blob: 970c41864fc3dfb9d15aeab78f388555056b1544 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
// parts the implementation is in platform-posix.cc.
#ifdef __sparc
# error "V8 does not support the SPARC CPU architecture."
#endif
#include <sys/stack.h> // for stack alignment
#include <unistd.h> // getpagesize(), usleep()
#include <sys/mman.h> // mmap()
#include <ucontext.h> // walkstack(), getcontext()
#include <dlfcn.h> // dladdr
#include <pthread.h>
#include <sched.h> // for sched_yield
#include <semaphore.h>
#include <time.h>
#include <sys/time.h> // gettimeofday(), timeradd()
#include <errno.h>
#include <ieeefp.h> // finite()
#include <signal.h> // sigemptyset(), etc
#include <sys/regset.h>
#undef MAP_TYPE
#include "v8.h"
#include "platform.h"
#include "vm-state-inl.h"
// It seems there is a bug in some Solaris distributions (experienced in
// SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
// access signbit() despite the availability of other C99 math functions.
#ifndef signbit
// Test sign - usually defined in math.h
int signbit(double x) {
// We need to take care of the special case of both positive and negative
// versions of zero.
if (x == 0) {
return fpclass(x) & FP_NZERO;
} else {
// This won't detect negative NaN but that should be okay since we don't
// assume that behavior.
return x < 0;
}
}
#endif // signbit
namespace v8 {
namespace internal {
// 0 is never a valid thread id on Solaris since the main thread is 1 and
// subsequent have their ids incremented from there
static const pthread_t kNoThread = (pthread_t) 0;
double ceiling(double x) {
return ceil(x);
}
void OS::Setup() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly will cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srandom(static_cast<unsigned int>(seed));
}
uint64_t OS::CpuFeaturesImpliedByPlatform() {
return 0; // Solaris runs on a lot of things.
}
int OS::ActivationFrameAlignment() {
// GCC generates code that requires 16 byte alignment such as movdqa.
return Max(STACK_ALIGN, 16);
}
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
__asm__ __volatile__("" : : : "memory");
*ptr = value;
}
const char* OS::LocalTimezone(double time) {
if (isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return tzname[0]; // The location of the timezone string on Solaris.
}
double OS::LocalTimeOffset() {
// On Solaris, struct tm does not contain a tm_gmtoff field.
time_t utc = time(NULL);
ASSERT(utc != -1);
struct tm* loc = localtime(&utc);
ASSERT(loc != NULL);
return static_cast<double>((mktime(loc) - utc) * msPerSecond);
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
size_t OS::AllocateAlignment() {
return static_cast<size_t>(getpagesize());
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, getpagesize());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
if (mbase == MAP_FAILED) {
LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
#ifdef ENABLE_HEAP_PROTECTION
void OS::Protect(void* address, size_t size) {
// TODO(1240712): mprotect has a return value which is ignored here.
mprotect(address, size, PROT_READ);
}
void OS::Unprotect(void* address, size_t size, bool is_executable) {
// TODO(1240712): mprotect has a return value which is ignored here.
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
mprotect(address, size, prot);
}
#endif
void OS::Sleep(int milliseconds) {
useconds_t ms = static_cast<useconds_t>(milliseconds);
usleep(1000 * ms);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination.
abort();
}
void OS::DebugBreak() {
asm("int $3");
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
virtual int size() { return size_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
FILE* file = fopen(name, "r+");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
int size = ftell(file);
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
int result = fwrite(initial, size, 1, file);
if (result < 1) {
fclose(file);
return NULL;
}
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
}
void OS::SignalCodeMovingGC() {
}
struct StackWalker {
Vector<OS::StackFrame>& frames;
int index;
};
static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
struct StackWalker* walker = static_cast<struct StackWalker*>(data);
Dl_info info;
int i = walker->index;
walker->frames[i].address = reinterpret_cast<void*>(pc);
// Make sure line termination is in place.
walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
Vector<char> text = MutableCStrVector(walker->frames[i].text,
OS::kStackWalkMaxTextLen);
if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
OS::SNPrintF(text, "[0x%p]", pc);
} else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
// We have symbol info.
OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
} else {
// No local symbol info.
