blob: 06e52a7626e78ee742647caf57656c5500d3cf6d [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#if V8_TARGET_ARCH_S390
#include "src/assembler.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/runtime/runtime-utils.h"
#include "src/s390/constants-s390.h"
#include "src/s390/frames-s390.h"
#include "src/s390/simulator-s390.h"
#if defined(USE_SIMULATOR)
// Only build the simulator if not compiling for real s390 hardware.
namespace v8 {
namespace internal {
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The S390Debugger class is used by the simulator while debugging simulated
// z/Architecture code.
class S390Debugger {
public:
explicit S390Debugger(Simulator* sim) : sim_(sim) {}
~S390Debugger();
void Stop(Instruction* instr);
void Debug();
private:
#if V8_TARGET_LITTLE_ENDIAN
static const Instr kBreakpointInstr = (0x0000FFB2); // TRAP4 0000
static const Instr kNopInstr = (0x00160016); // OR r0, r0 x2
#else
static const Instr kBreakpointInstr = (0xB2FF0000); // TRAP4 0000
static const Instr kNopInstr = (0x16001600); // OR r0, r0 x2
#endif
Simulator* sim_;
intptr_t GetRegisterValue(int regnum);
double GetRegisterPairDoubleValue(int regnum);
double GetFPDoubleRegisterValue(int regnum);
float GetFPFloatRegisterValue(int regnum);
bool GetValue(const char* desc, intptr_t* value);
bool GetFPDoubleValue(const char* desc, double* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* break_pc);
bool DeleteBreakpoint(Instruction* break_pc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
S390Debugger::~S390Debugger() {}
#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;
static void InitializeCoverage() {
char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
if (file_name != NULL) {
coverage_log = fopen(file_name, "aw+");
}
}
void S390Debugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->SvcValue() & kStopCodeMask;
// Retrieve the encoded address, which comes just after this stop.
char** msg_address =
reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
char* msg = *msg_address;
DCHECK(msg != NULL);
// Update this stop description.
if (isWatchedStop(code) && !watched_stops_[code].desc) {
watched_stops_[code].desc = msg;
}
if (strlen(msg) > 0) {
if (coverage_log != NULL) {
fprintf(coverage_log, "%s\n", msg);
fflush(coverage_log);
}
// Overwrite the instruction and address with nops.
instr->SetInstructionBits(kNopInstr);
reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
}
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
}
#else // ndef GENERATED_CODE_COVERAGE
static void InitializeCoverage() {}
void S390Debugger::Stop(Instruction* instr) {
// Get the stop code.
// use of kStopCodeMask not right on PowerPC
uint32_t code = instr->SvcValue() & kStopCodeMask;
// Retrieve the encoded address, which comes just after this stop.
char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
// Update this stop description.
if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
sim_->watched_stops_[code].desc = msg;
}
// Print the stop message and code if it is not the default code.
if (code != kMaxStopCode) {
PrintF("Simulator hit stop %u: %s\n", code, msg);
} else {
PrintF("Simulator hit %s\n", msg);
}
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
Debug();
}
#endif
intptr_t S390Debugger::GetRegisterValue(int regnum) {
return sim_->get_register(regnum);
}
double S390Debugger::GetRegisterPairDoubleValue(int regnum) {
return sim_->get_double_from_register_pair(regnum);
}
double S390Debugger::GetFPDoubleRegisterValue(int regnum) {
return sim_->get_double_from_d_register(regnum);
}
float S390Debugger::GetFPFloatRegisterValue(int regnum) {
return sim_->get_float32_from_d_register(regnum);
}
bool S390Debugger::GetValue(const char* desc, intptr_t* value) {
int regnum = Registers::Number(desc);
if (regnum != kNoRegister) {
*value = GetRegisterValue(regnum);
return true;
} else {
if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" V8PRIxPTR,
reinterpret_cast<uintptr_t*>(value)) == 1;
} else {
return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
1;
}
}
return false;
}
bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) {
int regnum = DoubleRegisters::Number(desc);
if (regnum != kNoRegister) {
*value = sim_->get_double_from_d_register(regnum);
return true;
}
return false;
}
bool S390Debugger::SetBreakpoint(Instruction* break_pc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = break_pc;
sim_->break_instr_ = break_pc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void S390Debugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void S390Debugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void S390Debugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
// Disable tracing while simulating
bool trace = ::v8::internal::FLAG_trace_sim;
::v8::internal::FLAG_trace_sim = false;
while (!done && !sim_->has_bad_pc()) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
intptr_t value;
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7d821008) {
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
} else {
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
buffer.start());
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// If at a breakpoint, proceed past it.
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
->InstructionBits() == 0x7d821008) {
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
} else {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->ExecuteInstruction(
reinterpret_cast<Instruction*>(sim_->get_pc()));
}
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
intptr_t value;
double dvalue;
if (strcmp(arg1, "all") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR,
Register::from_code(i).ToString(), value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (i != 0 && !((i + 1) & 3)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
sim_->condition_reg_);
} else if (strcmp(arg1, "alld") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
Register::from_code(i).ToString(), value, value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else if (!((i + 1) % 2)) {
PrintF("\n");
}
}
PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
sim_->condition_reg_);
} else if (strcmp(arg1, "allf") == 0) {
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
float fvalue = GetFPFloatRegisterValue(i);
uint32_t as_words = bit_cast<uint32_t>(fvalue);
PrintF("%3s: %f 0x%08x\n",
DoubleRegister::from_code(i).ToString(), fvalue, as_words);
}
} else if (strcmp(arg1, "alld") == 0) {
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
dvalue = GetFPDoubleRegisterValue(i);
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%3s: %f 0x%08x %08x\n",
DoubleRegister::from_code(i).ToString(), dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
}
} else if (arg1[0] == 'r' &&
(arg1[1] >= '0' && arg1[1] <= '2' &&
(arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' &&
arg1[3] == '\0')))) {
int regnum = strtoul(&arg1[1], 0, 10);
if (regnum != kNoRegister) {
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
if (GetValue(arg1, &value)) {
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
value);
} else if (GetFPDoubleValue(arg1, &dvalue)) {
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xffffffff));
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF("print <register>\n");
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
intptr_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "setpc") == 0) {
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
sim_->set_pc(value);
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
intptr_t* cur = NULL;
intptr_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
} else { // "mem"
intptr_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<intptr_t*>(value);
next_arg++;
}
intptr_t words; // likely inaccurate variable name for 64bit
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
intptr_t value = *cur;
Heap* current_heap = sim_->isolate_->heap();
if (((value & 1) == 0) ||
current_heap->ContainsSlow(obj->address())) {
PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj));
} else if (current_heap->Contains(obj)) {
PrintF(" (");
obj->ShortPrint();
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
byte* prev = NULL;
byte* cur = NULL;
// Default number of instructions to disassemble.
int32_t numInstructions = 10;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
}
} else {
// The argument is the number of instructions.
intptr_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
numInstructions = static_cast<int32_t>(value);
}
}
} else {
intptr_t value1;
intptr_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
// Disassemble <arg2> instructions.
numInstructions = static_cast<int32_t>(value2);
}
}
while (numInstructions > 0) {
prev = cur;
cur += dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
buffer.start());
numInstructions--;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
intptr_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "cr") == 0) {
PrintF("Condition reg: %08x\n", sim_->condition_reg_);
} else if (strcmp(cmd, "stop") == 0) {
intptr_t value;
intptr_t stop_pc =
sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize);
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr));
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->isStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
PrintF("Trace of executed instructions is %s\n",
::v8::internal::FLAG_trace_sim ? "on" : "off");
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi [num instructions]\n");
PrintF(" step one/num instruction(s) (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to display all integer registers\n");
PrintF(
" use register name 'alld' to display integer registers "
"with decimal values\n");
PrintF(" use register name 'rN' to display register number 'N'\n");
PrintF(" add argument 'fp' to print register pair double values\n");
PrintF(
" use register name 'allf' to display floating-point "
"registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("cr\n");
PrintF(" print condition register\n");
PrintF("stack [<num words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<num words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("trace (alias 't')\n");
PrintF(" toogle the tracing of all executed statements\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the S390Debugger.\n");
PrintF(" The first %d stop codes are watched:\n",
Simulator::kNumOfWatchedStops);
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
// Restore tracing
::v8::internal::FLAG_trace_sim = trace;
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
v8::internal::HashMap::Entry* entry =
i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
int size) {
DCHECK(size <= CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK((start & CachePage::kLineMask) == 0);
DCHECK((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(v8::internal::HashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset), sizeof(FourByteInstr)),
0);
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new v8::internal::HashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
#if V8_TARGET_ARCH_S390X
size_t stack_size = FLAG_sim_stack_size * KB;
#else
size_t stack_size = MB; // allocate 1MB for stack
#endif
stack_size += 2 * stack_protection_size_;
stack_ = reinterpret_cast<char*>(malloc(stack_size));
pc_modified_ = false;
icount_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// make sure our register type can hold exactly 4/8 bytes
#ifdef V8_TARGET_ARCH_S390X
DCHECK(sizeof(intptr_t) == 8);
#else
DCHECK(sizeof(intptr_t) == 4);
#endif
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumGPRs; i++) {
registers_[i] = 0;
}
condition_reg_ = 0;
special_reg_pc_ = 0;
// Initializing FP registers.
for (int i = 0; i < kNumFPRs; i++) {
fp_registers_[i] = 0.0;
}
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] =
reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
InitializeCoverage();
last_debugger_input_ = NULL;
}
Simulator::~Simulator() { free(stack_); }
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a svc (Supervisor Call) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(Isolate* isolate, void* external_function,
ExternalReference::Type type)
: external_function_(external_function),
// we use TRAP4 here (0xBF22)
#if V8_TARGET_LITTLE_ENDIAN
swi_instruction_(0x1000FFB2),
#else
swi_instruction_(0xB2FF0000 | kCallRtRedirected),
#endif
type_(type),
next_(NULL) {
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->FlushICache(
isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr));
isolate->set_simulator_redirection(this);
if (ABI_USES_FUNCTION_DESCRIPTORS) {
function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
function_descriptor_[1] = 0;
function_descriptor_[2] = 0;
}
}
void* address() {
if (ABI_USES_FUNCTION_DESCRIPTORS) {
return reinterpret_cast<void*>(function_descriptor_);
} else {
return reinterpret_cast<void*>(&swi_instruction_);
}
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(Isolate* isolate, void* external_function,
ExternalReference::Type type) {
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) {
DCHECK_EQ(current->type(), type);
return current;
}
}
return new Redirection(isolate, external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - offsetof(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static Redirection* FromAddress(void* address) {
int delta = ABI_USES_FUNCTION_DESCRIPTORS
? offsetof(Redirection, function_descriptor_)
: offsetof(Redirection, swi_instruction_);
char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(intptr_t reg) {
Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
return redirection->external_function();
}
static void DeleteChain(Redirection* redirection) {
while (redirection != nullptr) {
Redirection* next = redirection->next_;
delete redirection;
redirection = next;
}
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
intptr_t function_descriptor_[3];
};
// static
void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
Redirection::DeleteChain(first);
if (i_cache != nullptr) {
for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
entry = i_cache->Next(entry)) {
delete static_cast<CachePage*>(entry->value);
}
delete i_cache;
}
}
void* Simulator::RedirectExternalReference(Isolate* isolate,
void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(isolate, external_function, type);
return redirection->address();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state.
void Simulator::set_register(int reg, uint64_t value) {
DCHECK((reg >= 0) && (reg < kNumGPRs));
registers_[reg] = value;
}
// Get the register from the architecture state.
uint64_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumGPRs));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= kNumGPRs) return 0;
// End stupid code.
return registers_[reg];
}
template <typename T>
T Simulator::get_low_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumGPRs));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= kNumGPRs) return 0;
// End stupid code.
return static_cast<T>(registers_[reg] & 0xFFFFFFFF);
}
template <typename T>
T Simulator::get_high_register(int reg) const {
DCHECK((reg >= 0) && (reg < kNumGPRs));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= kNumGPRs) return 0;
// End stupid code.
return static_cast<T>(registers_[reg] >> 32);
}
void Simulator::set_low_register(int reg, uint32_t value) {
uint64_t shifted_val = static_cast<uint64_t>(value);
uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
uint64_t result = (orig_val >> 32 << 32) | shifted_val;
registers_[reg] = result;
}
void Simulator::set_high_register(int reg, uint32_t value) {
uint64_t shifted_val = static_cast<uint64_t>(value) << 32;
uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val;
registers_[reg] = result;
}
double Simulator::get_double_from_register_pair(int reg) {
DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
double dm_val = 0.0;
#if 0 && !V8_TARGET_ARCH_S390X // doesn't make sense in 64bit mode
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[sizeof(fp_registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
#endif
return (dm_val);
}
// Raw access to the PC register.
void Simulator::set_pc(intptr_t value) {
pc_modified_ = true;
special_reg_pc_ = value;
}
bool Simulator::has_bad_pc() const {
return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
intptr_t Simulator::get_pc() const { return special_reg_pc_; }
// Runtime FP routines take:
// - two double arguments
// - one double argument and zero or one integer arguments.
// All are consructed here from d1, d2 and r2.
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
*x = get_double_from_d_register(0);
*y = get_double_from_d_register(2);
*z = get_register(2);
}
// The return value is in d0.
void Simulator::SetFpResult(const double& result) {
set_d_register_from_double(0, result);
}
void Simulator::TrashCallerSaveRegisters() {
// We don't trash the registers with the return value.
