blob: 2e8065ed11b1d79cac72269e4949ba259dcaa69f [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler-dispatcher/unoptimized-compile-job.h"
#include "src/assert-scope.h"
#include "src/base/optional.h"
#include "src/compiler-dispatcher/compiler-dispatcher-tracer.h"
#include "src/compiler.h"
#include "src/flags.h"
#include "src/global-handles.h"
#include "src/interpreter/interpreter.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parser.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/unicode-cache.h"
#include "src/unoptimized-compilation-info.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
namespace {
class OneByteWrapper : public v8::String::ExternalOneByteStringResource {
public:
OneByteWrapper(const void* data, int length) : data_(data), length_(length) {}
~OneByteWrapper() override = default;
const char* data() const override {
return reinterpret_cast<const char*>(data_);
}
size_t length() const override { return static_cast<size_t>(length_); }
private:
const void* data_;
int length_;
DISALLOW_COPY_AND_ASSIGN(OneByteWrapper);
};
class TwoByteWrapper : public v8::String::ExternalStringResource {
public:
TwoByteWrapper(const void* data, int length) : data_(data), length_(length) {}
~TwoByteWrapper() override = default;
const uint16_t* data() const override {
return reinterpret_cast<const uint16_t*>(data_);
}
size_t length() const override { return static_cast<size_t>(length_); }
private:
const void* data_;
int length_;
DISALLOW_COPY_AND_ASSIGN(TwoByteWrapper);
};
} // namespace
UnoptimizedCompileJob::UnoptimizedCompileJob(Isolate* isolate,
CompilerDispatcherTracer* tracer,
Handle<SharedFunctionInfo> shared,
size_t max_stack_size)
: CompilerDispatcherJob(Type::kUnoptimizedCompile),
main_thread_id_(isolate->thread_id().ToInteger()),
tracer_(tracer),
allocator_(isolate->allocator()),
context_(isolate->global_handles()->Create(isolate->context())),
shared_(isolate->global_handles()->Create(*shared)),
max_stack_size_(max_stack_size),
trace_compiler_dispatcher_jobs_(FLAG_trace_compiler_dispatcher_jobs) {
DCHECK(!shared_->is_toplevel());
// TODO(rmcilroy): Handle functions with non-empty outer scope info.
DCHECK(!shared_->HasOuterScopeInfo());
HandleScope scope(isolate);
Handle<Script> script(Script::cast(shared_->script()), isolate);
Handle<String> source(String::cast(script->source()), isolate);
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p] created for ", static_cast<void*>(this));
ShortPrintOnMainThread();
PrintF(" in initial state.\n");
}
}
UnoptimizedCompileJob::~UnoptimizedCompileJob() {
DCHECK(status() == Status::kInitial || status() == Status::kDone);
if (!shared_.is_null()) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
i::GlobalHandles::Destroy(Handle<Object>::cast(shared_).location());
}
if (!context_.is_null()) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
i::GlobalHandles::Destroy(Handle<Object>::cast(context_).location());
}
}
bool UnoptimizedCompileJob::IsAssociatedWith(
Handle<SharedFunctionInfo> shared) const {
return *shared_ == *shared;
}
void UnoptimizedCompileJob::PrepareOnMainThread(Isolate* isolate) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
DCHECK_EQ(status(), Status::kInitial);
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kPrepare);
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p]: Preparing to parse\n",
static_cast<void*>(this));
}
ParseInfo* parse_info = new ParseInfo(isolate, shared_);
parse_info_.reset(parse_info);
unicode_cache_.reset(new UnicodeCache());
parse_info_->set_unicode_cache(unicode_cache_.get());
parse_info_->set_function_literal_id(shared_->FunctionLiteralId(isolate));
if (V8_UNLIKELY(FLAG_runtime_stats)) {
parse_info_->set_runtime_call_stats(new (parse_info_->zone())
RuntimeCallStats());
}
Handle<Script> script = parse_info->script();
HandleScope scope(isolate);
DCHECK(script->type() != Script::TYPE_NATIVE);
Handle<String> source(String::cast(script->source()), isolate);
if (source->IsExternalTwoByteString() || source->IsExternalOneByteString()) {
std::unique_ptr<Utf16CharacterStream> stream(ScannerStream::For(
isolate, source, shared_->StartPosition(), shared_->EndPosition()));
parse_info_->set_character_stream(std::move(stream));
} else {
source = String::Flatten(isolate, source);
const void* data;
int offset = 0;
int length = source->length();
// Objects in lo_space don't move, so we can just read the contents from
// any thread.
