blob: 4c1a9ce70d27da5e68d745d643aea3aceb790010 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////
// File: genericvector.h
// Description: Generic vector class
// Author: Daria Antonova
// Created: Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2007, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
//
#ifndef TESSERACT_CCUTIL_GENERICVECTOR_H_
#define TESSERACT_CCUTIL_GENERICVECTOR_H_
#include "callback.h"
#include "errcode.h"
template <typename T>
class GenericVector {
public:
GenericVector() { this->init(kDefaultVectorSize); }
GenericVector(int size) { this->init(size); }
// Copy
GenericVector(const GenericVector& other) {
this->init(other.size());
this->operator+=(other);
}
void operator+=(const GenericVector& other);
void operator=(const GenericVector& other);
~GenericVector();
// Reserve some memory.
void reserve(int size);
// Double the size of the internal array.
void double_the_size();
// Init the object, allocating size memory.
void init(int size);
// Return the size used.
int size() const {
return size_used_;
}
int length() const {
return size_used_;
}
// Return true if empty.
bool empty() const {
return size_used_ == 0;
}
// Return the object from an index.
T get(int index) const;
// Return the index of the T object.
// This method NEEDS a compare_callback to be passed to
// set_compare_callback.
int get_index(T object) const;
// Return true if T is in the array
bool contains(T object) const;
// Return true if the index is valid
T contains_index(int index) const;
// Push an element in the end of the array
int push_back(T object);
void operator+=(T t);
// Set the value at the given index
void set(T t, int index);
// Insert t at the given index, push other elements to the right.
void insert(T t, int index);
// Add a callback to be called to delete the elements when the array took
// their ownership.
void set_clear_callback(Callback1<T>* cb);
// Add a callback to be called to compare the elements when needed (contains,
// get_id, ...)
void set_compare_callback(ResultCallback2<bool, T const &, T const &>* cb);
// Clear the array, calling the clear callback function if any.
// All the owned Callbacks are also deleted.
// If you don't want the Callbacks to be deleted, before calling clear, set
// the callback to NULL.
void clear();
// Delete objects pointed to by data_[i]
void delete_data_pointers();
// This method clear the current object, then, does a shallow copy of
// its argument, and finally invalidate its argument.
// Callbacks are moved to the current object;
void move(GenericVector<T>* from);
// Read/Write the array to a file. This does _NOT_ read/write the callbacks.
// The Callback given must be permanent since they will be called more than
// once. The given callback will be deleted at the end.
void write(FILE* f, Callback2<FILE*, T const &>* cb);
void read(FILE* f, Callback3<FILE*, T*, bool>* cb, bool swap);
// Allocates a new array of double the current_size, copies over the
// information from data to the new location, deletes data and returns
// the pointed to the new larger array.
// This function uses memcpy to copy the data, instead of invoking
// operator=() for each element like double_the_size() does.
static T *double_the_size_memcpy(int current_size, T *data) {
T *data_new = new T[current_size * 2];
memcpy(data_new, data, sizeof(T) * current_size);
delete[] data;
return data_new;
}
private:
// We are assuming that the object generally placed in thie
// vector are small enough that for efficiency it makes sence
// to start with a larger initial size.
static const int kDefaultVectorSize = 4;
int size_used_;
int size_reserved_;
T* data_;
Callback1<T>* clear_cb_;
// Mutable because Run method is not const
mutable ResultCallback2<bool, T const &, T const &>* compare_cb_;
};
namespace tesseract {
template <typename T>
bool cmp_eq(T const & t1, T const & t2) {
return t1 == t2;
}
} // namespace tesseract
// A useful vector that uses operator== to do comparisons.
template <typename T>
class GenericVectorEqEq : public GenericVector<T> {
public:
GenericVectorEqEq() {
GenericVector<T>::set_compare_callback(
NewPermanentCallback(tesseract::cmp_eq<T>));
}
GenericVectorEqEq(int size) : GenericVector<T>(size) {
GenericVector<T>::set_compare_callback(
NewPermanentCallback(tesseract::cmp_eq<T>));
}
};
template <typename T>
void GenericVector<T>::init(int size) {
size_used_ = 0;
size_reserved_ = 0;
data_ = 0;
clear_cb_ = 0;
compare_cb_ = 0;
reserve(size);
}
template <typename T>
GenericVector<T>::~GenericVector() {
clear();
}
// Reserve some memory. If the internal array contains elements, they are
// copied.
template <typename T>
void GenericVector<T>::reserve(int size) {
if (size_reserved_ > size)
return;
T* new_array = new T[size];
for (int i = 0; i < size_used_; ++i)
new_array[i] = data_[i];
delete[] data_;
data_ = new_array;
size_reserved_ = size;
}
template <typename T>
void GenericVector<T>::double_the_size() {
if (size_reserved_ == 0) {
reserve(kDefaultVectorSize);
}
else {
reserve(2 * size_reserved_);
}
}
// Return the object from an index.