#if 0 // A good idea to trash volatile registers, needs to be done
registers_[2] = 0x50Bad4U;
registers_[3] = 0x50Bad4U;
registers_[12] = 0x50Bad4U;
#endif
}
uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
return *ptr;
}
int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
return *ptr;
}
void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
*ptr = value;
return;
}
void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
*ptr = value;
return;
}
uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
uint8_t Simulator::ReadBU(intptr_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
int8_t Simulator::ReadB(intptr_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::WriteB(intptr_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteB(intptr_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
int64_t Simulator::ReadDW(intptr_t addr) {
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
return *ptr;
}
void Simulator::WriteDW(intptr_t addr, int64_t value) {
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
*ptr = value;
return;
}
/**
* Reads a double value from memory at given address.
*/
double Simulator::ReadDouble(intptr_t addr) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin to prevent
// overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED();
}
// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xffffffffU - uleft;
return (uright > urest) ||
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}
// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft);
}
// Calculate V flag value for additions and subtractions.
template <typename T1>
bool Simulator::OverflowFromSigned(T1 alu_out, T1 left, T1 right,
bool addition) {
bool overflow;
if (addition) {
// operands have the same sign
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// and operands and result have different sign
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// operands have different signs
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// and first operand and result have different signs
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
#if V8_TARGET_ARCH_S390X
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
*x = reinterpret_cast<intptr_t>(pair->x);
*y = reinterpret_cast<intptr_t>(pair->y);
}
#else
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
#if V8_TARGET_BIG_ENDIAN
*x = static_cast<int32_t>(*pair >> 32);
*y = static_cast<int32_t>(*pair);
#else
*x = static_cast<int32_t>(*pair);
*y = static_cast<int32_t>(*pair >> 32);
#endif
}
#endif
// Calls into the V8 runtime.
typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
intptr_t arg2, intptr_t arg3,
intptr_t arg4, intptr_t arg5);
typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
intptr_t arg2, intptr_t arg3,
intptr_t arg4, intptr_t arg5);
typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
intptr_t arg2, intptr_t arg3,
intptr_t arg4,
intptr_t arg5);
// These prototypes handle the four types of FP calls.
typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
intptr_t arg1, void* arg2);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
int svc = instr->SvcValue();
switch (svc) {
case kCallRtRedirected: {
// Check if stack is aligned. Error if not aligned is reported below to
// include information on the function called.
bool stack_aligned =
(get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
0;
Redirection* redirection = Redirection::FromSwiInstruction(instr);
const int kArgCount = 6;
int arg0_regnum = 2;
intptr_t result_buffer = 0;
bool uses_result_buffer =
redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
(redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
!ABI_RETURNS_OBJECTPAIR_IN_REGS);
if (uses_result_buffer) {
result_buffer = get_register(r2);
arg0_regnum++;
}
intptr_t arg[kArgCount];
for (int i = 0; i < kArgCount - 1; i++) {
arg[i] = get_register(arg0_regnum + i);
}
intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize];
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
// Place the return address on the stack, making the call GC safe.
*reinterpret_cast<intptr_t*>(get_register(sp) +
kStackFrameRASlot * kPointerSize) =
get_register(r14);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
if (fp_call) {
double dval0, dval1; // one or two double parameters
intptr_t ival; // zero or one integer parameters
int iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
FUNCTION_ADDR(generic_target), dval0, dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
FUNCTION_ADDR(generic_target), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
FUNCTION_ADDR(generic_target), dval0, ival);
break;
default:
UNREACHABLE();
break;
}
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
set_register(r2, iresult);
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", iresult);
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
target(arg[0]);
} else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
target(arg[0], Redirection::ReverseRedirection(arg[1]));
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
// See callers of MacroAssembler::CallApiFunctionAndReturn for
// explanation of register usage.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
if (!ABI_PASSES_HANDLES_IN_REGS) {
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
}
target(arg[0], arg[1]);
} else if (redirection->type() ==
ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08" V8PRIxPTR
" %08" V8PRIxPTR " %08" V8PRIxPTR,
reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
if (!ABI_PASSES_HANDLES_IN_REGS) {
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
}
target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
} else {
// builtin call.
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
PrintF(
"Call to host function at %p,\n"
"\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
arg[5]);
if (!stack_aligned) {
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
static_cast<intptr_t>(get_register(sp)));
}
PrintF("\n");
}
CHECK(stack_aligned);
if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
SimulatorRuntimeTripleCall target =
reinterpret_cast<SimulatorRuntimeTripleCall>(external);
ObjectTriple result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
"}\n",
reinterpret_cast<intptr_t>(result.x),
reinterpret_cast<intptr_t>(result.y),
reinterpret_cast<intptr_t>(result.z));
}
memcpy(reinterpret_cast<void*>(result_buffer), &result,
sizeof(ObjectTriple));
set_register(r2, result_buffer);
} else {
if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
SimulatorRuntimePairCall target =
reinterpret_cast<SimulatorRuntimePairCall>(external);
ObjectPair result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
intptr_t x;
intptr_t y;
decodeObjectPair(&result, &x, &y);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
}
if (ABI_RETURNS_OBJECTPAIR_IN_REGS) {
set_register(r2, x);
set_register(r3, y);
} else {
memcpy(reinterpret_cast<void*>(result_buffer), &result,
sizeof(ObjectPair));
set_register(r2, result_buffer);
}
} else {
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
intptr_t result =
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08" V8PRIxPTR "\n", result);
}
set_register(r2, result);
}
}
// #if !V8_TARGET_ARCH_S390X
// DCHECK(redirection->type() ==
// ExternalReference::BUILTIN_CALL);
// SimulatorRuntimeCall target =
// reinterpret_cast<SimulatorRuntimeCall>(external);
// int64_t result = target(arg[0], arg[1], arg[2], arg[3],
// arg[4],
// arg[5]);
// int32_t lo_res = static_cast<int32_t>(result);
// int32_t hi_res = static_cast<int32_t>(result >> 32);
// #if !V8_TARGET_LITTLE_ENDIAN
// if (::v8::internal::FLAG_trace_sim) {
// PrintF("Returned %08x\n", hi_res);
// }
// set_register(r2, hi_res);
// set_register(r3, lo_res);
// #else
// if (::v8::internal::FLAG_trace_sim) {
// PrintF("Returned %08x\n", lo_res);
// }
// set_register(r2, lo_res);
// set_register(r3, hi_res);
// #endif
// #else
// if (redirection->type() == ExternalReference::BUILTIN_CALL) {
// SimulatorRuntimeCall target =
// reinterpret_cast<SimulatorRuntimeCall>(external);
// intptr_t result = target(arg[0], arg[1], arg[2], arg[3],
// arg[4],
// arg[5]);
// if (::v8::internal::FLAG_trace_sim) {
// PrintF("Returned %08" V8PRIxPTR "\n", result);
// }
// set_register(r2, result);
// } else {
// DCHECK(redirection->type() ==
// ExternalReference::BUILTIN_CALL_PAIR);
// SimulatorRuntimePairCall target =
// reinterpret_cast<SimulatorRuntimePairCall>(external);
// ObjectPair result = target(arg[0], arg[1], arg[2], arg[3],
// arg[4], arg[5]);
// if (::v8::internal::FLAG_trace_sim) {
// PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n",
// result.x, result.y);
// }
// #if ABI_RETURNS_OBJECTPAIR_IN_REGS
// set_register(r2, result.x);
// set_register(r3, result.y);
// #else
// memcpy(reinterpret_cast<void *>(result_buffer), &result,
// sizeof(ObjectPair));
// #endif
// }
// #endif
}
int64_t saved_lr = *reinterpret_cast<intptr_t*>(
get_register(sp) + kStackFrameRASlot * kPointerSize);
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
// On zLinux-31, the saved_lr might be tagged with a high bit of 1.
// Cleanse it before proceeding with simulation.
saved_lr &= 0x7FFFFFFF;
#endif
set_pc(saved_lr);
break;
}
case kBreakpoint: {
S390Debugger dbg(this);
dbg.Debug();
break;
}
// stop uses all codes greater than 1 << 23.
default: {
if (svc >= (1 << 23)) {
uint32_t code = svc & kStopCodeMask;
if (isWatchedStop(code)) {
IncreaseStopCounter(code);
}
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
S390Debugger dbg(this);
dbg.Stop(instr);
} else {
set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize);
}
} else {
// This is not a valid svc code.
UNREACHABLE();
break;
}
}
}
}
// Stop helper functions.
bool Simulator::isStopInstruction(Instruction* instr) {
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
}
bool Simulator::isWatchedStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
return code < kNumOfWatchedStops;
}
bool Simulator::isEnabledStop(uint32_t code) {
DCHECK(code <= kMaxStopCode);
// Unwatched stops are always enabled.
return !isWatchedStop(code) ||
!(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (!isEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (isEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK(code <= kMaxStopCode);
DCHECK(isWatchedStop(code));
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
DCHECK(code <= kMaxStopCode);
if (!isWatchedStop(code)) {
PrintF("Stop not watched.");
} else {
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
}
// Method for checking overflow on signed addition:
// Test src1 and src2 have opposite sign,
// (1) No overflow if they have opposite sign
// (2) Test the result and one of the operands have opposite sign
// (a) No overflow if they don't have opposite sign
// (b) Overflow if opposite
#define CheckOverflowForIntAdd(src1, src2, type) \
OverflowFromSigned<type>(src1 + src2, src1, src2, true);
#define CheckOverflowForIntSub(src1, src2, type) \
OverflowFromSigned<type>(src1 - src2, src1, src2, false);
// Method for checking overflow on unsigned addtion
#define CheckOverflowForUIntAdd(src1, src2) \
((src1) + (src2) < (src1) || (src1) + (src2) < (src2))
// Method for checking overflow on unsigned subtraction
#define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1))
// Method for checking overflow on multiplication
#define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1))
// Method for checking overflow on shift right
#define CheckOverflowForShiftRight(src1, src2) \
(((src1) >> (src2)) << (src2) != (src1))
// Method for checking overflow on shift left
#define CheckOverflowForShiftLeft(src1, src2) \
(((src1) << (src2)) >> (src2) != (src1))
// S390 Decode and simulate helpers
bool Simulator::DecodeTwoByte(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
switch (op) {
// RR format instructions
case AR:
case SR:
case MR:
case DR:
case OR:
case NR:
case XR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
int32_t r2_val = get_low_register<int32_t>(r2);
bool isOF = false;
switch (op) {
case AR:
isOF = CheckOverflowForIntAdd(r1_val, r2_val, int32_t);
r1_val += r2_val;
SetS390ConditionCode<int32_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
case SR:
isOF = CheckOverflowForIntSub(r1_val, r2_val, int32_t);
r1_val -= r2_val;
SetS390ConditionCode<int32_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
case OR:
r1_val |= r2_val;
SetS390BitWiseConditionCode<uint32_t>(r1_val);
break;
case NR:
r1_val &= r2_val;
SetS390BitWiseConditionCode<uint32_t>(r1_val);
break;
case XR:
r1_val ^= r2_val;
SetS390BitWiseConditionCode<uint32_t>(r1_val);
break;
case MR: {
DCHECK(r1 % 2 == 0);
r1_val = get_low_register<int32_t>(r1 + 1);
int64_t product =
static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
int32_t high_bits = product >> 32;
r1_val = high_bits;
int32_t low_bits = product & 0x00000000FFFFFFFF;
set_low_register(r1, high_bits);
set_low_register(r1 + 1, low_bits);
break;
}
case DR: {
// reg-reg pair should be even-odd pair, assert r1 is an even register
DCHECK(r1 % 2 == 0);
// leftmost 32 bits of the dividend are in r1
// rightmost 32 bits of the dividend are in r1+1
// get the signed value from r1
int64_t dividend = static_cast<int64_t>(r1_val) << 32;
// get unsigned value from r1+1
// avoid addition with sign-extended r1+1 value
dividend += get_low_register<uint32_t>(r1 + 1);
int32_t remainder = dividend % r2_val;
int32_t quotient = dividend / r2_val;
r1_val = remainder;
set_low_register(r1, remainder);
set_low_register(r1 + 1, quotient);
break; // reg pair
}
default:
UNREACHABLE();
break;
}
set_low_register(r1, r1_val);
break;
}
case LR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
set_low_register(r1, get_low_register<int32_t>(r2));
break;
}
case LDR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int64_t r2_val = get_d_register(r2);
set_d_register(r1, r2_val);
break;
}
case CR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
int32_t r2_val = get_low_register<int32_t>(r2);
SetS390ConditionCode<int32_t>(r1_val, r2_val);
break;
}
case CLR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
SetS390ConditionCode<uint32_t>(r1_val, r2_val);
break;
}
case BCR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
if (TestConditionCode(Condition(r1))) {
intptr_t r2_val = get_register(r2);
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
// On 31-bit, the top most bit may be 0 or 1, but is ignored by the
// hardware. Cleanse the top bit before jumping to it, unless it's one
// of the special PCs
if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
#endif
set_pc(r2_val);
}
break;
}
case LTR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int32_t r2_val = get_low_register<int32_t>(r2);
SetS390ConditionCode<int32_t>(r2_val, 0);
set_low_register(r1, r2_val);
break;
}
case ALR:
case SLR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
uint32_t alu_out = 0;
bool isOF = false;
if (ALR == op) {
alu_out = r1_val + r2_val;
isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
} else if (SLR == op) {
alu_out = r1_val - r2_val;
isOF = CheckOverflowForUIntSub(r1_val, r2_val);
} else {
UNREACHABLE();
}
set_low_register(r1, alu_out);
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
break;
}
case LNR: {
// Load Negative (32)
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int32_t r2_val = get_low_register<int32_t>(r2);
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
set_low_register(r1, r2_val);
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
// CC1 - result is negative
break;
}
case BASR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
intptr_t link_addr = get_pc() + 2;
// If R2 is zero, the BASR does not branch.
int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
// On 31-bit, the top most bit may be 0 or 1, which can cause issues
// for stackwalker. The top bit should either be cleanse before being
// pushed onto the stack, or during stack walking when dereferenced.
