blob: 78ef474c3ad36273c96358129635e7a20fe3f55d [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Note: ported from Chromium commit head: 09ea0d2
// Note: it's also merged with generic_v4l2_device.cc (head: a9d98e6)
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/strings/stringprintf.h"
#include "v4l2_device.h"
#define DVLOGF(level) DVLOG(level) << __func__ << "(): "
#define VLOGF(level) VLOG(level) << __func__ << "(): "
#define VPLOGF(level) VPLOG(level) << __func__ << "(): "
namespace media {
V4L2Device::V4L2Device() {}
V4L2Device::~V4L2Device() {
CloseDevice();
}
// static
VideoPixelFormat V4L2Device::V4L2PixFmtToVideoPixelFormat(uint32_t pix_fmt) {
switch (pix_fmt) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV12M:
return PIXEL_FORMAT_NV12;
case V4L2_PIX_FMT_MT21:
return PIXEL_FORMAT_MT21;
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YUV420M:
return PIXEL_FORMAT_I420;
case V4L2_PIX_FMT_YVU420:
return PIXEL_FORMAT_YV12;
case V4L2_PIX_FMT_YUV422M:
return PIXEL_FORMAT_I422;
case V4L2_PIX_FMT_RGB32:
return PIXEL_FORMAT_ARGB;
default:
DVLOGF(1) << "Add more cases as needed";
return PIXEL_FORMAT_UNKNOWN;
}
}
// static
uint32_t V4L2Device::VideoPixelFormatToV4L2PixFmt(VideoPixelFormat format) {
switch (format) {
case PIXEL_FORMAT_NV12:
return V4L2_PIX_FMT_NV12M;
case PIXEL_FORMAT_MT21:
return V4L2_PIX_FMT_MT21;
case PIXEL_FORMAT_I420:
return V4L2_PIX_FMT_YUV420M;
case PIXEL_FORMAT_YV12:
return V4L2_PIX_FMT_YVU420;
default:
LOG(FATAL) << "Add more cases as needed";
return 0;
}
}
// static
uint32_t V4L2Device::VideoCodecProfileToV4L2PixFmt(VideoCodecProfile profile,
bool slice_based) {
if (profile >= H264PROFILE_MIN && profile <= H264PROFILE_MAX) {
if (slice_based)
return V4L2_PIX_FMT_H264_SLICE;
else
return V4L2_PIX_FMT_H264;
} else if (profile >= VP8PROFILE_MIN && profile <= VP8PROFILE_MAX) {
if (slice_based)
return V4L2_PIX_FMT_VP8_FRAME;
else
return V4L2_PIX_FMT_VP8;
} else if (profile >= VP9PROFILE_MIN && profile <= VP9PROFILE_MAX) {
if (slice_based)
return V4L2_PIX_FMT_VP9_FRAME;
else
return V4L2_PIX_FMT_VP9;
} else {
LOG(FATAL) << "Add more cases as needed";
return 0;
}
}
// static
std::vector<VideoCodecProfile> V4L2Device::V4L2PixFmtToVideoCodecProfiles(
uint32_t pix_fmt,
bool is_encoder) {
VideoCodecProfile min_profile, max_profile;
std::vector<VideoCodecProfile> profiles;
switch (pix_fmt) {
case V4L2_PIX_FMT_H264:
case V4L2_PIX_FMT_H264_SLICE:
if (is_encoder) {
// TODO(posciak): need to query the device for supported H.264 profiles,
// for now choose Main as a sensible default.