OS::SNPrintF(text,
"%s'0x%p [0x%p]",
info.dli_fname,
pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
pc);
}
walker->index++;
return 0;
}
int OS::StackWalk(Vector<OS::StackFrame> frames) {
ucontext_t ctx;
struct StackWalker walker = { frames, 0 };
if (getcontext(&ctx) < 0) return kStackWalkError;
if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
return kStackWalkError;
}
return walker.index;
}
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory(size_t size) {
address_ = mmap(NULL, size, PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd, kMmapFdOffset);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
}
}
bool VirtualMemory::IsReserved() {
return address_ != MAP_FAILED;
}
bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(address, size, prot,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
kMmapFd, kMmapFdOffset)) {
return false;
}
UpdateAllocatedSpaceLimits(address, size);
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return mmap(address, size, PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
kMmapFd, kMmapFdOffset) != MAP_FAILED;
}
class Thread::PlatformData : public Malloced {
public:
PlatformData() : thread_(kNoThread) { }
pthread_t thread_; // Thread handle for pthread.
};
Thread::Thread(Isolate* isolate, const Options& options)
: data_(new PlatformData()),
isolate_(isolate),
stack_size_(options.stack_size) {
set_name(options.name);
}
Thread::Thread(Isolate* isolate, const char* name)
: data_(new PlatformData()),
isolate_(isolate),
stack_size_(0) {
set_name(name);
}
Thread::~Thread() {
delete data_;
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->data()->thread_ = pthread_self();
ASSERT(thread->data()->thread_ != kNoThread);
Thread::SetThreadLocal(Isolate::isolate_key(), thread->isolate());
thread->Run();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
pthread_attr_t* attr_ptr = NULL;
pthread_attr_t attr;
if (stack_size_ > 0) {
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
attr_ptr = &attr;
}
pthread_create(&data_->thread_, NULL, ThreadEntry, this);
ASSERT(data_->thread_ != kNoThread);
}
void Thread::Join() {
pthread_join(data_->thread_, NULL);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
USE(result);
ASSERT(result == 0);
return static_cast<LocalStorageKey>(key);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
int result = pthread_key_delete(pthread_key);
USE(result);
ASSERT(result == 0);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
pthread_setspecific(pthread_key, value);
}
void Thread::YieldCPU() {
sched_yield();
}
class SolarisMutex : public Mutex {
public:
SolarisMutex() {
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mutex_, &attr);
}
~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
int Lock() { return pthread_mutex_lock(&mutex_); }
int Unlock() { return pthread_mutex_unlock(&mutex_); }
virtual bool TryLock() {
int result = pthread_mutex_trylock(&mutex_);
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
return true;
}
private:
pthread_mutex_t mutex_;
};
Mutex* OS::CreateMutex() {
return new SolarisMutex();
}
class SolarisSemaphore : public Semaphore {
public:
explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
virtual void Wait();
virtual bool Wait(int timeout);
virtual void Signal() { sem_post(&sem_); }
private:
sem_t sem_;
};
void SolarisSemaphore::Wait() {
while (true) {
int result = sem_wait(&sem_);
if (result == 0) return; // Successfully got semaphore.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
} while (false)
#endif
#ifndef timeradd
#define timeradd(a, b, result) \
do { \
(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
(result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
if ((result)->tv_usec >= 1000000) { \
++(result)->tv_sec; \
(result)->tv_usec -= 1000000; \
} \
} while (0)
#endif
bool SolarisSemaphore::Wait(int timeout) {
const long kOneSecondMicros = 1000000; // NOLINT
// Split timeout into second and nanosecond parts.
struct timeval delta;
delta.tv_usec = timeout % kOneSecondMicros;
delta.tv_sec = timeout / kOneSecondMicros;
struct timeval current_time;
// Get the current time.
if (gettimeofday(&current_time, NULL) == -1) {
return false;
}
// Calculate time for end of timeout.
struct timeval end_time;
timeradd(&current_time, &delta, &end_time);
struct timespec ts;
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
// Wait for semaphore signalled or timeout.
while (true) {
int result = sem_timedwait(&sem_, &ts);
if (result == 0) return true; // Successfully got semaphore.
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
Semaphore* OS::CreateSemaphore(int count) {
return new SolarisSemaphore(count);
}
#ifdef ENABLE_LOGGING_AND_PROFILING
static Sampler* active_sampler_ = NULL;
static pthread_t vm_tid_ = 0;
static pthread_t GetThreadID() {
return pthread_self();
}
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
USE(info);
if (signal != SIGPROF) return;
if (active_sampler_ == NULL || !active_sampler_->IsActive()) return;
if (vm_tid_ != GetThreadID()) return;
TickSample sample_obj;
TickSample* sample = CpuProfiler::TickSampleEvent();
if (sample == NULL) sample = &sample_obj;
// Extracting the sample from the context is extremely machine dependent.