// For simulator, we'll take the worst case scenario and always tag
// the high bit, to flush out more problems.
link_addr |= 0x80000000;
#endif
set_register(r1, link_addr);
set_pc(r2_val);
break;
}
case LCR: {
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
int32_t r2_val = get_low_register<int32_t>(r2);
int32_t original_r2_val = r2_val;
r2_val = ~r2_val;
r2_val = r2_val + 1;
set_low_register(r1, r2_val);
SetS390ConditionCode<int32_t>(r2_val, 0);
// Checks for overflow where r2_val = -2147483648.
// Cannot do int comparison due to GCC 4.8 bug on x86.
// Detect INT_MIN alternatively, as it is the only value where both
// original and result are negative due to overflow.
if (r2_val < 0 && original_r2_val < 0) {
SetS390OverflowCode(true);
}
break;
}
case BKPT: {
set_pc(get_pc() + 2);
S390Debugger dbg(this);
dbg.Debug();
break;
}
default:
UNREACHABLE();
return false;
break;
}
return true;
}
// Decode routine for four-byte instructions
bool Simulator::DecodeFourByte(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
// Pre-cast instruction to various types
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr);
switch (op) {
case POPCNT_Z: {
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r2_val = get_register(r2);
int64_t r1_val = 0;
uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
for (int i = 0; i < 8; i++) {
uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
#if defined(__GNUC__)
r1_val_ptr[i] = __builtin_popcount(x);
#else
#error unsupport __builtin_popcount
#endif
}
set_register(r1, static_cast<uint64_t>(r1_val));
break;
}
case LLGFR: {
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int32_t r2_val = get_low_register<int32_t>(r2);
uint64_t r2_finalval =
(static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
set_register(r1, r2_finalval);
break;
}
case EX: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int r1 = rxinst->R1Value();
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
SixByteInstr the_instr = Instruction::InstructionBits(
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
int length = Instruction::InstructionLength(
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
char new_instr_buf[8];
char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
<< (8 * length - 16);
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
break;
}
case LGR: {
// Load Register (64)
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
set_register(r1, get_register(r2));
break;
}
case LDGR: {
// Load FPR from GPR (L <- 64)
uint64_t int_val = get_register(rreInst->R2Value());
// double double_val = bit_cast<double, uint64_t>(int_val);
// set_d_register_from_double(rreInst->R1Value(), double_val);
set_d_register(rreInst->R1Value(), int_val);
break;
}
case LGDR: {
// Load GPR from FPR (64 <- L)
int64_t double_val = get_d_register(rreInst->R2Value());
set_register(rreInst->R1Value(), double_val);
break;
}
case LTGR: {
// Load Register (64)
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r2_val = get_register(r2);
SetS390ConditionCode<int64_t>(r2_val, 0);
set_register(r1, get_register(r2));
break;
}
case LZDR: {
int r1 = rreInst->R1Value();
set_d_register_from_double(r1, 0.0);
break;
}
case LTEBR: {
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreinst->R1Value();
int r2 = rreinst->R2Value();
int64_t r2_val = get_d_register(r2);
float fr2_val = get_float32_from_d_register(r2);
SetS390ConditionCode<float>(fr2_val, 0.0);
set_d_register(r1, r2_val);
break;
}
case LTDBR: {
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreinst->R1Value();
int r2 = rreinst->R2Value();
int64_t r2_val = get_d_register(r2);
SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
set_d_register(r1, r2_val);
break;
}
case CGR: {
// Compare (64)
int64_t r1_val = get_register(rreInst->R1Value());
int64_t r2_val = get_register(rreInst->R2Value());
SetS390ConditionCode<int64_t>(r1_val, r2_val);
break;
}
case CLGR: {
// Compare Logical (64)
uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value()));
uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value()));
SetS390ConditionCode<uint64_t>(r1_val, r2_val);
break;
}
case LH: {
// Load Halfword
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int r1 = rxinst->R1Value();
int x2 = rxinst->X2Value();
int b2 = rxinst->B2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t d2_val = rxinst->D2Value();
intptr_t mem_addr = x2_val + b2_val + d2_val;
int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
set_low_register(r1, result);
break;
}
case LHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int i = riinst->I2Value();
set_low_register(r1, i);
break;
}
case LGHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int64_t i = riinst->I2Value();
set_register(r1, i);
break;
}
case CHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int16_t i = riinst->I2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
SetS390ConditionCode<int32_t>(r1_val, i);
break;
}
case CGHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int64_t i = static_cast<int64_t>(riinst->I2Value());
int64_t r1_val = get_register(r1);
SetS390ConditionCode<int64_t>(r1_val, i);
break;
}
case BRAS: {
// Branch Relative and Save
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
int r1 = rilInstr->R1Value();
intptr_t d2 = rilInstr->I2Value();
intptr_t pc = get_pc();
// Set PC of next instruction to register
set_register(r1, pc + sizeof(FourByteInstr));
// Update PC to branch target
set_pc(pc + d2 * 2);
break;
}
case BRC: {
// Branch Relative on Condition
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int m1 = riinst->M1Value();
if (TestConditionCode((Condition)m1)) {
intptr_t offset = riinst->I2Value() * 2;
set_pc(get_pc() + offset);
}
break;
}
case BRCT:
case BRCTG: {
// Branch On Count (32/64).
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int64_t value =
(op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1);
if (BRCT == op)
set_low_register(r1, --value);
else
set_register(r1, --value);
// Branch if value != 0
if (value != 0) {
intptr_t offset = riinst->I2Value() * 2;
set_pc(get_pc() + offset);
}
break;
}
case BXH: {
RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsinst->R1Value();
int r3 = rsinst->R3Value();
int b2 = rsinst->B2Value();
int d2 = rsinst->D2Value();
// r1_val is the first operand, r3_val is the increment
int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
intptr_t branch_address = b2_val + d2;
// increment r1_val
r1_val += r3_val;
// if the increment is even, then it designates a pair of registers
// and the contents of the even and odd registers of the pair are used as
// the increment and compare value respectively. If the increment is odd,
// the increment itself is used as both the increment and compare value
int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
if (r1_val > compare_val) {
// branch to address if r1_val is greater than compare value
set_pc(branch_address);
}
// update contents of register in r1 with the new incremented value
set_register(r1, r1_val);
break;
}
case IIHH:
case IIHL:
case IILH:
case IILL: {
UNIMPLEMENTED();
break;
}
case STM:
case LM: {
// Store Multiple 32-bits.
RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsinstr->R1Value();
int r3 = rsinstr->R3Value();
int rb = rsinstr->B2Value();
int offset = rsinstr->D2Value();
// Regs roll around if r3 is less than r1.
// Artifically increase r3 by 16 so we can calculate
// the number of regs stored properly.
if (r3 < r1) r3 += 16;
int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
// Store each register in ascending order.
for (int i = 0; i <= r3 - r1; i++) {
if (op == STM) {
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
WriteW(rb_val + offset + 4 * i, value, instr);
} else if (op == LM) {
int32_t value = ReadW(rb_val + offset + 4 * i, instr);
set_low_register((r1 + i) % 16, value);
}
}
break;
}
case SLL:
case SRL: {
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsInstr->R1Value();
int b2 = rsInstr->B2Value();
intptr_t d2 = rsInstr->D2Value();
// only takes rightmost 6bits
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t alu_out = 0;
if (SLL == op) {
alu_out = r1_val << shiftBits;
} else if (SRL == op) {
alu_out = r1_val >> shiftBits;
} else {
UNREACHABLE();
}
set_low_register(r1, alu_out);
break;
}
case SLDL: {
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsInstr->R1Value();
int b2 = rsInstr->B2Value();
intptr_t d2 = rsInstr->D2Value();
// only takes rightmost 6bits
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
DCHECK(r1 % 2 == 0);
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r1_next_val = get_low_register<uint32_t>(r1 + 1);
uint64_t alu_out = (static_cast<uint64_t>(r1_val) << 32) |
(static_cast<uint64_t>(r1_next_val));
alu_out <<= shiftBits;
set_low_register(r1 + 1, static_cast<uint32_t>(alu_out));
set_low_register(r1, static_cast<uint32_t>(alu_out >> 32));
break;
}
case SLA:
case SRA: {
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsInstr->R1Value();
int b2 = rsInstr->B2Value();
intptr_t d2 = rsInstr->D2Value();
// only takes rightmost 6bits
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
int32_t r1_val = get_low_register<int32_t>(r1);
int32_t alu_out = 0;
bool isOF = false;
if (op == SLA) {
isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
alu_out = r1_val << shiftBits;
} else if (op == SRA) {
alu_out = r1_val >> shiftBits;
}
set_low_register(r1, alu_out);
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
}
case LLHR: {
UNIMPLEMENTED();
break;
}
case LLGHR: {
UNIMPLEMENTED();
break;
}
case L:
case LA:
case LD:
case LE: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int32_t r1 = rxinst->R1Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t addr = b2_val + x2_val + d2_val;
if (op == L) {
int32_t mem_val = ReadW(addr, instr);
set_low_register(r1, mem_val);
} else if (op == LA) {
set_register(r1, addr);
} else if (op == LD) {
int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
set_d_register(r1, dbl_val);
} else if (op == LE) {
float float_val = *reinterpret_cast<float*>(addr);
set_d_register_from_float32(r1, float_val);
}
break;
}
case C:
case CL: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t addr = b2_val + x2_val + d2_val;
int32_t mem_val = ReadW(addr, instr);
if (C == op)
SetS390ConditionCode<int32_t>(r1_val, mem_val);
else if (CL == op)
SetS390ConditionCode<uint32_t>(r1_val, mem_val);
break;
}
case CLI: {
// Compare Immediate (Mem - Imm) (8)
int b1 = siInstr->B1Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t d1_val = siInstr->D1Value();
intptr_t addr = b1_val + d1_val;
uint8_t mem_val = ReadB(addr);
uint8_t imm_val = siInstr->I2Value();
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
break;
}
case TM: {
// Test Under Mask (Mem - Imm) (8)
int b1 = siInstr->B1Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t d1_val = siInstr->D1Value();
intptr_t addr = b1_val + d1_val;
uint8_t mem_val = ReadB(addr);
uint8_t imm_val = siInstr->I2Value();
uint8_t selected_bits = mem_val & imm_val;
// CC0: Selected bits are zero
// CC1: Selected bits mixed zeros and ones
// CC3: Selected bits all ones
if (0 == selected_bits) {
condition_reg_ = CC_EQ; // CC0
} else if (selected_bits == imm_val) {
condition_reg_ = 0x1; // CC3
} else {
condition_reg_ = 0x4; // CC1
}
break;
}
case ST:
case STE:
case STD: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t addr = b2_val + x2_val + d2_val;
if (op == ST) {
WriteW(addr, r1_val, instr);
} else if (op == STD) {
int64_t frs_val = get_d_register(rxinst->R1Value());
WriteDW(addr, frs_val);
} else if (op == STE) {
int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32;
WriteW(addr, static_cast<int32_t>(frs_val), instr);
}
break;
}
case LTGFR:
case LGFR: {
// Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
// Load Register (64 <- 32) (Sign Extends 32-bit val)
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInstr->R1Value();
int r2 = rreInstr->R2Value();
int32_t r2_val = get_low_register<int32_t>(r2);
int64_t result = static_cast<int64_t>(r2_val);
set_register(r1, result);
if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0);
break;
}
case LNGR: {
// Load Negative (64)
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r2_val = get_register(r2);
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
set_register(r1, r2_val);
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
// CC1 - result is negative
break;
}
case TRAP4: {
// whack the space of the caller allocated stack
int64_t sp_addr = get_register(sp);
for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
// we dont want to whack the RA (r14)
if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
}
SoftwareInterrupt(instr);
break;
}
case STC: {
// Store Character/Byte
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t mem_addr = b2_val + x2_val + d2_val;
WriteB(mem_addr, r1_val);
break;
}
case STH: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t mem_addr = b2_val + x2_val + d2_val;
WriteH(mem_addr, r1_val, instr);
break;
}
#if V8_TARGET_ARCH_S390X
case LCGR: {
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r2_val = get_register(r2);
r2_val = ~r2_val;
r2_val = r2_val + 1;
set_register(r1, r2_val);
SetS390ConditionCode<int64_t>(r2_val, 0);
// if the input is INT_MIN, loading its compliment would be overflowing
if (r2_val < 0 && (r2_val + 1) > 0) {
SetS390OverflowCode(true);
}
break;
}
#endif
case SRDA: {
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsInstr->R1Value();
DCHECK(r1 % 2 == 0); // must be a reg pair
int b2 = rsInstr->B2Value();
intptr_t d2 = rsInstr->D2Value();
// only takes rightmost 6bits
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
int64_t r1_val = opnd1 + opnd2;
int64_t alu_out = r1_val >> shiftBits;
set_low_register(r1, alu_out >> 32);
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
SetS390ConditionCode<int32_t>(alu_out, 0);
break;
}
case SRDL: {
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
int r1 = rsInstr->R1Value();
DCHECK(r1 % 2 == 0); // must be a reg pair
int b2 = rsInstr->B2Value();
intptr_t d2 = rsInstr->D2Value();
// only takes rightmost 6bits
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1))
<< 32;
uint64_t opnd2 =
static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
uint64_t r1_val = opnd1 | opnd2;
uint64_t alu_out = r1_val >> shiftBits;
set_low_register(r1, alu_out >> 32);
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
SetS390ConditionCode<int32_t>(alu_out, 0);
break;
}
default: { return DecodeFourByteArithmetic(instr); }
}
return true;
}
bool Simulator::DecodeFourByteArithmetic64Bit(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
switch (op) {
case AGR:
case SGR:
case OGR:
case NGR:
case XGR: {
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r1_val = get_register(r1);
int64_t r2_val = get_register(r2);
bool isOF = false;
switch (op) {
case AGR:
isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
r1_val += r2_val;
SetS390ConditionCode<int64_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
case SGR:
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
r1_val -= r2_val;
SetS390ConditionCode<int64_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
case OGR:
r1_val |= r2_val;
SetS390BitWiseConditionCode<uint64_t>(r1_val);
break;
case NGR:
r1_val &= r2_val;
SetS390BitWiseConditionCode<uint64_t>(r1_val);
break;
case XGR:
r1_val ^= r2_val;
SetS390BitWiseConditionCode<uint64_t>(r1_val);
break;
default:
UNREACHABLE();
break;
}
set_register(r1, r1_val);
break;
}
case AGFR: {
// Add Register (64 <- 32) (Sign Extends 32-bit val)
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r1_val = get_register(r1);
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
r1_val += r2_val;
SetS390ConditionCode<int64_t>(r1_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r1_val);
break;
}
case SGFR: {
// Sub Reg (64 <- 32)
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
int64_t r1_val = get_register(r1);
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
bool isOF = false;
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
r1_val -= r2_val;
SetS390ConditionCode<int64_t>(r1_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r1_val);
break;
}
case AGRK:
case SGRK:
case NGRK:
case OGRK:
case XGRK: {
// 64-bit Non-clobbering arithmetics / bitwise ops.
