blob: f647d22941393ffe973be04bcb83c85ff55b623b [file] [log] [blame]
///////////////////////////////////////////////////////////////////////
// File: thresholder.cpp
// Description: Base API for thresolding images in tesseract.
// Author: Ray Smith
// Created: Mon May 12 11:28:15 PDT 2008
//
// (C) Copyright 2008, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#ifdef HAVE_LIBLEPT
// Include leptonica library only if autoconf (or makefile etc) tell us to.
#include "allheaders.h"
#endif
#include "thresholder.h"
#include <string.h>
#include "img.h"
#include "otsuthr.h"
namespace tesseract {
ImageThresholder::ImageThresholder()
:
#ifdef HAVE_LIBLEPT
pix_(NULL),
#endif
image_data_(NULL),
image_width_(0), image_height_(0),
image_bytespp_(0), image_bytespl_(0) {
SetRectangle(0, 0, 0, 0);
}
ImageThresholder::~ImageThresholder() {
Clear();
}
// Destroy the Pix if there is one, freeing memory.
void ImageThresholder::Clear() {
#ifdef HAVE_LIBLEPT
if (pix_ != NULL) {
pixDestroy(&pix_);
pix_ = NULL;
}
#endif
image_data_ = NULL;
}
// Return true if no image has been set.
bool ImageThresholder::IsEmpty() const {
#ifdef HAVE_LIBLEPT
if (pix_ != NULL)
return false;
#endif
return image_data_ == NULL;
}
// SetImage makes a copy of only the metadata, not the underlying
// image buffer. It promises to treat the source as read-only in either case,
// but in return assumes that the Pix or image buffer remain valid
// throughout the life of the ImageThresholder.
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
// Palette color images will not work properly and must be converted to
// 24 bit.
// Binary images of 1 bit per pixel may also be given but they must be
// byte packed with the MSB of the first byte being the first pixel, and a
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
void ImageThresholder::SetImage(const unsigned char* imagedata,
int width, int height,
int bytes_per_pixel, int bytes_per_line) {
#ifdef HAVE_LIBLEPT
if (pix_ != NULL)
pixDestroy(&pix_);
pix_ = NULL;
#endif
image_data_ = imagedata;
image_width_ = width;
image_height_ = height;
image_bytespp_ = bytes_per_pixel;
image_bytespl_ = bytes_per_line;
Init();
}
// Store the coordinates of the rectangle to process for later use.
// Doesn't actually do any thresholding.
void ImageThresholder::SetRectangle(int left, int top, int width, int height) {
rect_left_ = left;
rect_top_ = top;
rect_width_ = width;
rect_height_ = height;
}
// Get enough parameters to be able to rebuild bounding boxes in the
// original image (not just within the rectangle).
// Left and top are enough with top-down coordinates, but
// the height of the rectangle and the image are needed for bottom-up.
void ImageThresholder::GetImageSizes(int* left, int* top,
int* width, int* height,
int* imagewidth, int* imageheight) {
*left = rect_left_;
*top = rect_top_;
*width = rect_width_;
*height = rect_height_;
*imagewidth = image_width_;
*imageheight = image_height_;
}
// Return true if HAVE_LIBLEPT and this thresholder implements the Pix
// interface.
bool ImageThresholder::HasThresholdToPix() const {
#ifdef HAVE_LIBLEPT
return true;
#else
return false;
#endif
}
// Threshold the source image as efficiently as possible to the output
// tesseract IMAGE class.
void ImageThresholder::ThresholdToIMAGE(IMAGE* image) {
#ifdef HAVE_LIBLEPT
if (pix_ != NULL) {
if (image_bytespp_ == 0) {
// We have a binary image, so it just has to be converted.
CopyBinaryRectPixToIMAGE(image);
} else {
if (image_bytespp_ == 4) {
// Color data can just be passed direct.
const uinT32* data = pixGetData(pix_);
OtsuThresholdRectToIMAGE(reinterpret_cast<const uinT8*>(data),
image_bytespp_, image_bytespl_, image);
} else {
// Convert 8-bit to IMAGE and then pass its
// buffer to the raw interface to complete the conversion.
IMAGE temp_image;
temp_image.FromPix(pix_);
OtsuThresholdRectToIMAGE(temp_image.get_buffer(),
image_bytespp_,
COMPUTE_IMAGE_XDIM(temp_image.get_xsize(),
temp_image.get_bpp()),
image);
}
}
return;
}
#endif
if (image_bytespp_ > 0) {
// Threshold grey or color.