if (isolate->heap()->lo_space()->Contains(*source)) {
// We need to globalize the handle to the flattened string here, in
// case it's not referenced from anywhere else.
source_ = isolate->global_handles()->Create(*source);
DisallowHeapAllocation no_allocation;
String::FlatContent content = source->GetFlatContent();
DCHECK(content.IsFlat());
data =
content.IsOneByte()
? reinterpret_cast<const void*>(content.ToOneByteVector().start())
: reinterpret_cast<const void*>(content.ToUC16Vector().start());
} else {
// Otherwise, create a copy of the part of the string we'll parse in the
// zone.
length = (shared_->EndPosition() - shared_->StartPosition());
offset = shared_->StartPosition();
int byte_len = length * (source->IsOneByteRepresentation() ? 1 : 2);
data = parse_info_->zone()->New(byte_len);
DisallowHeapAllocation no_allocation;
String::FlatContent content = source->GetFlatContent();
DCHECK(content.IsFlat());
if (content.IsOneByte()) {
MemCopy(const_cast<void*>(data),
&content.ToOneByteVector().at(shared_->StartPosition()),
byte_len);
} else {
MemCopy(const_cast<void*>(data),
&content.ToUC16Vector().at(shared_->StartPosition()), byte_len);
}
}
Handle<String> wrapper;
if (source->IsOneByteRepresentation()) {
ExternalOneByteString::Resource* resource =
new OneByteWrapper(data, length);
wrapper = isolate->factory()
->NewExternalStringFromOneByte(resource)
.ToHandleChecked();
} else {
ExternalTwoByteString::Resource* resource =
new TwoByteWrapper(data, length);
wrapper = isolate->factory()
->NewExternalStringFromTwoByte(resource)
.ToHandleChecked();
}
wrapper_ = isolate->global_handles()->Create(*wrapper);
std::unique_ptr<Utf16CharacterStream> stream(
ScannerStream::For(isolate, wrapper_, shared_->StartPosition() - offset,
shared_->EndPosition() - offset));
parse_info_->set_character_stream(std::move(stream));
}
parser_.reset(new Parser(parse_info_.get()));
parser_->DeserializeScopeChain(isolate, parse_info_.get(),
parse_info_->maybe_outer_scope_info());
// Initailize the name after setting up the ast_value_factory.
Handle<String> name(shared_->Name(), isolate);
parse_info_->set_function_name(
parse_info_->ast_value_factory()->GetString(name));
set_status(Status::kPrepared);
}
void UnoptimizedCompileJob::Compile(bool on_background_thread) {
DCHECK_EQ(status(), Status::kPrepared);
COMPILER_DISPATCHER_TRACE_SCOPE_WITH_NUM(
tracer_, kCompile,
parse_info_->end_position() - parse_info_->start_position());
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p]: Compiling\n", static_cast<void*>(this));
}
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
parse_info_->set_on_background_thread(on_background_thread);
uintptr_t stack_limit = GetCurrentStackPosition() - max_stack_size_ * KB;
parser_->set_stack_limit(stack_limit);
parse_info_->set_stack_limit(stack_limit);
parser_->ParseOnBackground(parse_info_.get());
if (parse_info_->literal() == nullptr) {
// Parser sets error in pending error handler.