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int r3 = rrfInst->R3Value();
int64_t r2_val = get_register(r2);
int64_t r3_val = get_register(r3);
if (AGRK == op) {
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int64_t);
SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r2_val + r3_val);
} else if (SGRK == op) {
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int64_t);
SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r2_val - r3_val);
} else {
// Assume bitwise operation here
uint64_t bitwise_result = 0;
if (NGRK == op) {
bitwise_result = r2_val & r3_val;
} else if (OGRK == op) {
bitwise_result = r2_val | r3_val;
} else if (XGRK == op) {
bitwise_result = r2_val ^ r3_val;
}
SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
set_register(r1, bitwise_result);
}
break;
}
case ALGRK:
case SLGRK: {
// 64-bit Non-clobbering unsigned arithmetics
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int r3 = rrfInst->R3Value();
uint64_t r2_val = get_register(r2);
uint64_t r3_val = get_register(r3);
if (ALGRK == op) {
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r2_val + r3_val);
} else if (SLGRK == op) {
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
SetS390OverflowCode(isOF);
set_register(r1, r2_val - r3_val);
}
}
case AGHI:
case MGHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int32_t r1 = riinst->R1Value();
int64_t i = static_cast<int64_t>(riinst->I2Value());
int64_t r1_val = get_register(r1);
bool isOF = false;
switch (op) {
case AGHI:
isOF = CheckOverflowForIntAdd(r1_val, i, int64_t);
r1_val += i;
break;
case MGHI:
isOF = CheckOverflowForMul(r1_val, i);
r1_val *= i;
break; // no overflow indication is given
default:
break;
}
set_register(r1, r1_val);
SetS390ConditionCode<int32_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
}
default:
UNREACHABLE();
}
return true;
}
/**
* Decodes and simulates four byte arithmetic instructions
*/
bool Simulator::DecodeFourByteArithmetic(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
// Pre-cast instruction to various types
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
switch (op) {
case AGR:
case SGR:
case OGR:
case NGR:
case XGR:
case AGFR:
case SGFR: {
DecodeFourByteArithmetic64Bit(instr);
break;
}
case ARK:
case SRK:
case NRK:
case ORK:
case XRK: {
// 32-bit Non-clobbering arithmetics / bitwise ops
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int r3 = rrfInst->R3Value();
int32_t r2_val = get_low_register<int32_t>(r2);
int32_t r3_val = get_low_register<int32_t>(r3);
if (ARK == op) {
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int32_t);
SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
SetS390OverflowCode(isOF);
set_low_register(r1, r2_val + r3_val);
} else if (SRK == op) {
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int32_t);
SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
SetS390OverflowCode(isOF);
set_low_register(r1, r2_val - r3_val);
} else {
// Assume bitwise operation here
uint32_t bitwise_result = 0;
if (NRK == op) {
bitwise_result = r2_val & r3_val;
} else if (ORK == op) {
bitwise_result = r2_val | r3_val;
} else if (XRK == op) {
bitwise_result = r2_val ^ r3_val;
}
SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
set_low_register(r1, bitwise_result);
}
break;
}
case ALRK:
case SLRK: {
// 32-bit Non-clobbering unsigned arithmetics
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int r3 = rrfInst->R3Value();
uint32_t r2_val = get_low_register<uint32_t>(r2);
uint32_t r3_val = get_low_register<uint32_t>(r3);
if (ALRK == op) {
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
SetS390OverflowCode(isOF);
set_low_register(r1, r2_val + r3_val);
} else if (SLRK == op) {
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
SetS390OverflowCode(isOF);
set_low_register(r1, r2_val - r3_val);
}
break;
}
case AGRK:
case SGRK:
case NGRK:
case OGRK:
case XGRK: {
DecodeFourByteArithmetic64Bit(instr);
break;
}
case ALGRK:
case SLGRK: {
DecodeFourByteArithmetic64Bit(instr);
break;
}
case AHI:
case MHI: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int32_t r1 = riinst->R1Value();
int32_t i = riinst->I2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
bool isOF = false;
switch (op) {
case AHI:
isOF = CheckOverflowForIntAdd(r1_val, i, int32_t);
r1_val += i;
break;
case MHI:
isOF = CheckOverflowForMul(r1_val, i);
r1_val *= i;
break; // no overflow indication is given
default:
break;
}
set_low_register(r1, r1_val);
SetS390ConditionCode<int32_t>(r1_val, 0);
SetS390OverflowCode(isOF);
break;
}
case AGHI:
case MGHI: {
DecodeFourByteArithmetic64Bit(instr);
break;
}
case MLR: {
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreinst->R1Value();
int r2 = rreinst->R2Value();
DCHECK(r1 % 2 == 0);
uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
uint64_t product =
static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
int32_t high_bits = product >> 32;
int32_t low_bits = product & 0x00000000FFFFFFFF;
set_low_register(r1, high_bits);
set_low_register(r1 + 1, low_bits);
break;
}
case DLGR: {
#ifdef V8_TARGET_ARCH_S390X
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreinst->R1Value();
int r2 = rreinst->R2Value();
uint64_t r1_val = get_register(r1);
uint64_t r2_val = get_register(r2);
DCHECK(r1 % 2 == 0);
unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
dividend += get_register(r1 + 1);
uint64_t remainder = dividend % r2_val;
uint64_t quotient = dividend / r2_val;
r1_val = remainder;
set_register(r1, remainder);
set_register(r1 + 1, quotient);
#else
UNREACHABLE();
#endif
break;
}
case DLR: {
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreinst->R1Value();
int r2 = rreinst->R2Value();
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
DCHECK(r1 % 2 == 0);
uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
dividend += get_low_register<uint32_t>(r1 + 1);
uint32_t remainder = dividend % r2_val;
uint32_t quotient = dividend / r2_val;
r1_val = remainder;
set_low_register(r1, remainder);
set_low_register(r1 + 1, quotient);
break;
}
case A:
case S:
case M:
case D:
case O:
case N:
case X: {
// 32-bit Reg-Mem instructions
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
int32_t alu_out = 0;
bool isOF = false;
switch (op) {
case A:
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
alu_out = r1_val + mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
case S:
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
alu_out = r1_val - mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
case M:
case D:
UNIMPLEMENTED();
break;
case O:
alu_out = r1_val | mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
case N:
alu_out = r1_val & mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
case X:
alu_out = r1_val ^ mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
default:
UNREACHABLE();
break;
}
set_low_register(r1, alu_out);
break;
}
case OILL:
case OIHL: {
RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riInst->R1Value();
int i = riInst->I2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
if (OILL == op) {
// CC is set based on the 16 bits that are AND'd
SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
} else if (OILH == op) {
// CC is set based on the 16 bits that are AND'd
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
i = i << 16;
} else {
UNIMPLEMENTED();
}
set_low_register(r1, r1_val | i);
break;
}
case NILL:
case NILH: {
RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riInst->R1Value();
int i = riInst->I2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
if (NILL == op) {
// CC is set based on the 16 bits that are AND'd
SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
i |= 0xFFFF0000;
} else if (NILH == op) {
// CC is set based on the 16 bits that are AND'd
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
i = (i << 16) | 0x0000FFFF;
} else {
UNIMPLEMENTED();
}
set_low_register(r1, r1_val & i);
break;
}
case AH:
case SH:
case MH: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxinst->D2Value();
intptr_t addr = b2_val + x2_val + d2_val;
int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
int32_t alu_out = 0;
bool isOF = false;
if (AH == op) {
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
alu_out = r1_val + mem_val;
} else if (SH == op) {
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
alu_out = r1_val - mem_val;
} else if (MH == op) {
alu_out = r1_val * mem_val;
} else {
UNREACHABLE();
}
set_low_register(r1, alu_out);
if (MH != op) { // MH does not change condition code
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
}
break;
}
case DSGR: {
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
DCHECK(r1 % 2 == 0);
int64_t dividend = get_register(r1 + 1);
int64_t divisor = get_register(r2);
set_register(r1, dividend % divisor);
set_register(r1 + 1, dividend / divisor);
break;
}
case FLOGR: {
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
DCHECK(r1 % 2 == 0);
int64_t r2_val = get_register(r2);
int i = 0;
for (; i < 64; i++) {
if (r2_val < 0) break;
r2_val <<= 1;
}
r2_val = get_register(r2);
int64_t mask = ~(1 << (63 - i));
set_register(r1, i);
set_register(r1 + 1, r2_val & mask);
break;
}
case MSR:
case MSGR: { // they do not set overflow code
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
if (op == MSR) {
int32_t r1_val = get_low_register<int32_t>(r1);
int32_t r2_val = get_low_register<int32_t>(r2);
set_low_register(r1, r1_val * r2_val);
} else if (op == MSGR) {
int64_t r1_val = get_register(r1);
int64_t r2_val = get_register(r2);
set_register(r1, r1_val * r2_val);
} else {
UNREACHABLE();
}
break;
}
case MS: {
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
int r1 = rxinst->R1Value();
int b2 = rxinst->B2Value();
int x2 = rxinst->X2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t d2_val = rxinst->D2Value();
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
int32_t r1_val = get_low_register<int32_t>(r1);
set_low_register(r1, r1_val * mem_val);
break;
}
case LGBR:
case LBR: {
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
#ifdef V8_TARGET_ARCH_S390X
int64_t r2_val = get_low_register<int64_t>(r2);
r2_val <<= 56;
r2_val >>= 56;
set_register(r1, r2_val);
#else
int32_t r2_val = get_low_register<int32_t>(r2);
r2_val <<= 24;
r2_val >>= 24;
set_low_register(r1, r2_val);
#endif
break;
}
case LGHR:
case LHR: {
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
#ifdef V8_TARGET_ARCH_S390X
int64_t r2_val = get_low_register<int64_t>(r2);
r2_val <<= 48;
r2_val >>= 48;
set_register(r1, r2_val);
#else
int32_t r2_val = get_low_register<int32_t>(r2);
r2_val <<= 16;
r2_val >>= 16;
set_low_register(r1, r2_val);
#endif
break;
}
case ALCR: {
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
uint32_t alu_out = 0;
bool isOF = false;
alu_out = r1_val + r2_val;
bool isOF_original = CheckOverflowForUIntAdd(r1_val, r2_val);
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
alu_out = alu_out + 1;
isOF = isOF_original || CheckOverflowForUIntAdd(alu_out, 1);
} else {
isOF = isOF_original;
}
set_low_register(r1, alu_out);
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
break;
}
case SLBR: {
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rrinst->R1Value();
int r2 = rrinst->R2Value();
uint32_t r1_val = get_low_register<uint32_t>(r1);
uint32_t r2_val = get_low_register<uint32_t>(r2);
uint32_t alu_out = 0;
bool isOF = false;
alu_out = r1_val - r2_val;
bool isOF_original = CheckOverflowForUIntSub(r1_val, r2_val);
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
alu_out = alu_out - 1;
isOF = isOF_original || CheckOverflowForUIntSub(alu_out, 1);
} else {
isOF = isOF_original;
}
set_low_register(r1, alu_out);
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
break;
}
default: { return DecodeFourByteFloatingPoint(instr); }
}
return true;
}
void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
switch (op) {
case CDLFBR:
case CDLGBR:
case CELGBR:
case CLFDBR:
case CLGDBR:
case CELFBR:
case CLGEBR:
case CLFEBR: {
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInstr->R1Value();
int r2 = rreInstr->R2Value();
if (op == CDLFBR) {
uint32_t r2_val = get_low_register<uint32_t>(r2);
double r1_val = static_cast<double>(r2_val);
set_d_register_from_double(r1, r1_val);
} else if (op == CELFBR) {
uint32_t r2_val = get_low_register<uint32_t>(r2);
float r1_val = static_cast<float>(r2_val);
set_d_register_from_float32(r1, r1_val);
} else if (op == CDLGBR) {
uint64_t r2_val = get_register(r2);
double r1_val = static_cast<double>(r2_val);
set_d_register_from_double(r1, r1_val);
} else if (op == CELGBR) {
uint64_t r2_val = get_register(r2);
float r1_val = static_cast<float>(r2_val);
set_d_register_from_float32(r1, r1_val);
} else if (op == CLFDBR) {
double r2_val = get_double_from_d_register(r2);
uint32_t r1_val = static_cast<uint32_t>(r2_val);
set_low_register(r1, r1_val);
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
} else if (op == CLFEBR) {
float r2_val = get_float32_from_d_register(r2);
uint32_t r1_val = static_cast<uint32_t>(r2_val);
set_low_register(r1, r1_val);
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
} else if (op == CLGDBR) {
double r2_val = get_double_from_d_register(r2);
uint64_t r1_val = static_cast<uint64_t>(r2_val);
set_register(r1, r1_val);
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
} else if (op == CLGEBR) {
float r2_val = get_float32_from_d_register(r2);
uint64_t r1_val = static_cast<uint64_t>(r2_val);
set_register(r1, r1_val);
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
}
break;
}
default:
UNREACHABLE();
}
}
void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInstr->R1Value();
int r2 = rreInstr->R2Value();
double r2_val = get_double_from_d_register(r2);
float r2_fval = get_float32_from_d_register(r2);
switch (op) {
case CFDBR: {
int mask_val = rreInstr->M3Value();
int32_t r1_val = 0;
SetS390RoundConditionCode(r2_val, INT32_MAX, INT32_MIN);
switch (mask_val) {
case CURRENT_ROUNDING_MODE:
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
r1_val = static_cast<int32_t>(r2_val);
break;
}
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
double ceil_val = std::ceil(r2_val);
double floor_val = std::floor(r2_val);
double sub_val1 = std::fabs(r2_val - floor_val);
double sub_val2 = std::fabs(r2_val - ceil_val);
if (sub_val1 > sub_val2) {
r1_val = static_cast<int32_t>(ceil_val);
} else if (sub_val1 < sub_val2) {
r1_val = static_cast<int32_t>(floor_val);
} else { // round away from zero:
if (r2_val > 0.0) {
r1_val = static_cast<int32_t>(ceil_val);
} else {
r1_val = static_cast<int32_t>(floor_val);
}
}
break;
}
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
double ceil_val = std::ceil(r2_val);
double floor_val = std::floor(r2_val);
double sub_val1 = std::fabs(r2_val - floor_val);
double sub_val2 = std::fabs(r2_val - ceil_val);
if (sub_val1 > sub_val2) {
r1_val = static_cast<int32_t>(ceil_val);
} else if (sub_val1 < sub_val2) {
r1_val = static_cast<int32_t>(floor_val);
} else { // check which one is even:
int32_t c_v = static_cast<int32_t>(ceil_val);
int32_t f_v = static_cast<int32_t>(floor_val);
if (f_v % 2 == 0)
r1_val = f_v;
else
r1_val = c_v;
}
break;
}
case ROUND_TOWARD_0: {
// check for overflow, cast r2_val to 64bit integer
// then check value within the range of INT_MIN and INT_MAX
// and set condition code accordingly
int64_t temp = static_cast<int64_t>(r2_val);
if (temp < INT_MIN || temp > INT_MAX) {
condition_reg_ = CC_OF;
}
r1_val = static_cast<int32_t>(r2_val);
break;
}
case ROUND_TOWARD_PLUS_INFINITE: {
r1_val = static_cast<int32_t>(std::ceil(r2_val));
break;
}
case ROUND_TOWARD_MINUS_INFINITE: {
// check for overflow, cast r2_val to 64bit integer
// then check value within the range of INT_MIN and INT_MAX
// and set condition code accordingly
int64_t temp = static_cast<int64_t>(std::floor(r2_val));
if (temp < INT_MIN || temp > INT_MAX) {
condition_reg_ = CC_OF;
}
r1_val = static_cast<int32_t>(std::floor(r2_val));
break;
}
default:
UNREACHABLE();
}
set_low_register(r1, r1_val);
break;
}
case CGDBR: {
int mask_val = rreInstr->M3Value();
int64_t r1_val = 0;
SetS390RoundConditionCode(r2_val, INT64_MAX, INT64_MIN);
switch (mask_val) {
case CURRENT_ROUNDING_MODE:
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
UNIMPLEMENTED();
break;
}
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
double ceil_val = std::ceil(r2_val);
double floor_val = std::floor(r2_val);
if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
r1_val = static_cast<int64_t>(ceil_val);
} else if (std::abs(r2_val - floor_val) <
std::abs(r2_val - ceil_val)) {
r1_val = static_cast<int64_t>(floor_val);
} else { // check which one is even:
int64_t c_v = static_cast<int64_t>(ceil_val);
int64_t f_v = static_cast<int64_t>(floor_val);
if (f_v % 2 == 0)
r1_val = f_v;
else
r1_val = c_v;
}
break;
}
case ROUND_TOWARD_0: {
r1_val = static_cast<int64_t>(r2_val);
break;
}
case ROUND_TOWARD_PLUS_INFINITE: {
r1_val = static_cast<int64_t>(std::ceil(r2_val));
break;
}
case ROUND_TOWARD_MINUS_INFINITE: {
r1_val = static_cast<int64_t>(std::floor(r2_val));
break;
}
default:
UNREACHABLE();
}
set_register(r1, r1_val);
break;
}
case CGEBR: {
int mask_val = rreInstr->M3Value();
int64_t r1_val = 0;
SetS390RoundConditionCode(r2_fval, INT64_MAX, INT64_MIN);
switch (mask_val) {
case CURRENT_ROUNDING_MODE:
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
UNIMPLEMENTED();
break;
}
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
float ceil_val = std::ceil(r2_fval);
float floor_val = std::floor(r2_fval);
if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
r1_val = static_cast<int64_t>(ceil_val);
} else if (std::abs(r2_fval - floor_val) <
std::abs(r2_fval - ceil_val)) {
r1_val = static_cast<int64_t>(floor_val);
} else { // check which one is even:
int64_t c_v = static_cast<int64_t>(ceil_val);
int64_t f_v = static_cast<int64_t>(floor_val);
if (f_v % 2 == 0)
r1_val = f_v;
else
r1_val = c_v;
}
break;
}
case ROUND_TOWARD_0: {
r1_val = static_cast<int64_t>(r2_fval);
break;
}
case ROUND_TOWARD_PLUS_INFINITE: {
r1_val = static_cast<int64_t>(std::ceil(r2_fval));
break;
}
case ROUND_TOWARD_MINUS_INFINITE: {
r1_val = static_cast<int64_t>(std::floor(r2_fval));
break;
}
default:
UNREACHABLE();
}
set_register(r1, r1_val);
break;
}
case CFEBR: {
int mask_val = rreInstr->M3Value();
int32_t r1_val = 0;
SetS390RoundConditionCode(r2_fval, INT32_MAX, INT32_MIN);
switch (mask_val) {
case CURRENT_ROUNDING_MODE:
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
r1_val = static_cast<int32_t>(r2_fval);
break;
}
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
float ceil_val = std::ceil(r2_fval);
float floor_val = std::floor(r2_fval);
float sub_val1 = std::fabs(r2_fval - floor_val);
float sub_val2 = std::fabs(r2_fval - ceil_val);
if (sub_val1 > sub_val2) {
r1_val = static_cast<int32_t>(ceil_val);
} else if (sub_val1 < sub_val2) {
r1_val = static_cast<int32_t>(floor_val);
} else { // round away from zero:
if (r2_fval > 0.0) {
r1_val = static_cast<int32_t>(ceil_val);
} else {
r1_val = static_cast<int32_t>(floor_val);
}
}
break;
}
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
float ceil_val = std::ceil(r2_fval);
float floor_val = std::floor(r2_fval);
float sub_val1 = std::fabs(r2_fval - floor_val);
float sub_val2 = std::fabs(r2_fval - ceil_val);
if (sub_val1 > sub_val2) {
r1_val = static_cast<int32_t>(ceil_val);
} else if (sub_val1 < sub_val2) {
r1_val = static_cast<int32_t>(floor_val);
} else { // check which one is even:
int32_t c_v = static_cast<int32_t>(ceil_val);
int32_t f_v = static_cast<int32_t>(floor_val);
if (f_v % 2 == 0)
r1_val = f_v;
else
r1_val = c_v;
}
break;
}
case ROUND_TOWARD_0: {
// check for overflow, cast r2_fval to 64bit integer
// then check value within the range of INT_MIN and INT_MAX
// and set condition code accordingly
int64_t temp = static_cast<int64_t>(r2_fval);
if (temp < INT_MIN || temp > INT_MAX) {
condition_reg_ = CC_OF;
}
r1_val = static_cast<int32_t>(r2_fval);
break;
}
case ROUND_TOWARD_PLUS_INFINITE: {
r1_val = static_cast<int32_t>(std::ceil(r2_fval));
break;
}
case ROUND_TOWARD_MINUS_INFINITE: {
// check for overflow, cast r2_fval to 64bit integer
// then check value within the range of INT_MIN and INT_MAX
// and set condition code accordingly
int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
if (temp < INT_MIN || temp > INT_MAX) {
condition_reg_ = CC_OF;
}
r1_val = static_cast<int32_t>(std::floor(r2_fval));
break;
}
default:
UNREACHABLE();
}
set_low_register(r1, r1_val);
break;
}
default:
UNREACHABLE();
}
}
/**
* Decodes and simulates four byte floating point instructions
*/
bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
switch (op) {
case ADBR:
case AEBR:
case SDBR:
case SEBR:
case MDBR:
case MEEBR:
case MADBR:
case DDBR:
case DEBR:
case CDBR:
case CEBR:
case CDFBR:
case CDGBR:
case CEGBR:
case CGEBR:
case CFDBR:
case CGDBR:
case SQDBR:
case SQEBR:
case CFEBR:
case CEFBR:
case LCDBR:
case LPDBR:
case LPEBR: {
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInstr->R1Value();
int r2 = rreInstr->R2Value();
double r1_val = get_double_from_d_register(r1);
double r2_val = get_double_from_d_register(r2);
float fr1_val = get_float32_from_d_register(r1);
float fr2_val = get_float32_from_d_register(r2);
if (op == ADBR) {
r1_val += r2_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
} else if (op == AEBR) {
fr1_val += fr2_val;
set_d_register_from_float32(r1, fr1_val);
SetS390ConditionCode<float>(fr1_val, 0);
} else if (op == SDBR) {
r1_val -= r2_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
} else if (op == SEBR) {
fr1_val -= fr2_val;
set_d_register_from_float32(r1, fr1_val);
SetS390ConditionCode<float>(fr1_val, 0);
} else if (op == MDBR) {
r1_val *= r2_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
} else if (op == MEEBR) {
fr1_val *= fr2_val;
set_d_register_from_float32(r1, fr1_val);
SetS390ConditionCode<float>(fr1_val, 0);
} else if (op == MADBR) {
RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr);
int r1 = rrdInstr->R1Value();
int r2 = rrdInstr->R2Value();
int r3 = rrdInstr->R3Value();
double r1_val = get_double_from_d_register(r1);
double r2_val = get_double_from_d_register(r2);
double r3_val = get_double_from_d_register(r3);
r1_val += r2_val * r3_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
} else if (op == DDBR) {
r1_val /= r2_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
} else if (op == DEBR) {
fr1_val /= fr2_val;
set_d_register_from_float32(r1, fr1_val);
SetS390ConditionCode<float>(fr1_val, 0);
} else if (op == CDBR) {
if (isNaN(r1_val) || isNaN(r2_val)) {
condition_reg_ = CC_OF;
} else {
SetS390ConditionCode<double>(r1_val, r2_val);
}
} else if (op == CEBR) {
if (isNaN(fr1_val) || isNaN(fr2_val)) {
condition_reg_ = CC_OF;
} else {
SetS390ConditionCode<float>(fr1_val, fr2_val);
}
} else if (op == CDGBR) {
int64_t r2_val = get_register(r2);
double r1_val = static_cast<double>(r2_val);
set_d_register_from_double(r1, r1_val);
} else if (op == CEGBR) {
int64_t fr2_val = get_register(r2);
float fr1_val = static_cast<float>(fr2_val);
set_d_register_from_float32(r1, fr1_val);
} else if (op == CDFBR) {
int32_t r2_val = get_low_register<int32_t>(r2);
double r1_val = static_cast<double>(r2_val);
set_d_register_from_double(r1, r1_val);
} else if (op == CEFBR) {
int32_t fr2_val = get_low_register<int32_t>(r2);
float fr1_val = static_cast<float>(fr2_val);
set_d_register_from_float32(r1, fr1_val);
} else if (op == CFDBR) {
DecodeFourByteFloatingPointRound(instr);
} else if (op == CGDBR) {
DecodeFourByteFloatingPointRound(instr);
} else if (op == CGEBR) {
DecodeFourByteFloatingPointRound(instr);
} else if (op == SQDBR) {
r1_val = std::sqrt(r2_val);
set_d_register_from_double(r1, r1_val);
} else if (op == SQEBR) {
fr1_val = std::sqrt(fr2_val);
set_d_register_from_float32(r1, fr1_val);
} else if (op == CFEBR) {
DecodeFourByteFloatingPointRound(instr);
} else if (op == LCDBR) {
r1_val = -r2_val;
set_d_register_from_double(r1, r1_val);
if (r2_val != r2_val) { // input is NaN
condition_reg_ = CC_OF;
} else if (r2_val == 0) {
condition_reg_ = CC_EQ;
} else if (r2_val < 0) {
condition_reg_ = CC_LT;
} else if (r2_val > 0) {
condition_reg_ = CC_GT;
}
} else if (op == LPDBR) {
r1_val = std::fabs(r2_val);
set_d_register_from_double(r1, r1_val);
if (r2_val != r2_val) { // input is NaN
condition_reg_ = CC_OF;
} else if (r2_val == 0) {
condition_reg_ = CC_EQ;
} else {
condition_reg_ = CC_GT;
}
} else if (op == LPEBR) {
fr1_val = std::fabs(fr2_val);
set_d_register_from_float32(r1, fr1_val);
if (fr2_val != fr2_val) { // input is NaN
condition_reg_ = CC_OF;
} else if (fr2_val == 0) {
condition_reg_ = CC_EQ;
} else {
condition_reg_ = CC_GT;
}
} else {
UNREACHABLE();
}
break;
}
case CDLFBR:
case CDLGBR:
case CELGBR:
case CLFDBR:
case CELFBR:
case CLGDBR:
case CLGEBR:
case CLFEBR: {
DecodeFourByteFloatingPointIntConversion(instr);
break;
}
case TMLL: {
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
int r1 = riinst->R1Value();
int mask = riinst->I2Value() & 0x0000FFFF;
if (mask == 0) {
condition_reg_ = 0x0;
break;
}
uint32_t r1_val = get_low_register<uint32_t>(r1);
r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits
// Test if all selected bits are Zero
bool allSelectedBitsAreZeros = true;
for (int i = 0; i < 15; i++) {
if (mask & (1 << i)) {
if (r1_val & (1 << i)) {
allSelectedBitsAreZeros = false;
break;
}
}
}
if (allSelectedBitsAreZeros) {
condition_reg_ = 0x8;
break; // Done!