OtsuThresholdRectToIMAGE(image_data_, image_bytespp_, image_bytespl_,
image);
} else {
CopyBinaryRectRawToIMAGE(image);
}
}
#ifdef HAVE_LIBLEPT
// NOTE: Opposite to SetImage for raw images, SetImage for Pix clones its
// input, so the source pix may be pixDestroyed immediately after.
void ImageThresholder::SetImage(const Pix* pix) {
image_data_ = NULL;
if (pix_ != NULL)
pixDestroy(&pix_);
Pix* src = const_cast<Pix*>(pix);
int depth;
pixGetDimensions(src, &image_width_, &image_height_, &depth);
// Convert the image as necessary so it is one of binary, plain RGB, or
// 8 bit with no colormap.
if (depth > 1 && depth < 8) {
pix_ = pixConvertTo8(src, false);
} else if (pixGetColormap(src)) {
pix_ = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC);
} else {
pix_ = pixClone(src);
}
depth = pixGetDepth(pix_);
image_bytespp_ = depth / 8;
image_bytespl_ = pixGetWpl(pix_) * sizeof(l_uint32);
Init();
}
// Threshold the source image as efficiently as possible to the output Pix.
// Creates a Pix and sets pix to point to the resulting pointer.
// Caller must use pixDestroy to free the created Pix.
void ImageThresholder::ThresholdToPix(Pix** pix) {
if (pix_ != NULL) {
if (image_bytespp_ == 0) {
// We have a binary image, so it just has to be cloned.
*pix = GetPixRect();
} else {
if (image_bytespp_ == 4) {
// Color data can just be passed direct.
const uinT32* data = pixGetData(pix_);
OtsuThresholdRectToPix(reinterpret_cast<const uinT8*>(data),
image_bytespp_, image_bytespl_, pix);
} else {
// Convert 8-bit to IMAGE and then pass its
// buffer to the raw interface to complete the conversion.
IMAGE temp_image;
temp_image.FromPix(pix_);
OtsuThresholdRectToPix(temp_image.get_buffer(),
image_bytespp_,
COMPUTE_IMAGE_XDIM(temp_image.get_xsize(),
temp_image.get_bpp()),
pix);
}
}
return;
}
if (image_bytespp_ > 0) {
// Threshold grey or color.
OtsuThresholdRectToPix(image_data_, image_bytespp_, image_bytespl_, pix);
} else {
RawRectToPix(pix);
}
}
// Get a clone/copy of the source image rectangle.
// The returned Pix must be pixDestroyed.
// This function will be used in the future by the page layout analysis, and
// the layout analysis that uses it will only be available with Leptonica,
// so there is no raw equivalent.
Pix* ImageThresholder::GetPixRect() {
if (pix_ != NULL) {
if (IsFullImage()) {
// Just clone the whole thing.
return pixClone(pix_);
} else {
// Crop to the given rectangle.
Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_);
Pix* cropped = pixClipRectangle(pix_, box, NULL);
boxDestroy(&box);
return cropped;
}
}
// The input is raw, so we have to make a copy of it.
Pix* raw_pix;
RawRectToPix(&raw_pix);
return raw_pix;
}
#endif
// Common initialization shared between SetImage methods.
void ImageThresholder::Init() {
SetRectangle(0, 0, image_width_, image_height_);
}
// Otsu threshold the rectangle, taking everything except the image buffer
// pointer from the class, to the output IMAGE.
void ImageThresholder::OtsuThresholdRectToIMAGE(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
IMAGE* image) const {
int* thresholds;
int* hi_values;
OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line,
rect_left_, rect_top_, rect_width_, rect_height_,
&thresholds, &hi_values);
// Threshold the image to the given IMAGE.
ThresholdRectToIMAGE(imagedata, bytes_per_pixel, bytes_per_line,
thresholds, hi_values, image);
delete [] thresholds;
delete [] hi_values;
}
// Threshold the given grey or color image into the tesseract global
// image ready for recognition. Requires thresholds and hi_value
// produced by OtsuThreshold in otsuthr.cpp.
void ImageThresholder::ThresholdRectToIMAGE(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
const int* thresholds,
const int* hi_values,
IMAGE* image) const {
IMAGELINE line;
image->create(rect_width_, rect_height_, 1);
line.init(rect_width_);
// For each line in the image, fill the IMAGELINE class and put it into the
// output IMAGE. Note that Tesseract stores images with the
// bottom at y=0 and 0 is black, so we need 2 kinds of inversion.