template <typename T>
T GenericVector<T>::get(int index) const {
ASSERT_HOST(index >= 0 && index < size_used_);
return data_[index];
}
// Return the object from an index.
template <typename T>
void GenericVector<T>::set(T t, int index) {
ASSERT_HOST(index >= 0 && index < size_used_);
data_[index] = t;
}
// Shifts the rest of the elements to the right to make
// space for the new elements and inserts the given element
// at the specified index.
template <typename T>
void GenericVector<T>::insert(T t, int index) {
ASSERT_HOST(index >= 0 && index < size_used_);
if (size_reserved_ == size_used_)
double_the_size();
for (int i = size_used_; i > index; --i) {
data_[i] = data_[i-1];
}
data_[index] = t;
size_used_++;
}
// Return true if the index is valindex
template <typename T>
T GenericVector<T>::contains_index(int index) const {
return index >= 0 && index < size_used_;
}
// Return the index of the T object.
template <typename T>
int GenericVector<T>::get_index(T object) const {
for (int i = 0; i < size_used_; ++i) {
ASSERT_HOST(compare_cb_ != NULL);
if (compare_cb_->Run(object, data_[i]))
return i;
}
return -1;
}
// Return true if T is in the array
template <typename T>
bool GenericVector<T>::contains(T object) const {
return get_index(object) != -1;
}
// Add an element in the array
template <typename T>
int GenericVector<T>::push_back(T object) {
int index = 0;
if (size_used_ == size_reserved_)
double_the_size();
index = size_used_++;
data_[index] = object;
return index;
}
template <typename T>
void GenericVector<T>::operator+=(T t) {
push_back(t);
}
template <typename T>
void GenericVector<T>::operator+=(const GenericVector& other) {
for (int i = 0;i < other.size(); ++i) {
this->operator+=(other.data_[i]);
}
}
template <typename T>
void GenericVector<T>::operator=(const GenericVector& other) {
this->clear();
this->operator+=(other);
}
// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_clear_callback(Callback1<T>* cb) {
clear_cb_ = cb;
}
// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_compare_callback(ResultCallback2<bool, T const &, T const &>* cb) {
compare_cb_ = cb;
}
// Clear the array, calling the callback function if any.
template <typename T>
void GenericVector<T>::clear() {
if (size_reserved_ > 0) {
if (clear_cb_ != NULL)
for (int i = 0; i < size_used_; ++i)
clear_cb_->Run(data_[i]);
delete[] data_;
size_used_ = 0;
size_reserved_ = 0;
}
if (clear_cb_ != NULL) {
delete clear_cb_;
clear_cb_ = NULL;
}
if (compare_cb_ != NULL) {
delete compare_cb_;
compare_cb_ = NULL;
}
}
template <typename T>
void GenericVector<T>::delete_data_pointers() {
for (int i = 0; i < size_used_; ++i)
if (data_[i]) {
delete data_[i];
}
}
template <typename T>
void GenericVector<T>::write(FILE* f, Callback2<FILE*, T const &>* cb) {
fwrite(&size_reserved_, sizeof(int), 1, f);
fwrite(&size_used_, sizeof(int), 1, f);
for (int i = 0; i < size_used_; ++i) {
cb->Run(f, data_[i]);
}
delete cb;
}
template <typename T>
void GenericVector<T>::read(FILE* f, Callback3<FILE*, T*, bool>* cb, bool swap) {
uinT32 reserved;
fread(&reserved, sizeof(int), 1, f);
if (swap)
reserved = reverse32(reserved);
reserve(reserved);
fread(&size_used_, sizeof(int), 1, f);
if (swap)
size_used_ = reverse32(size_used_);
for (int i = 0; i < size_used_; ++i) {
cb->Run(f, data_ + i, swap);
}
delete cb;
}
// This method clear the current object, then, does a shallow copy of
// its argument, and finally invalindate its argument.
template <typename T>
void GenericVector<T>::move(GenericVector<T>* from) {
this->clear();
this->data_ = from->data_;
this->size_reserved_ = from->size_reserved_;
this->size_used_ = from->size_used_;
this->compare_cb_ = from->compare_cb_;
this->clear_cb_ = from->clear_cb_;
from->data_ = NULL;
from->clear_cb_ = NULL;
from->compare_cb_ = NULL;
from->size_used_ = 0;
from->size_reserved_ = 0;
}
#endif // TESSERACT_CCUTIL_GENERICVECTOR_H_