}
// Test if all selected bits are one
bool allSelectedBitsAreOnes = true;
for (int i = 0; i < 15; i++) {
if (mask & (1 << i)) {
if (!(r1_val & (1 << i))) {
allSelectedBitsAreOnes = false;
break;
}
}
}
if (allSelectedBitsAreOnes) {
condition_reg_ = 0x1;
break; // Done!
}
// Now we know selected bits mixed zeros and ones
// Test if the leftmost bit is zero or one
for (int i = 14; i >= 0; i--) {
if (mask & (1 << i)) {
if (r1_val & (1 << i)) {
// leftmost bit is one
condition_reg_ = 0x2;
} else {
// leftmost bit is zero
condition_reg_ = 0x4;
}
break; // Done!
}
}
break;
}
case LEDBR: {
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInst->R1Value();
int r2 = rreInst->R2Value();
double r2_val = get_double_from_d_register(r2);
set_d_register_from_float32(r1, static_cast<float>(r2_val));
break;
}
case FIDBRA: {
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int m3 = rrfInst->M3Value();
double r2_val = get_double_from_d_register(r2);
DCHECK(rrfInst->M4Value() == 0);
switch (m3) {
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
set_d_register_from_double(r1, round(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_0:
set_d_register_from_double(r1, trunc(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
set_d_register_from_double(r1, std::ceil(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
set_d_register_from_double(r1, std::floor(r2_val));
break;
default:
UNIMPLEMENTED();
break;
}
break;
}
case FIEBRA: {
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
int r1 = rrfInst->R1Value();
int r2 = rrfInst->R2Value();
int m3 = rrfInst->M3Value();
float r2_val = get_float32_from_d_register(r2);
DCHECK(rrfInst->M4Value() == 0);
switch (m3) {
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
set_d_register_from_float32(r1, round(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_0:
set_d_register_from_float32(r1, trunc(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
set_d_register_from_float32(r1, std::ceil(r2_val));
break;
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
set_d_register_from_float32(r1, std::floor(r2_val));
break;
default:
UNIMPLEMENTED();
break;
}
break;
}
case MSDBR: {
UNIMPLEMENTED();
break;
}
case LDEBR: {
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
int r1 = rreInstr->R1Value();
int r2 = rreInstr->R2Value();
float fp_val = get_float32_from_d_register(r2);
double db_val = static_cast<double>(fp_val);
set_d_register_from_double(r1, db_val);
break;
}
default: {
UNREACHABLE();
return false;
}
}
return true;
}
// Decode routine for six-byte instructions
bool Simulator::DecodeSixByte(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
// Pre-cast instruction to various types
RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr);
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr);
SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
switch (op) {
case CLIY: {
// Compare Immediate (Mem - Imm) (8)
int b1 = siyInstr->B1Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t d1_val = siyInstr->D1Value();
intptr_t addr = b1_val + d1_val;
uint8_t mem_val = ReadB(addr);
uint8_t imm_val = siyInstr->I2Value();
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
break;
}
case TMY: {
// Test Under Mask (Mem - Imm) (8)
int b1 = siyInstr->B1Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t d1_val = siyInstr->D1Value();
intptr_t addr = b1_val + d1_val;
uint8_t mem_val = ReadB(addr);
uint8_t imm_val = siyInstr->I2Value();
uint8_t selected_bits = mem_val & imm_val;
// CC0: Selected bits are zero
// CC1: Selected bits mixed zeros and ones
// CC3: Selected bits all ones
if (0 == selected_bits) {
condition_reg_ = CC_EQ; // CC0
} else if (selected_bits == imm_val) {
condition_reg_ = 0x1; // CC3
} else {
condition_reg_ = 0x4; // CC1
}
break;
}
case LDEB: {
// Load Float
int r1 = rxeInstr->R1Value();
int rb = rxeInstr->B2Value();
int rx = rxeInstr->X2Value();
int offset = rxeInstr->D2Value();
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
double ret = static_cast<double>(
*reinterpret_cast<float*>(rx_val + rb_val + offset));
set_d_register_from_double(r1, ret);
break;
}
case LAY: {
// Load Address
int r1 = rxyInstr->R1Value();
int rb = rxyInstr->B2Value();
int rx = rxyInstr->X2Value();
int offset = rxyInstr->D2Value();
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
set_register(r1, rx_val + rb_val + offset);
break;
}
case LARL: {
// Load Addresss Relative Long
int r1 = rilInstr->R1Value();
intptr_t offset = rilInstr->I2Value() * 2;
set_register(r1, get_pc() + offset);
break;
}
case LLILF: {
// Load Logical into lower 32-bits (zero extend upper 32-bits)
int r1 = rilInstr->R1Value();
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
set_register(r1, imm);
break;
}
case LLIHF: {
// Load Logical Immediate into high word
int r1 = rilInstr->R1Value();
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
set_register(r1, imm << 32);
break;
}
case OILF:
case NILF:
case IILF: {
// Bitwise Op on lower 32-bits
int r1 = rilInstr->R1Value();
uint32_t imm = rilInstr->I2UnsignedValue();
uint32_t alu_out = get_low_register<uint32_t>(r1);
if (NILF == op) {
alu_out &= imm;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (OILF == op) {
alu_out |= imm;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == IILF) {
alu_out = imm;
} else {
DCHECK(false);
}
set_low_register(r1, alu_out);
break;
}
case OIHF:
case NIHF:
case IIHF: {
// Bitwise Op on upper 32-bits
int r1 = rilInstr->R1Value();
uint32_t imm = rilInstr->I2Value();
uint32_t alu_out = get_high_register<uint32_t>(r1);
if (op == NIHF) {
alu_out &= imm;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == OIHF) {
alu_out |= imm;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == IIHF) {
alu_out = imm;
} else {
DCHECK(false);
}
set_high_register(r1, alu_out);
break;
}
case CLFI: {
// Compare Logical with Immediate (32)
int r1 = rilInstr->R1Value();
uint32_t imm = rilInstr->I2UnsignedValue();
SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
break;
}
case CFI: {
// Compare with Immediate (32)
int r1 = rilInstr->R1Value();
int32_t imm = rilInstr->I2Value();
SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
break;
}
case CLGFI: {
// Compare Logical with Immediate (64)
int r1 = rilInstr->R1Value();
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
SetS390ConditionCode<uint64_t>(get_register(r1), imm);
break;
}
case CGFI: {
// Compare with Immediate (64)
int r1 = rilInstr->R1Value();
int64_t imm = static_cast<int64_t>(rilInstr->I2Value());
SetS390ConditionCode<int64_t>(get_register(r1), imm);
break;
}
case BRASL: {
// Branch and Save Relative Long
int r1 = rilInstr->R1Value();
intptr_t d2 = rilInstr->I2Value();
intptr_t pc = get_pc();
set_register(r1, pc + 6); // save next instruction to register
set_pc(pc + d2 * 2); // update register
break;
}
case BRCL: {
// Branch on Condition Relative Long
Condition m1 = (Condition)rilInstr->R1Value();
if (TestConditionCode((Condition)m1)) {
intptr_t offset = rilInstr->I2Value() * 2;
set_pc(get_pc() + offset);
}
break;
}
case LMG:
case STMG: {
// Store Multiple 64-bits.
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int rb = rsyInstr->B2Value();
int offset = rsyInstr->D2Value();
// Regs roll around if r3 is less than r1.
// Artifically increase r3 by 16 so we can calculate
// the number of regs stored properly.
if (r3 < r1) r3 += 16;
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
// Store each register in ascending order.
for (int i = 0; i <= r3 - r1; i++) {
if (op == LMG) {
int64_t value = ReadDW(rb_val + offset + 8 * i);
set_register((r1 + i) % 16, value);
} else if (op == STMG) {
int64_t value = get_register((r1 + i) % 16);
WriteDW(rb_val + offset + 8 * i, value);
} else {
DCHECK(false);
}
}
break;
}
case SLLK:
case RLL:
case SRLK:
case SLLG:
case RLLG:
case SRLG: {
DecodeSixByteBitShift(instr);
break;
}
case SLAK:
case SRAK: {
// 32-bit non-clobbering shift-left/right arithmetic
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int b2 = rsyInstr->B2Value();
intptr_t d2 = rsyInstr->D2Value();
// only takes rightmost 6 bits
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
int32_t r3_val = get_low_register<int32_t>(r3);
int32_t alu_out = 0;
bool isOF = false;
if (op == SLAK) {
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
alu_out = r3_val << shiftBits;
} else if (op == SRAK) {
alu_out = r3_val >> shiftBits;
}
set_low_register(r1, alu_out);
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
}
case SLAG:
case SRAG: {
// 64-bit non-clobbering shift-left/right arithmetic
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int b2 = rsyInstr->B2Value();
intptr_t d2 = rsyInstr->D2Value();
// only takes rightmost 6 bits
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
int64_t r3_val = get_register(r3);
intptr_t alu_out = 0;
bool isOF = false;
if (op == SLAG) {
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
alu_out = r3_val << shiftBits;
} else if (op == SRAG) {
alu_out = r3_val >> shiftBits;
}
set_register(r1, alu_out);
SetS390ConditionCode<intptr_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
}
case LMY:
case STMY: {
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
// Load/Store Multiple (32)
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int b2 = rsyInstr->B2Value();
int offset = rsyInstr->D2Value();
// Regs roll around if r3 is less than r1.
// Artifically increase r3 by 16 so we can calculate
// the number of regs stored properly.
if (r3 < r1) r3 += 16;
int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
// Store each register in ascending order.
for (int i = 0; i <= r3 - r1; i++) {
if (op == LMY) {
int32_t value = ReadW(b2_val + offset + 4 * i, instr);
set_low_register((r1 + i) % 16, value);
} else {
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
WriteW(b2_val + offset + 4 * i, value, instr);
}
}
break;
}
case LT:
case LTG: {
// Load and Test (32/64)
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t addr = x2_val + b2_val + d2;
if (op == LT) {
int32_t value = ReadW(addr, instr);
set_low_register(r1, value);
SetS390ConditionCode<int32_t>(value, 0);
} else if (op == LTG) {
int64_t value = ReadDW(addr);
set_register(r1, value);
SetS390ConditionCode<int64_t>(value, 0);
}
break;
}
case LY:
case LB:
case LGB:
case LG:
case LGF:
case LGH:
case LLGF:
case STG:
case STY:
case STCY:
case STHY:
case STEY:
case LDY:
case LHY:
case STDY:
case LEY: {
// Miscellaneous Loads and Stores
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t addr = x2_val + b2_val + d2;
if (op == LY) {
uint32_t mem_val = ReadWU(addr, instr);
set_low_register(r1, mem_val);
} else if (op == LB) {
int32_t mem_val = ReadB(addr);
set_low_register(r1, mem_val);
} else if (op == LGB) {
int64_t mem_val = ReadB(addr);
set_register(r1, mem_val);
} else if (op == LG) {
int64_t mem_val = ReadDW(addr);
set_register(r1, mem_val);
} else if (op == LGF) {
int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
set_register(r1, mem_val);
} else if (op == LGH) {
int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
set_register(r1, mem_val);
} else if (op == LLGF) {
// int r1 = rreInst->R1Value();
// int r2 = rreInst->R2Value();
// int32_t r2_val = get_low_register<int32_t>(r2);
// uint64_t r2_finalval = (static_cast<uint64_t>(r2_val)
// & 0x00000000ffffffff);
// set_register(r1, r2_finalval);
// break;
uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
set_register(r1, mem_val);
} else if (op == LDY) {
uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
set_d_register(r1, dbl_val);
} else if (op == STEY) {
int64_t frs_val = get_d_register(r1) >> 32;
WriteW(addr, static_cast<int32_t>(frs_val), instr);
} else if (op == LEY) {
float float_val = *reinterpret_cast<float*>(addr);
set_d_register_from_float32(r1, float_val);
} else if (op == STY) {
uint32_t value = get_low_register<uint32_t>(r1);
WriteW(addr, value, instr);
} else if (op == STG) {
uint64_t value = get_register(r1);
WriteDW(addr, value);
} else if (op == STDY) {
int64_t frs_val = get_d_register(r1);
WriteDW(addr, frs_val);
} else if (op == STCY) {
uint8_t value = get_low_register<uint32_t>(r1);
WriteB(addr, value);
} else if (op == STHY) {
uint16_t value = get_low_register<uint32_t>(r1);
WriteH(addr, value, instr);
} else if (op == LHY) {
int32_t result = static_cast<int32_t>(ReadH(addr, instr));
set_low_register(r1, result);
}
break;
}
case MVC: {
// Move Character
int b1 = ssInstr->B1Value();
intptr_t d1 = ssInstr->D1Value();
int b2 = ssInstr->B2Value();
intptr_t d2 = ssInstr->D2Value();
int length = ssInstr->Length();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t src_addr = b2_val + d2;
intptr_t dst_addr = b1_val + d1;
// remember that the length is the actual length - 1
for (int i = 0; i < length + 1; ++i) {
WriteB(dst_addr++, ReadB(src_addr++));
}
break;
}
case MVHI: {
// Move Integer (32)
int b1 = silInstr->B1Value();
intptr_t d1 = silInstr->D1Value();
int16_t i2 = silInstr->I2Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t src_addr = b1_val + d1;
WriteW(src_addr, i2, instr);
break;
}
case MVGHI: {
// Move Integer (64)
int b1 = silInstr->B1Value();
intptr_t d1 = silInstr->D1Value();
int16_t i2 = silInstr->I2Value();
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
intptr_t src_addr = b1_val + d1;
WriteDW(src_addr, i2);
break;
}
case LLH:
case LLGH: {
// Load Logical Halfworld
int r1 = rxyInstr->R1Value();
int b2 = rxyInstr->B2Value();
int x2 = rxyInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxyInstr->D2Value();
uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
if (op == LLH) {
set_low_register(r1, mem_val);
} else if (op == LLGH) {
set_register(r1, mem_val);
} else {
UNREACHABLE();
}
break;
}
case LLC:
case LLGC: {
// Load Logical Character - loads a byte and zero extends.
int r1 = rxyInstr->R1Value();
int b2 = rxyInstr->B2Value();
int x2 = rxyInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxyInstr->D2Value();
uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val);
if (op == LLC) {
set_low_register(r1, static_cast<uint32_t>(mem_val));
} else if (op == LLGC) {
set_register(r1, static_cast<uint64_t>(mem_val));
} else {
UNREACHABLE();
}
break;
}
case XIHF:
case XILF: {
int r1 = rilInstr->R1Value();
uint32_t imm = rilInstr->I2UnsignedValue();
uint32_t alu_out = 0;
if (op == XILF) {
alu_out = get_low_register<uint32_t>(r1);
alu_out = alu_out ^ imm;
set_low_register(r1, alu_out);
} else if (op == XIHF) {
alu_out = get_high_register<uint32_t>(r1);
alu_out = alu_out ^ imm;
set_high_register(r1, alu_out);
} else {
UNREACHABLE();
}
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
}
case RISBG: {
// Rotate then insert selected bits
int r1 = rieInstr->R1Value();
int r2 = rieInstr->R2Value();
// Starting Bit Position is Bits 2-7 of I3 field
uint32_t start_bit = rieInstr->I3Value() & 0x3F;
// Ending Bit Position is Bits 2-7 of I4 field
uint32_t end_bit = rieInstr->I4Value() & 0x3F;
// Shift Amount is Bits 2-7 of I5 field
uint32_t shift_amount = rieInstr->I5Value() & 0x3F;
// Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80));
uint64_t src_val = get_register(r2);
// Rotate Left by Shift Amount first
uint64_t rotated_val =
(src_val << shift_amount) | (src_val >> (64 - shift_amount));
int32_t width = end_bit - start_bit + 1;
uint64_t selection_mask = 0;
if (width < 64) {
selection_mask = (static_cast<uint64_t>(1) << width) - 1;
} else {
selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
}
selection_mask = selection_mask << (63 - end_bit);
uint64_t selected_val = rotated_val & selection_mask;
if (!zero_remaining) {
// Merged the unselected bits from the original value
selected_val = (src_val & ~selection_mask) | selected_val;
}
// Condition code is set by treating result as 64-bit signed int
SetS390ConditionCode<int64_t>(selected_val, 0);
set_register(r1, selected_val);
break;
}
default:
return DecodeSixByteArithmetic(instr);
}
return true;
}
void Simulator::DecodeSixByteBitShift(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
// Pre-cast instruction to various types
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
switch (op) {
case SLLK:
case RLL:
case SRLK: {
// For SLLK/SRLL, the 32-bit third operand is shifted the number
// of bits specified by the second-operand address, and the result is
// placed at the first-operand location. Except for when the R1 and R3
// fields designate the same register, the third operand remains
// unchanged in general register R3.
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int b2 = rsyInstr->B2Value();
intptr_t d2 = rsyInstr->D2Value();
// only takes rightmost 6 bits
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
// unsigned
uint32_t r3_val = get_low_register<uint32_t>(r3);
uint32_t alu_out = 0;
if (SLLK == op) {
alu_out = r3_val << shiftBits;
} else if (SRLK == op) {
alu_out = r3_val >> shiftBits;
} else if (RLL == op) {
uint32_t rotateBits = r3_val >> (32 - shiftBits);
alu_out = (r3_val << shiftBits) | (rotateBits);
} else {
UNREACHABLE();
}
set_low_register(r1, alu_out);
break;
}
case SLLG:
case RLLG:
case SRLG: {
// For SLLG/SRLG, the 64-bit third operand is shifted the number
// of bits specified by the second-operand address, and the result is
// placed at the first-operand location. Except for when the R1 and R3
// fields designate the same register, the third operand remains
// unchanged in general register R3.
int r1 = rsyInstr->R1Value();
int r3 = rsyInstr->R3Value();
int b2 = rsyInstr->B2Value();
intptr_t d2 = rsyInstr->D2Value();
// only takes rightmost 6 bits
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int shiftBits = (b2_val + d2) & 0x3F;
// unsigned
uint64_t r3_val = get_register(r3);
uint64_t alu_out = 0;
if (op == SLLG) {
alu_out = r3_val << shiftBits;
} else if (op == SRLG) {
alu_out = r3_val >> shiftBits;
} else if (op == RLLG) {
uint64_t rotateBits = r3_val >> (64 - shiftBits);
alu_out = (r3_val << shiftBits) | (rotateBits);
} else {
UNREACHABLE();
}
set_register(r1, alu_out);
break;
}
default:
UNREACHABLE();
}
}
/**
* Decodes and simulates six byte arithmetic instructions
*/
bool Simulator::DecodeSixByteArithmetic(Instruction* instr) {
Opcode op = instr->S390OpcodeValue();
// Pre-cast instruction to various types
SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
switch (op) {
case CDB:
case ADB:
case SDB:
case MDB:
case DDB:
case SQDB: {
RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
int b2 = rxeInstr->B2Value();
int x2 = rxeInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxeInstr->D2Value();
double r1_val = get_double_from_d_register(rxeInstr->R1Value());
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
switch (op) {
case CDB:
SetS390ConditionCode<double>(r1_val, dbl_val);
break;
case ADB:
r1_val += dbl_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
break;
case SDB:
r1_val -= dbl_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
break;
case MDB:
r1_val *= dbl_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
break;
case DDB:
r1_val /= dbl_val;
set_d_register_from_double(r1, r1_val);
SetS390ConditionCode<double>(r1_val, 0);
break;
case SQDB:
r1_val = std::sqrt(dbl_val);
set_d_register_from_double(r1, r1_val);
default:
UNREACHABLE();
break;
}
break;
}
case LRV:
case LRVH:
case STRV:
case STRVH: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int32_t r1_val = get_low_register<int32_t>(r1);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
intptr_t mem_addr = b2_val + x2_val + d2;
if (op == LRVH) {
int16_t mem_val = ReadH(mem_addr, instr);
int32_t result = ByteReverse(mem_val) & 0x0000ffff;
result |= r1_val & 0xffff0000;
set_low_register(r1, result);
} else if (op == LRV) {
int32_t mem_val = ReadW(mem_addr, instr);
set_low_register(r1, ByteReverse(mem_val));
} else if (op == STRVH) {
int16_t result = static_cast<int16_t>(r1_val >> 16);
WriteH(mem_addr, ByteReverse(result), instr);
} else if (op == STRV) {
WriteW(mem_addr, ByteReverse(r1_val), instr);
}
break;
}
case AHIK:
case AGHIK: {
// Non-clobbering Add Halfword Immediate
RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr);
int r1 = rieInst->R1Value();
int r2 = rieInst->R2Value();
bool isOF = false;
if (AHIK == op) {
// 32-bit Add
int32_t r2_val = get_low_register<int32_t>(r2);
int32_t imm = rieInst->I6Value();
isOF = CheckOverflowForIntAdd(r2_val, imm, int32_t);
set_low_register(r1, r2_val + imm);
SetS390ConditionCode<int32_t>(r2_val + imm, 0);
} else if (AGHIK == op) {
// 64-bit Add
int64_t r2_val = get_register(r2);
int64_t imm = static_cast<int64_t>(rieInst->I6Value());
isOF = CheckOverflowForIntAdd(r2_val, imm, int64_t);
set_register(r1, r2_val + imm);
SetS390ConditionCode<int64_t>(r2_val + imm, 0);
}
SetS390OverflowCode(isOF);
break;
}
case ALFI:
case SLFI: {
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
int r1 = rilInstr->R1Value();
uint32_t imm = rilInstr->I2UnsignedValue();
uint32_t alu_out = get_low_register<uint32_t>(r1);
if (op == ALFI) {
alu_out += imm;
} else if (op == SLFI) {
alu_out -= imm;
}
SetS390ConditionCode<uint32_t>(alu_out, 0);
set_low_register(r1, alu_out);
break;
}
case ML: {
UNIMPLEMENTED();
break;
}
case AY:
case SY:
case NY:
case OY:
case XY:
case CY: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int32_t alu_out = get_low_register<int32_t>(r1);
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
bool isOF = false;
if (op == AY) {
isOF = CheckOverflowForIntAdd(alu_out, mem_val, int32_t);
alu_out += mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
} else if (op == SY) {
isOF = CheckOverflowForIntSub(alu_out, mem_val, int32_t);
alu_out -= mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
} else if (op == NY) {
alu_out &= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == OY) {
alu_out |= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == XY) {
alu_out ^= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
} else if (op == CY) {
SetS390ConditionCode<int32_t>(alu_out, mem_val);
}
if (op != CY) {
set_low_register(r1, alu_out);
}
break;
}
case AHY:
case SHY: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value());
int b2 = rxyInstr->B2Value();
int x2 = rxyInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxyInstr->D2Value();
int32_t mem_val =
static_cast<int32_t>(ReadH(b2_val + d2_val + x2_val, instr));
int32_t alu_out = 0;
bool isOF = false;
switch (op) {
case AHY:
alu_out = r1_val + mem_val;
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
break;
case SHY:
alu_out = r1_val - mem_val;
isOF = CheckOverflowForIntSub(r1_val, mem_val, int64_t);
break;
default:
UNREACHABLE();
break;
}
set_low_register(r1, alu_out);
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
break;
}
case AG:
case SG:
case NG:
case OG:
case XG:
case CG:
case CLG: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t alu_out = get_register(r1);
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
switch (op) {
case AG: {
alu_out += mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
break;
}
case SG: {
alu_out -= mem_val;
SetS390ConditionCode<int32_t>(alu_out, 0);
break;
}
case NG: {
alu_out &= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
}
case OG: {
alu_out |= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
}
case XG: {
alu_out ^= mem_val;
SetS390BitWiseConditionCode<uint32_t>(alu_out);
break;
}
case CG: {
SetS390ConditionCode<int64_t>(alu_out, mem_val);
break;
}
case CLG: {
SetS390ConditionCode<uint64_t>(alu_out, mem_val);
break;
}
default: {
DCHECK(false);
break;
}
}
if (op != CG) {
set_register(r1, alu_out);
}
break;
}
case ALY:
case SLY:
case CLY: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
int x2 = rxyInstr->X2Value();
int b2 = rxyInstr->B2Value();
int d2 = rxyInstr->D2Value();
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
uint32_t alu_out = get_low_register<uint32_t>(r1);
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
if (op == ALY) {
alu_out += mem_val;
set_low_register(r1, alu_out);
SetS390ConditionCode<uint32_t>(alu_out, 0);
} else if (op == SLY) {
alu_out -= mem_val;
set_low_register(r1, alu_out);
SetS390ConditionCode<uint32_t>(alu_out, 0);
} else if (op == CLY) {
SetS390ConditionCode<uint32_t>(alu_out, mem_val);
}
break;
}
case AGFI:
case AFI: {
// Clobbering Add Word Immediate
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
int32_t r1 = rilInstr->R1Value();
bool isOF = false;
if (AFI == op) {
// 32-bit Add (Register + 32-bit Immediate)
int32_t r1_val = get_low_register<int32_t>(r1);
int32_t i2 = rilInstr->I2Value();
isOF = CheckOverflowForIntAdd(r1_val, i2, int32_t);
int32_t alu_out = r1_val + i2;
set_low_register(r1, alu_out);
SetS390ConditionCode<int32_t>(alu_out, 0);
} else if (AGFI == op) {
// 64-bit Add (Register + 32-bit Imm)
int64_t r1_val = get_register(r1);
int64_t i2 = static_cast<int64_t>(rilInstr->I2Value());
isOF = CheckOverflowForIntAdd(r1_val, i2, int64_t);
int64_t alu_out = r1_val + i2;
set_register(r1, alu_out);
SetS390ConditionCode<int64_t>(alu_out, 0);
}
SetS390OverflowCode(isOF);
break;
}
case ASI: {
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
// The below static cast to 8 bit and then to 32 bit is necessary
// because siyInstr->I2Value() returns a uint8_t, which a direct
// cast to int32_t could incorrectly interpret.
int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
int32_t i2 = static_cast<int32_t>(i2_8bit);
int b1 = siyInstr->B1Value();
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
int d1_val = siyInstr->D1Value();
intptr_t addr = b1_val + d1_val;
int32_t mem_val = ReadW(addr, instr);
bool isOF = CheckOverflowForIntAdd(mem_val, i2, int32_t);
int32_t alu_out = mem_val + i2;
SetS390ConditionCode<int32_t>(alu_out, 0);
SetS390OverflowCode(isOF);
WriteW(addr, alu_out, instr);
break;
}
case AGSI: {
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
// The below static cast to 8 bit and then to 32 bit is necessary
// because siyInstr->I2Value() returns a uint8_t, which a direct
// cast to int32_t could incorrectly interpret.
int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
int64_t i2 = static_cast<int64_t>(i2_8bit);
int b1 = siyInstr->B1Value();
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
int d1_val = siyInstr->D1Value();
intptr_t addr = b1_val + d1_val;
int64_t mem_val = ReadDW(addr);
int isOF = CheckOverflowForIntAdd(mem_val, i2, int64_t);
int64_t alu_out = mem_val + i2;
SetS390ConditionCode<uint64_t>(alu_out, 0);
SetS390OverflowCode(isOF);
WriteDW(addr, alu_out);
break;
}
case AGF:
case SGF:
case ALG:
case SLG: {
#ifndef V8_TARGET_ARCH_S390X
DCHECK(false);
#endif
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
uint64_t r1_val = get_register(rxyInstr->R1Value());
int b2 = rxyInstr->B2Value();
int x2 = rxyInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxyInstr->D2Value();
uint64_t alu_out = r1_val;
if (op == ALG) {
uint64_t mem_val =
static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
alu_out += mem_val;
SetS390ConditionCode<uint64_t>(alu_out, 0);
} else if (op == SLG) {
uint64_t mem_val =
static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
alu_out -= mem_val;
SetS390ConditionCode<uint64_t>(alu_out, 0);
} else if (op == AGF) {
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
alu_out += mem_val;
SetS390ConditionCode<int64_t>(alu_out, 0);
} else if (op == SGF) {
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
alu_out -= mem_val;
SetS390ConditionCode<int64_t>(alu_out, 0);
} else {
DCHECK(false);
}
set_register(r1, alu_out);
break;
}
case ALGFI:
case SLGFI: {
#ifndef V8_TARGET_ARCH_S390X
// should only be called on 64bit
DCHECK(false);
#endif
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
int r1 = rilInstr->R1Value();
uint32_t i2 = rilInstr->I2UnsignedValue();
uint64_t r1_val = (uint64_t)(get_register(r1));
uint64_t alu_out;
if (op == ALGFI)
alu_out = r1_val + i2;
else
alu_out = r1_val - i2;
set_register(r1, (intptr_t)alu_out);
SetS390ConditionCode<uint64_t>(alu_out, 0);
break;
}
case MSY:
case MSG: {
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
int r1 = rxyInstr->R1Value();
int b2 = rxyInstr->B2Value();
int x2 = rxyInstr->X2Value();
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
intptr_t d2_val = rxyInstr->D2Value();
if (op == MSY) {
int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
int32_t r1_val = get_low_register<int32_t>(r1);
set_low_register(r1, mem_val * r1_val);
} else if (op == MSG) {
int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
int64_t r1_val = get_register(r1);
set_register(r1, mem_val * r1_val);
} else {
UNREACHABLE();
}
break;
}
case MSFI:
case MSGFI: {
RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr);
int r1 = rilinst->R1Value();
int32_t i2 = rilinst->I2Value();
if (op == MSFI) {
int32_t alu_out = get_low_register<int32_t>(r1);
alu_out = alu_out * i2;
set_low_register(r1, alu_out);
} else if (op == MSGFI) {
int64_t alu_out = get_register(r1);
alu_out = alu_out * i2;
set_register(r1, alu_out);
} else {
UNREACHABLE();
}
break;
}
default:
UNREACHABLE();
return false;
}
return true;
}
int16_t Simulator::ByteReverse(int16_t hword) {
return (hword << 8) | ((hword >> 8) & 0x00ff);
}
int32_t Simulator::ByteReverse(int32_t word) {
int32_t result = word << 24;
result |= (word << 8) & 0x00ff0000;
result |= (word >> 8) & 0x0000ff00;
result |= (word >> 24) & 0x00000ff;
return result;
}
// Executes the current instruction.
void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) {
if (v8::internal::FLAG_check_icache) {
CheckICache(isolate_->simulator_i_cache(), instr);
}
pc_modified_ = false;
if (::v8::internal::FLAG_trace_sim) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
#ifdef V8_TARGET_ARCH_S390X
PrintF("%05ld %08" V8PRIxPTR " %s\n", icount_,
reinterpret_cast<intptr_t>(instr), buffer.start());
#else
PrintF("%05lld %08" V8PRIxPTR " %s\n", icount_,
reinterpret_cast<intptr_t>(instr), buffer.start());
#endif
// Flush stdout to prevent incomplete file output during abnormal exits
// This is caused by the output being buffered before being written to file
fflush(stdout);
}
// Try to simulate as S390 Instruction first.
bool processed = true;
int instrLength = instr->InstructionLength();
if (instrLength == 2)
processed = DecodeTwoByte(instr);
else if (instrLength == 4)
processed = DecodeFourByte(instr);
else if (instrLength == 6)
processed = DecodeSixByte(instr);
if (processed) {
if (!pc_modified_ && auto_incr_pc) {
set_pc(reinterpret_cast<intptr_t>(instr) + instrLength);
}
return;
}
}
void Simulator::DebugStart() {
S390Debugger dbg(this);
dbg.Debug();
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
intptr_t program_counter = get_pc();
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
ExecuteInstruction(instr);
program_counter = get_pc();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instuction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
S390Debugger dbg(this);
dbg.Debug();
} else {
ExecuteInstruction(instr);
}
program_counter = get_pc();
}
}
}
void Simulator::CallInternal(byte* entry, int reg_arg_count) {
// Prepare to execute the code at entry
if (ABI_USES_FUNCTION_DESCRIPTORS) {
// entry is the function descriptor
set_pc(*(reinterpret_cast<intptr_t*>(entry)));
} else {
// entry is the instruction address
set_pc(reinterpret_cast<intptr_t>(entry));
}
// Remember the values of non-volatile registers.
int64_t r6_val = get_register(r6);
int64_t r7_val = get_register(r7);
int64_t r8_val = get_register(r8);
int64_t r9_val = get_register(r9);
int64_t r10_val = get_register(r10);
int64_t r11_val = get_register(r11);
int64_t r12_val = get_register(r12);
int64_t r13_val = get_register(r13);
if (ABI_CALL_VIA_IP) {
// Put target address in ip (for JS prologue).
set_register(ip, get_pc());
}
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
registers_[14] = end_sim_pc;
// Set up the non-volatile registers with a known value. To be able to check
// that they are preserved properly across JS execution.
intptr_t callee_saved_value = icount_;
if (reg_arg_count < 5) {
set_register(r6, callee_saved_value + 6);
}
set_register(r7, callee_saved_value + 7);
set_register(r8, callee_saved_value + 8);
set_register(r9, callee_saved_value + 9);
set_register(r10, callee_saved_value + 10);
set_register(r11, callee_saved_value + 11);
set_register(r12, callee_saved_value + 12);
set_register(r13, callee_saved_value + 13);
// Start the simulation
Execute();
// Check that the non-volatile registers have been preserved.
#ifndef V8_TARGET_ARCH_S390X
if (reg_arg_count < 5) {
DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
}
DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
#else
if (reg_arg_count < 5) {
DCHECK_EQ(callee_saved_value + 6, get_register(r6));
}
DCHECK_EQ(callee_saved_value + 7, get_register(r7));
DCHECK_EQ(callee_saved_value + 8, get_register(r8));
DCHECK_EQ(callee_saved_value + 9, get_register(r9));
DCHECK_EQ(callee_saved_value + 10, get_register(r10));
DCHECK_EQ(callee_saved_value + 11, get_register(r11));
DCHECK_EQ(callee_saved_value + 12, get_register(r12));
DCHECK_EQ(callee_saved_value + 13, get_register(r13));
#endif
// Restore non-volatile registers with the original value.
set_register(r6, r6_val);
set_register(r7, r7_val);
set_register(r8, r8_val);
set_register(r9, r9_val);
set_register(r10, r10_val);
set_register(r11, r11_val);
set_register(r12, r12_val);
set_register(r13, r13_val);
}
intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
// Remember the values of non-volatile registers.
int64_t r6_val = get_register(r6);
int64_t r7_val = get_register(r7);
int64_t r8_val = get_register(r8);
int64_t r9_val = get_register(r9);
int64_t r10_val = get_register(r10);
int64_t r11_val = get_register(r11);
int64_t r12_val = get_register(r12);
int64_t r13_val = get_register(r13);
va_list parameters;
va_start(parameters, argument_count);
// Set up arguments
// First 5 arguments passed in registers r2-r6.
int reg_arg_count = (argument_count > 5) ? 5 : argument_count;
int stack_arg_count = argument_count - reg_arg_count;
for (int i = 0; i < reg_arg_count; i++) {
intptr_t value = va_arg(parameters, intptr_t);
set_register(i + 2, value);
}
// Remaining arguments passed on stack.
int64_t original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
intptr_t entry_stack =
(original_stack -
(kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t)));
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
intptr_t* stack_argument =
reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize);
for (int i = 0; i < stack_arg_count; i++) {
intptr_t value = va_arg(parameters, intptr_t);
stack_argument[i] = value;
}
va_end(parameters);
set_register(sp, entry_stack);
// Prepare to execute the code at entry
#if ABI_USES_FUNCTION_DESCRIPTORS
// entry is the function descriptor
set_pc(*(reinterpret_cast<intptr_t*>(entry)));
#else
// entry is the instruction address
set_pc(reinterpret_cast<intptr_t>(entry));
#endif
// Put target address in ip (for JS prologue).
set_register(r12, get_pc());
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
registers_[14] = end_sim_pc;
// Set up the non-volatile registers with a known value. To be able to check
// that they are preserved properly across JS execution.
intptr_t callee_saved_value = icount_;
if (reg_arg_count < 5) {
set_register(r6, callee_saved_value + 6);
}
set_register(r7, callee_saved_value + 7);
set_register(r8, callee_saved_value + 8);
set_register(r9, callee_saved_value + 9);
set_register(r10, callee_saved_value + 10);
set_register(r11, callee_saved_value + 11);
set_register(r12, callee_saved_value + 12);
set_register(r13, callee_saved_value + 13);
// Start the simulation
Execute();
// Check that the non-volatile registers have been preserved.
#ifndef V8_TARGET_ARCH_S390X
if (reg_arg_count < 5) {
DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
}
DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
#else
if (reg_arg_count < 5) {
DCHECK_EQ(callee_saved_value + 6, get_register(r6));
}
DCHECK_EQ(callee_saved_value + 7, get_register(r7));
DCHECK_EQ(callee_saved_value + 8, get_register(r8));
DCHECK_EQ(callee_saved_value + 9, get_register(r9));
DCHECK_EQ(callee_saved_value + 10, get_register(r10));
DCHECK_EQ(callee_saved_value + 11, get_register(r11));
DCHECK_EQ(callee_saved_value + 12, get_register(r12));
DCHECK_EQ(callee_saved_value + 13, get_register(r13));
#endif
// Restore non-volatile registers with the original value.
set_register(r6, r6_val);
set_register(r7, r7_val);
set_register(r8, r8_val);
set_register(r9, r9_val);
set_register(r10, r10_val);
set_register(r11, r11_val);
set_register(r12, r12_val);
set_register(r13, r13_val);
// Pop stack passed arguments.
#ifndef V8_TARGET_ARCH_S390X
DCHECK_EQ(entry_stack, get_low_register<int32_t>(sp));
#else
DCHECK_EQ(entry_stack, get_register(sp));
#endif
set_register(sp, original_stack);
// Return value register
intptr_t result = get_register(r2);
return result;
}
void Simulator::CallFP(byte* entry, double d0, double d1) {
set_d_register_from_double(0, d0);
set_d_register_from_double(1, d1);
CallInternal(entry);
}
int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
CallFP(entry, d0, d1);
int32_t result = get_register(r2);
return result;
}
double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
CallFP(entry, d0, d1);
return get_double_from_d_register(0);
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
uintptr_t current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
} // namespace internal
} // namespace v8
#endif // USE_SIMULATOR
#endif // V8_TARGET_ARCH_S390