const unsigned char* data = imagedata + rect_top_* bytes_per_line +
rect_left_ * bytes_per_pixel;
for (int y = rect_height_ - 1 ; y >= 0; --y) {
const unsigned char* pix = data;
for (int x = 0; x < rect_width_; ++x, pix += bytes_per_pixel) {
line.pixels[x] = 1;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
if (hi_values[ch] >= 0 &&
(pix[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
line.pixels[x] = 0;
break;
}
}
}
image->put_line(0, y, rect_width_, &line, 0);
data += bytes_per_line;
}
}
// Cut out the requested rectangle of the binary image to the output IMAGE.
void ImageThresholder::CopyBinaryRectRawToIMAGE(IMAGE* image) const {
IMAGE rect_image;
rect_image.capture(const_cast<unsigned char*>(image_data_),
image_width_, rect_top_ + rect_height_, 1);
image->create(rect_width_, rect_height_, 1);
// copy_sub_image uses coords starting at the bottom, so the y coord of the
// copy is the bottom of the rect_image.
copy_sub_image(&rect_image, rect_left_, 0, rect_width_, rect_height_,
image, 0, 0, false);
}
#ifdef HAVE_LIBLEPT
// Otsu threshold the rectangle, taking everything except the image buffer
// pointer from the class, to the output Pix.
void ImageThresholder::OtsuThresholdRectToPix(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
Pix** pix) const {
int* thresholds;
int* hi_values;
OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line,
rect_left_, rect_top_, rect_width_, rect_height_,
&thresholds, &hi_values);
// Threshold the image to the given IMAGE.
ThresholdRectToPix(imagedata, bytes_per_pixel, bytes_per_line,
thresholds, hi_values, pix);
delete [] thresholds;
delete [] hi_values;
}
// Threshold the rectangle, taking everything except the image buffer pointer
// from the class, using thresholds/hi_values to the output IMAGE.
void ImageThresholder::ThresholdRectToPix(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
const int* thresholds,
const int* hi_values,
Pix** pix) const {
*pix = pixCreate(rect_width_, rect_height_, 1);
uinT32* pixdata = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
const unsigned char* srcdata = imagedata + rect_top_* bytes_per_line +
rect_left_ * bytes_per_pixel;
for (int y = 0; y < rect_height_; ++y) {
const uinT8* linedata = srcdata;
uinT32* pixline = pixdata + y * wpl;
for (int x = 0; x < rect_width_; ++x, linedata += bytes_per_pixel) {
bool white_result = true;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
if (hi_values[ch] >= 0 &&
(linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
white_result = false;
break;
}
}
if (white_result)
CLEAR_DATA_BIT(pixline, x);
else
SET_DATA_BIT(pixline, x);
}
srcdata += bytes_per_line;
}
}
// Copy the raw image rectangle, taking all data from the class, to the Pix.
void ImageThresholder::RawRectToPix(Pix** pix) const {
if (image_bytespp_ < 4) {
// Go via a tesseract image structure (doesn't copy the data)
// and use ToPix.
IMAGE image;
int bits_per_pixel = image_bytespp_ * 8;
if (image_bytespp_ == 0)
bits_per_pixel = 1;
image.capture(const_cast<uinT8*>(image_data_),
image_width_, rect_top_ + rect_height_, bits_per_pixel);
if (IsFullImage()) {
*pix = image.ToPix();
} else {
IMAGE rect;
rect.create(rect_width_, rect_height_, bits_per_pixel);
// The capture chopped the image off at top+height, so copy
// the rectangle with y = 0 to get a rectangle of height
// starting at the bottom, since copy_sub_image uses bottom-up coords.
copy_sub_image(&image, rect_left_, 0, rect_width_, rect_height_,
&rect, 0, 0, true);
*pix = rect.ToPix();
}
} else {
*pix = pixCreate(rect_width_, rect_height_, 32);
uinT32* data = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
const uinT8* imagedata = image_data_ + rect_top_ * image_bytespl_ +
rect_left_ * image_bytespp_;
for (int y = 0; y < rect_height_; ++y) {
const uinT8* linedata = imagedata;
uinT32* line = data + y * wpl;
for (int x = 0; x < rect_width_; ++x) {
line[x] = (linedata[0] << 24) | (linedata[1] << 16) |
(linedata[2] << 8) | linedata[3];
linedata += 4;
}
imagedata += image_bytespl_;
}
}
}
// Cut out the requested rectangle of the binary image to the output IMAGE.
void ImageThresholder::CopyBinaryRectPixToIMAGE(IMAGE* image) const {
if (IsFullImage()) {
// Just poke it directly into the tess image.
image->FromPix(pix_);
} else {
// Crop to the given rectangle.
Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_);
Pix* cropped = pixClipRectangle(pix_, box, NULL);
image->FromPix(cropped);
pixDestroy(&cropped);
boxDestroy(&box);
}
}
#endif
} // namespace tesseract.