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
mcontext_t& mcontext = ucontext->uc_mcontext;
sample->state = Top::current_vm_state();
sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
active_sampler_->SampleStack(sample);
active_sampler_->Tick(sample);
}
class Sampler::PlatformData : public Malloced {
public:
enum SleepInterval {
FULL_INTERVAL,
HALF_INTERVAL
};
explicit PlatformData(Sampler* sampler)
: sampler_(sampler),
signal_handler_installed_(false),
vm_tgid_(getpid()),
signal_sender_launched_(false) {
}
void SignalSender() {
while (sampler_->IsActive()) {
if (rate_limiter_.SuspendIfNecessary()) continue;
if (sampler_->IsProfiling() && RuntimeProfiler::IsEnabled()) {
SendProfilingSignal();
Sleep(HALF_INTERVAL);
RuntimeProfiler::NotifyTick();
Sleep(HALF_INTERVAL);
} else {
if (sampler_->IsProfiling()) SendProfilingSignal();
if (RuntimeProfiler::IsEnabled()) RuntimeProfiler::NotifyTick();
Sleep(FULL_INTERVAL);
}
}
}
void SendProfilingSignal() {
if (!signal_handler_installed_) return;
pthread_kill(vm_tid_, SIGPROF);
}
void Sleep(SleepInterval full_or_half) {
// Convert ms to us and subtract 100 us to compensate delays
// occuring during signal delivery.
useconds_t interval = sampler_->interval_ * 1000 - 100;
if (full_or_half == HALF_INTERVAL) interval /= 2;
int result = usleep(interval);
#ifdef DEBUG
if (result != 0 && errno != EINTR) {
fprintf(stderr,
"SignalSender usleep error; interval = %u, errno = %d\n",
interval,
errno);
ASSERT(result == 0 || errno == EINTR);
}
#endif
USE(result);
}
Sampler* sampler_;
bool signal_handler_installed_;
struct sigaction old_signal_handler_;
int vm_tgid_;
bool signal_sender_launched_;
pthread_t signal_sender_thread_;
RuntimeProfilerRateLimiter rate_limiter_;
};
static void* SenderEntry(void* arg) {
Sampler::PlatformData* data =
reinterpret_cast<Sampler::PlatformData*>(arg);
data->SignalSender();
return 0;
}
Sampler::Sampler(Isolate* isolate, int interval)
: isolate_(isolate),
interval_(interval),
profiling_(false),
active_(false),
samples_taken_(0) {
data_ = new PlatformData(this);
}
Sampler::~Sampler() {
ASSERT(!data_->signal_sender_launched_);
delete data_;
}
void Sampler::Start() {
// There can only be one active sampler at the time on POSIX
// platforms.
ASSERT(!IsActive());
vm_tid_ = GetThreadID();
// Request profiling signals.
struct sigaction sa;
sa.sa_sigaction = ProfilerSignalHandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART | SA_SIGINFO;
data_->signal_handler_installed_ =
sigaction(SIGPROF, &sa, &data_->old_signal_handler_) == 0;
// Start a thread that sends SIGPROF signal to VM thread.
// Sending the signal ourselves instead of relying on itimer provides
// much better accuracy.
SetActive(true);
if (pthread_create(
&data_->signal_sender_thread_, NULL, SenderEntry, data_) == 0) {
data_->signal_sender_launched_ = true;
}
// Set this sampler as the active sampler.
active_sampler_ = this;
}
void Sampler::Stop() {
SetActive(false);
// Wait for signal sender termination (it will exit after setting
// active_ to false).
if (data_->signal_sender_launched_) {
Top::WakeUpRuntimeProfilerThreadBeforeShutdown();
pthread_join(data_->signal_sender_thread_, NULL);
data_->signal_sender_launched_ = false;
}
// Restore old signal handler
if (data_->signal_handler_installed_) {
sigaction(SIGPROF, &data_->old_signal_handler_, 0);
data_->signal_handler_installed_ = false;
}
// This sampler is no longer the active sampler.
active_sampler_ = NULL;
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal