S390X
__ SmiUntag(r4);
#endif
ParameterCount actual(r2);
ParameterCount expected(r4);
__ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r5 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into r4 and length of that into r6.
Label no_bound_arguments;
__ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset));
__ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ SmiUntag(r6);
__ LoadAndTestP(r6, r6);
__ beq(&no_bound_arguments);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r4 : the [[BoundArguments]] (implemented as FixedArray)
// -- r5 : new.target (only in case of [[Construct]])
// -- r6 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ LoadRR(r8, sp); // preserve previous stack pointer
__ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2));
__ SubP(sp, sp, r9);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ bgt(&done); // Signed comparison.
// Restore the stack pointer.
__ LoadRR(sp, r8);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
// -- r2 : the number of arguments (not including the receiver)
// -- r8 : the previous stack pointer
// -- r9: the size of the [[BoundArguments]]
{
Label skip, loop;
__ LoadImmP(r7, Operand::Zero());
__ CmpP(r2, Operand::Zero());
__ beq(&skip);
__ LoadRR(r1, r2);
__ bind(&loop);
__ LoadP(r0, MemOperand(r8, r7));
__ StoreP(r0, MemOperand(sp, r7));
__ AddP(r7, r7, Operand(kPointerSize));
__ BranchOnCount(r1, &loop);
__ bind(&skip);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ AddP(r4, r4, r9);
__ LoadRR(r1, r6);
__ bind(&loop);
__ LoadP(r0, MemOperand(r4, -kPointerSize));
__ lay(r4, MemOperand(r4, -kPointerSize));
__ StoreP(r0, MemOperand(sp, r7));
__ AddP(r7, r7, Operand(kPointerSize));
__ BranchOnCount(r1, &loop);
__ AddP(r2, r2, r6);
}
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(r3);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r2, r5, r6, r7);
}
// Patch the receiver to [[BoundThis]].
__ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset));
__ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
__ StoreP(ip, MemOperand(sp, r1));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadP(r3,
FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ mov(ip, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny,
masm->isolate())));
__ LoadP(ip, MemOperand(ip));
__ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r3, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET, eq);
__ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::kIsCallable);
__ beq(&non_callable);
__ CmpP(r7, Operand(JS_PROXY_TYPE));
__ bne(&non_function);
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r2, r5, r6, r7);
}
// 1. Runtime fallback for Proxy [[Call]].
__ Push(r3);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ AddP(r2, r2, Operand(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver the (original) target.
__ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
__ StoreP(r3, MemOperand(sp, r7));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
static void CheckSpreadAndPushToStack(MacroAssembler* masm) {
Register argc = r2;
Register constructor = r3;
Register new_target = r5;
Register scratch = r4;
Register scratch2 = r8;
Register spread = r6;
Register spread_map = r7;
Register spread_len = r7;
Label runtime_call, push_args;
__ LoadP(spread, MemOperand(sp, 0));
__ JumpIfSmi(spread, &runtime_call);
__ LoadP(spread_map, FieldMemOperand(spread, HeapObject::kMapOffset));
// Check that the spread is an array.
__ CompareInstanceType(spread_map, scratch, JS_ARRAY_TYPE);
__ bne(&runtime_call);
// Check that we have the original ArrayPrototype.
__ LoadP(scratch, FieldMemOperand(spread_map, Map::kPrototypeOffset));
__ LoadP(scratch2, NativeContextMemOperand());
__ LoadP(scratch2,
ContextMemOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ CmpP(scratch, scratch2);
__ bne(&runtime_call);
// Check that the ArrayPrototype hasn't been modified in a way that would
// affect iteration.
__ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex);
__ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
__ CmpSmiLiteral(scratch, Smi::FromInt(Isolate::kProtectorValid), r0);
__ bne(&runtime_call);
// Check that the map of the initial array iterator hasn't changed.
__ LoadP(scratch2, NativeContextMemOperand());
__ LoadP(scratch,
ContextMemOperand(scratch2,
Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX));
__ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
__ LoadP(scratch2,
ContextMemOperand(
scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX));
__ CmpP(scratch, scratch2);
__ bne(&runtime_call);
// For FastPacked kinds, iteration will have the same effect as simply
// accessing each property in order.
Label no_protector_check;
__ LoadlB(scratch, FieldMemOperand(spread_map, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(scratch);
__ CmpP(scratch, Operand(FAST_HOLEY_ELEMENTS));
__ bgt(&runtime_call);
// For non-FastHoley kinds, we can skip the protector check.
__ CmpP(scratch, Operand(FAST_SMI_ELEMENTS));
__ beq(&no_protector_check);
__ CmpP(scratch, Operand(FAST_ELEMENTS));
__ beq(&no_protector_check);
// Check the ArrayProtector cell.
__ LoadRoot(scratch, Heap::kArrayProtectorRootIndex);
__ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
__ CmpSmiLiteral(scratch, Smi::FromInt(Isolate::kProtectorValid), r0);
__ bne(&runtime_call);
__ bind(&no_protector_check);
// Load the FixedArray backing store, but use the length from the array.
__ LoadP(spread_len, FieldMemOperand(spread, JSArray::kLengthOffset));
__ SmiUntag(spread_len);
__ LoadP(spread, FieldMemOperand(spread, JSArray::kElementsOffset));
__ b(&push_args);
__ bind(&runtime_call);
{
// Call the builtin for the result of the spread.
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(argc);
__ Push(constructor, new_target, argc, spread);
__ CallRuntime(Runtime::kSpreadIterableFixed);
__ LoadRR(spread, r2);
__ Pop(constructor, new_target, argc);
__ SmiUntag(argc);
}
{
// Calculate the new nargs including the result of the spread.
__ LoadP(spread_len, FieldMemOperand(spread, FixedArray::kLengthOffset));
__ SmiUntag(spread_len);
__ bind(&push_args);
// argc += spread_len - 1. Subtract 1 for the spread itself.
__ AddP(argc, argc, spread_len);
__ SubP(argc, argc, Operand(1));
// Pop the spread argument off the stack.
__ Pop(scratch);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be
// overflowed here which will cause scratch to become negative.
__ SubP(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, spread_len, Operand(kPointerSizeLog2));
__ CmpP(scratch, r0);
__ bgt(&done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Put the evaluated spread onto the stack as additional arguments.
{
__ LoadImmP(scratch, Operand::Zero());
Label done, push, loop;
__ bind(&loop);
__ CmpP(scratch, spread_len);
__ beq(&done);
__ ShiftLeftP(r0, scratch, Operand(kPointerSizeLog2));
__ AddP(scratch2, spread, r0);
__ LoadP(scratch2, FieldMemOperand(scratch2, FixedArray::kHeaderSize));
__ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push);
__ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(scratch2);
__ AddP(scratch, scratch, Operand(1));
__ b(&loop);
__ bind(&done);
}
}
// static
void Builtins::Generate_CallWithSpread(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (can be any Object)
// -----------------------------------
// CheckSpreadAndPushToStack will push r5 to save it.
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
CheckSpreadAndPushToStack(masm);
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
TailCallMode::kDisallow),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (checked to be a JSFunction)
// -- r5 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(r3);
// Calling convention for function specific ConstructStubs require
// r4 to contain either an AllocationSite or undefined.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset));
__ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -- r5 : the new target (checked to be a constructor)