set_status(Status::kHasErrorsToReport);
return;
}
if (!Compiler::Analyze(parse_info_.get())) {
parse_info_->pending_error_handler()->set_stack_overflow();
set_status(Status::kHasErrorsToReport);
return;
}
compilation_job_.reset(interpreter::Interpreter::NewCompilationJob(
parse_info_.get(), parse_info_->literal(), allocator_, nullptr));
if (!compilation_job_.get()) {
parse_info_->pending_error_handler()->set_stack_overflow();
set_status(Status::kHasErrorsToReport);
return;
}
if (compilation_job_->ExecuteJob() != CompilationJob::SUCCEEDED) {
parse_info_->pending_error_handler()->set_stack_overflow();
set_status(Status::kHasErrorsToReport);
return;
}
set_status(Status::kCompiled);
}
void UnoptimizedCompileJob::FinalizeOnMainThread(Isolate* isolate) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
DCHECK_EQ(status(), Status::kCompiled);
DCHECK_NOT_NULL(parse_info_->literal());
DCHECK_NOT_NULL(compilation_job_.get());
COMPILER_DISPATCHER_TRACE_SCOPE(tracer_, kFinalize);
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p]: Finalizing compiling\n",
static_cast<void*>(this));
}
Handle<Script> script(Script::cast(shared_->script()), isolate);
DCHECK_EQ(*parse_info_->script(), shared_->script());
parser_->UpdateStatistics(isolate, script);
parse_info_->UpdateBackgroundParseStatisticsOnMainThread(isolate);
parser_->HandleSourceURLComments(isolate, script);
{
HandleScope scope(isolate);
// Internalize ast values onto the heap.
parse_info_->ast_value_factory()->Internalize(isolate);
// Allocate scope infos for the literal.
DeclarationScope::AllocateScopeInfos(parse_info_.get(), isolate);
if (compilation_job_->state() == CompilationJob::State::kFailed ||
!Compiler::FinalizeCompilationJob(compilation_job_.release(), shared_,
isolate)) {
if (!isolate->has_pending_exception()) isolate->StackOverflow();
set_status(Status::kFailed);
return;
}
}
ResetDataOnMainThread(isolate);
set_status(Status::kDone);
}
void UnoptimizedCompileJob::ReportErrorsOnMainThread(Isolate* isolate) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
DCHECK_EQ(status(), Status::kHasErrorsToReport);
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p]: Reporting Errors\n",
static_cast<void*>(this));
}
// Ensure we report errors in the correct context for the job.
SaveContext save(isolate);
isolate->set_context(context());
Handle<Script> script(Script::cast(shared_->script()), isolate);
parse_info_->pending_error_handler()->ReportErrors(
isolate, script, parse_info_->ast_value_factory());
ResetDataOnMainThread(isolate);
set_status(Status::kFailed);
}
void UnoptimizedCompileJob::ResetDataOnMainThread(Isolate* isolate) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
compilation_job_.reset();
parser_.reset();
unicode_cache_.reset();
parse_info_.reset();
if (!source_.is_null()) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
i::GlobalHandles::Destroy(Handle<Object>::cast(source_).location());
source_ = Handle<String>::null();
}
if (!wrapper_.is_null()) {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK_EQ(isolate->thread_id().ToInteger(), main_thread_id_);
i::GlobalHandles::Destroy(Handle<Object>::cast(wrapper_).location());
wrapper_ = Handle<String>::null();
}
}
void UnoptimizedCompileJob::ResetOnMainThread(Isolate* isolate) {
if (trace_compiler_dispatcher_jobs_) {
PrintF("UnoptimizedCompileJob[%p]: Resetting\n", static_cast<void*>(this));
}
ResetDataOnMainThread(isolate);
set_status(Status::kInitial);
}
double UnoptimizedCompileJob::EstimateRuntimeOfNextStepInMs() const {
switch (status()) {
case Status::kInitial:
return tracer_->EstimatePrepareInMs();
case Status::kPrepared:
return tracer_->EstimateCompileInMs(parse_info_->end_position() -
parse_info_->start_position());
case Status::kCompiled:
return tracer_->EstimateFinalizeInMs();
case Status::kHasErrorsToReport:
case Status::kFailed:
case Status::kDone:
return 0.0;
}
UNREACHABLE();
}
void UnoptimizedCompileJob::ShortPrintOnMainThread() {
DCHECK_EQ(ThreadId::Current().ToInteger(), main_thread_id_);
DCHECK(!shared_.is_null());
shared_->ShortPrint();
}
} // namespace internal
} // namespace v8