min_profile = H264PROFILE_MAIN;
max_profile = H264PROFILE_MAIN;
} else {
min_profile = H264PROFILE_MIN;
max_profile = H264PROFILE_MAX;
}
break;
case V4L2_PIX_FMT_VP8:
case V4L2_PIX_FMT_VP8_FRAME:
min_profile = VP8PROFILE_MIN;
max_profile = VP8PROFILE_MAX;
break;
case V4L2_PIX_FMT_VP9:
case V4L2_PIX_FMT_VP9_FRAME:
min_profile = VP9PROFILE_MIN;
max_profile = VP9PROFILE_MAX;
break;
default:
VLOGF(1) << "Unhandled pixelformat " << std::hex << "0x" << pix_fmt;
return profiles;
}
for (int profile = min_profile; profile <= max_profile; ++profile)
profiles.push_back(static_cast<VideoCodecProfile>(profile));
return profiles;
}
int V4L2Device::Ioctl(int request, void* arg) {
DCHECK(device_fd_.is_valid());
return HANDLE_EINTR(ioctl(device_fd_.get(), request, arg));
}
bool V4L2Device::Poll(bool poll_device, bool* event_pending) {
struct pollfd pollfds[2];
nfds_t nfds;
int pollfd = -1;
pollfds[0].fd = device_poll_interrupt_fd_.get();
pollfds[0].events = POLLIN | POLLERR;
nfds = 1;
if (poll_device) {
DVLOGF(5) << "Poll(): adding device fd to poll() set";
pollfds[nfds].fd = device_fd_.get();
pollfds[nfds].events = POLLIN | POLLOUT | POLLERR | POLLPRI;
pollfd = nfds;
nfds++;
}
if (HANDLE_EINTR(poll(pollfds, nfds, -1)) == -1) {
VPLOGF(1) << "poll() failed";
return false;
}
*event_pending = (pollfd != -1 && pollfds[pollfd].revents & POLLPRI);
return true;
}
void* V4L2Device::Mmap(void* addr,
unsigned int len,
int prot,
int flags,
unsigned int offset) {
DCHECK(device_fd_.is_valid());
return mmap(addr, len, prot, flags, device_fd_.get(), offset);
}
void V4L2Device::Munmap(void* addr, unsigned int len) {
munmap(addr, len);
}
bool V4L2Device::SetDevicePollInterrupt() {
DVLOGF(4);
const uint64_t buf = 1;
if (HANDLE_EINTR(write(device_poll_interrupt_fd_.get(), &buf, sizeof(buf))) ==
-1) {
VPLOGF(1) << "write() failed";
return false;
}
return true;
}
bool V4L2Device::ClearDevicePollInterrupt() {
DVLOGF(5);
uint64_t buf;
if (HANDLE_EINTR(read(device_poll_interrupt_fd_.get(), &buf, sizeof(buf))) ==
-1) {
if (errno == EAGAIN) {
// No interrupt flag set, and we're reading nonblocking. Not an error.
return true;
} else {
VPLOGF(1) << "read() failed";
return false;
}
}
return true;
}
bool V4L2Device::Open(Type type, uint32_t v4l2_pixfmt) {
VLOGF(2);
std::string path = GetDevicePathFor(type, v4l2_pixfmt);
if (path.empty()) {
VLOGF(1) << "No devices supporting " << std::hex << "0x" << v4l2_pixfmt
<< " for type: " << static_cast<int>(type);
return false;
}
if (!OpenDevicePath(path, type)) {
VLOGF(1) << "Failed opening " << path;
return false;
}
device_poll_interrupt_fd_.reset(eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC));
if (!device_poll_interrupt_fd_.is_valid()) {
VLOGF(1) << "Failed creating a poll interrupt fd";
return false;
}
return true;
}
std::vector<base::ScopedFD> V4L2Device::GetDmabufsForV4L2Buffer(
int index,
size_t num_planes,
enum v4l2_buf_type buf_type) {
VLOGF(2);
DCHECK(V4L2_TYPE_IS_MULTIPLANAR(buf_type));
std::vector<base::ScopedFD> dmabuf_fds;
for (size_t i = 0; i < num_planes; ++i) {
struct v4l2_exportbuffer expbuf;
memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = buf_type;
expbuf.index = index;
expbuf.plane = i;
expbuf.flags = O_CLOEXEC;
if (Ioctl(VIDIOC_EXPBUF, &expbuf) != 0) {
dmabuf_fds.clear();
break;
}
dmabuf_fds.push_back(base::ScopedFD(expbuf.fd));
}
return dmabuf_fds;
}
VideoDecodeAccelerator::SupportedProfiles
V4L2Device::GetSupportedDecodeProfiles(const size_t num_formats,
const uint32_t pixelformats[]) {
VideoDecodeAccelerator::SupportedProfiles supported_profiles;
Type type = Type::kDecoder;
const auto& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (!OpenDevicePath(device.first, type)) {
VLOGF(1) << "Failed opening " << device.first;
continue;
}
const auto& profiles =
EnumerateSupportedDecodeProfiles(num_formats, pixelformats);
supported_profiles.insert(supported_profiles.end(), profiles.begin(),
profiles.end());
CloseDevice();
}
return supported_profiles;
}
void V4L2Device::GetSupportedResolution(uint32_t pixelformat,
Size* min_resolution,
Size* max_resolution) {
max_resolution->SetSize(0, 0);
min_resolution->SetSize(0, 0);
v4l2_frmsizeenum frame_size;
memset(&frame_size, 0, sizeof(frame_size));
frame_size.pixel_format = pixelformat;
for (; Ioctl(VIDIOC_ENUM_FRAMESIZES, &frame_size) == 0; ++frame_size.index) {
if (frame_size.type == V4L2_FRMSIZE_TYPE_DISCRETE) {
if (frame_size.discrete.width >=
base::checked_cast<uint32_t>(max_resolution->width()) &&
frame_size.discrete.height >=
base::checked_cast<uint32_t>(max_resolution->height())) {
max_resolution->SetSize(frame_size.discrete.width,
frame_size.discrete.height);
}
