blob: ea6f4ee8307966519968862faefa9d45c8aeb4a9 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
typedef std::vector<MoveOperands> Moves;
void ExecuteInParallel(Moves moves) {
InterpreterState copy(*this);
for (Moves::iterator it = moves.begin(); it != moves.end(); ++it) {
if (!it->IsRedundant()) write(it->destination(), copy.read(it->source()));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
bool operator!=(const InterpreterState& other) const {
return values_ != other.values_;
}
private:
// Internally, the state is a normalized permutation of (kind,index) pairs.
typedef std::pair<InstructionOperand::Kind, int> Key;
typedef Key Value;
typedef std::map<Key, Value> OperandMap;
Value read(const InstructionOperand* op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand* op, Value v) {
if (v == ValueFor(op)) {
values_.erase(KeyFor(op));
} else {
values_[KeyFor(op)] = v;
}
}
static Key KeyFor(const InstructionOperand* op) {
return Key(op->kind(), op->index());
}
static Value ValueFor(const InstructionOperand* op) {
return Value(op->kind(), op->index());
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
for (OperandMap::const_iterator it = is.values_.begin();
it != is.values_.end(); ++it) {
if (it != is.values_.begin()) os << " ";
InstructionOperand source(it->first.first, it->first.second);
InstructionOperand destination(it->second.first, it->second.second);
MoveOperands mo(&source, &destination);
PrintableMoveOperands pmo = {RegisterConfiguration::ArchDefault(), &mo};
os << pmo;
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
virtual void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) OVERRIDE {
InterpreterState::Moves moves;
moves.push_back(MoveOperands(source, destination));
state_.ExecuteInParallel(moves);
}
virtual void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) OVERRIDE {
InterpreterState::Moves moves;
moves.push_back(MoveOperands(source, destination));
moves.push_back(MoveOperands(destination, source));
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* pm) {
InterpreterState::Moves moves(pm->move_operands()->begin(),
pm->move_operands()->end());
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
ParallelMove* Create(int size) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
std::set<InstructionOperand*, InstructionOperandComparator> seen;
for (int i = 0; i < size; ++i) {
MoveOperands mo(CreateRandomOperand(), CreateRandomOperand());
if (!mo.IsRedundant() && seen.find(mo.destination()) == seen.end()) {
parallel_move->AddMove(mo.source(), mo.destination(), main_zone());
seen.insert(mo.destination());
}
}
return parallel_move;
}
private:
struct InstructionOperandComparator {
bool operator()(const InstructionOperand* x,
const InstructionOperand* y) const {
return (x->kind() < y->kind()) ||
(x->kind() == y->kind() && x->index() < y->index());
}
};
InstructionOperand* CreateRandomOperand() {
int index = rng_->NextInt(6);
switch (rng_->NextInt(5)) {
case 0:
return ConstantOperand::Create(index, main_zone());
case 1:
return StackSlotOperand::Create(index, main_zone());
case 2:
return DoubleStackSlotOperand::Create(index, main_zone());
case 3:
return RegisterOperand::Create(index, main_zone());
case 4:
return DoubleRegisterOperand::Create(index, main_zone());
}
UNREACHABLE();
return NULL;
}
private:
v8::base::RandomNumberGenerator* rng_;
};
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 20; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
ParallelMove* pm = pmc.Create(size);
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1;
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2;
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK(mi1.state() == mi2.state());
}
}
}