if (min_resolution->IsEmpty() ||
(frame_size.discrete.width <=
base::checked_cast<uint32_t>(min_resolution->width()) &&
frame_size.discrete.height <=
base::checked_cast<uint32_t>(min_resolution->height()))) {
min_resolution->SetSize(frame_size.discrete.width,
frame_size.discrete.height);
}
} else if (frame_size.type == V4L2_FRMSIZE_TYPE_STEPWISE ||
frame_size.type == V4L2_FRMSIZE_TYPE_CONTINUOUS) {
max_resolution->SetSize(frame_size.stepwise.max_width,
frame_size.stepwise.max_height);
min_resolution->SetSize(frame_size.stepwise.min_width,
frame_size.stepwise.min_height);
break;
}
}
if (max_resolution->IsEmpty()) {
max_resolution->SetSize(1920, 1088);
VLOGF(1) << "GetSupportedResolution failed to get maximum resolution for "
<< "fourcc " << std::hex << pixelformat
<< ", fall back to " << max_resolution->ToString();
}
if (min_resolution->IsEmpty()) {
min_resolution->SetSize(16, 16);
VLOGF(1) << "GetSupportedResolution failed to get minimum resolution for "
<< "fourcc " << std::hex << pixelformat
<< ", fall back to " << min_resolution->ToString();
}
}
std::vector<uint32_t> V4L2Device::EnumerateSupportedPixelformats(
v4l2_buf_type buf_type) {
std::vector<uint32_t> pixelformats;
v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = buf_type;
for (; Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0; ++fmtdesc.index) {
DVLOGF(3) << "Found " << fmtdesc.description << std::hex << " (0x"
<< fmtdesc.pixelformat << ")";
pixelformats.push_back(fmtdesc.pixelformat);
}
return pixelformats;
}
VideoDecodeAccelerator::SupportedProfiles
V4L2Device::EnumerateSupportedDecodeProfiles(const size_t num_formats,
const uint32_t pixelformats[]) {
VideoDecodeAccelerator::SupportedProfiles profiles;
const auto& supported_pixelformats =
EnumerateSupportedPixelformats(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
for (uint32_t pixelformat : supported_pixelformats) {
if (std::find(pixelformats, pixelformats + num_formats, pixelformat) ==
pixelformats + num_formats)
continue;
VideoDecodeAccelerator::SupportedProfile profile;
GetSupportedResolution(pixelformat, &profile.min_resolution,
&profile.max_resolution);
const auto video_codec_profiles =
V4L2PixFmtToVideoCodecProfiles(pixelformat, false);
for (const auto& video_codec_profile : video_codec_profiles) {
profile.profile = video_codec_profile;
profiles.push_back(profile);
DVLOGF(3) << "Found decoder profile " << GetProfileName(profile.profile)
<< ", resolutions: " << profile.min_resolution.ToString() << " "
<< profile.max_resolution.ToString();
}
}
return profiles;
}
bool V4L2Device::OpenDevicePath(const std::string& path, Type type) {
DCHECK(!device_fd_.is_valid());
device_fd_.reset(
HANDLE_EINTR(open(path.c_str(), O_RDWR | O_NONBLOCK | O_CLOEXEC)));
if (!device_fd_.is_valid())
return false;
return true;
}
void V4L2Device::CloseDevice() {
VLOGF(2);
device_fd_.reset();
}
void V4L2Device::EnumerateDevicesForType(Type type) {
static const std::string kDecoderDevicePattern = "/dev/video-dec";
std::string device_pattern;
v4l2_buf_type buf_type;
switch (type) {
case Type::kDecoder:
device_pattern = kDecoderDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
break;
default:
LOG(ERROR) << "Only decoder type is supported!!";
return;
}
std::vector<std::string> candidate_paths;
// TODO(posciak): Remove this legacy unnumbered device once
// all platforms are updated to use numbered devices.
candidate_paths.push_back(device_pattern);
// We are sandboxed, so we can't query directory contents to check which
// devices are actually available. Try to open the first 10; if not present,
// we will just fail to open immediately.
for (int i = 0; i < 10; ++i) {
candidate_paths.push_back(
base::StringPrintf("%s%d", device_pattern.c_str(), i));
}
Devices devices;
for (const auto& path : candidate_paths) {
if (!OpenDevicePath(path, type))
continue;
const auto& supported_pixelformats =
EnumerateSupportedPixelformats(buf_type);
if (!supported_pixelformats.empty()) {
DVLOGF(3) << "Found device: " << path;
devices.push_back(std::make_pair(path, supported_pixelformats));
}
CloseDevice();
}
DCHECK_EQ(devices_by_type_.count(type), 0u);
devices_by_type_[type] = devices;
}
const V4L2Device::Devices& V4L2Device::GetDevicesForType(Type type) {
if (devices_by_type_.count(type) == 0)
EnumerateDevicesForType(type);
DCHECK_NE(devices_by_type_.count(type), 0u);
return devices_by_type_[type];
}
std::string V4L2Device::GetDevicePathFor(Type type, uint32_t pixfmt) {
const Devices& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (std::find(device.second.begin(), device.second.end(), pixfmt) !=
device.second.end())
return device.first;
}
return std::string();
}
} // namespace media