blob: eb40167a2d0d542409754d9918562899ff543530 [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Wrapper layers: layers that augment the functionality of another layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.keras.layers.recurrent import _standardize_args
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import layer_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.util import nest
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Wrapper')
class Wrapper(Layer):
"""Abstract wrapper base class.
Wrappers take another layer and augment it in various ways.
Do not use this class as a layer, it is only an abstract base class.
Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers.
Arguments:
layer: The layer to be wrapped.
"""
def __init__(self, layer, **kwargs):
assert isinstance(layer, Layer)
self.layer = layer
# Tracks mapping of Wrapper inputs to inner layer inputs. Useful when
# the inner layer has update ops that depend on its inputs (as opposed
# to the inputs to the Wrapper layer).
self._input_map = {}
super(Wrapper, self).__init__(**kwargs)
def build(self, input_shape=None):
if not self.layer.built:
self.layer.build(input_shape)
self.built = True
@property
def activity_regularizer(self):
if hasattr(self.layer, 'activity_regularizer'):
return self.layer.activity_regularizer
else:
return None
def get_config(self):
config = {
'layer': {
'class_name': self.layer.__class__.__name__,
'config': self.layer.get_config()
}
}
base_config = super(Wrapper, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
layer = deserialize_layer(
config.pop('layer'), custom_objects=custom_objects)
return cls(layer, **config)
@keras_export('keras.layers.TimeDistributed')
class TimeDistributed(Wrapper):
"""This wrapper allows to apply a layer to every temporal slice of an input.
The input should be at least 3D, and the dimension of index one
will be considered to be the temporal dimension.
Consider a batch of 32 samples,
where each sample is a sequence of 10 vectors of 16 dimensions.
The batch input shape of the layer is then `(32, 10, 16)`,
and the `input_shape`, not including the samples dimension, is `(10, 16)`.
You can then use `TimeDistributed` to apply a `Dense` layer
to each of the 10 timesteps, independently:
```python
# as the first layer in a model
model = Sequential()
model.add(TimeDistributed(Dense(8), input_shape=(10, 16)))
# now model.output_shape == (None, 10, 8)
```
The output will then have shape `(32, 10, 8)`.
In subsequent layers, there is no need for the `input_shape`:
```python
model.add(TimeDistributed(Dense(32)))
# now model.output_shape == (None, 10, 32)
```
The output will then have shape `(32, 10, 32)`.
`TimeDistributed` can be used with arbitrary layers, not just `Dense`,
for instance with a `Conv2D` layer:
```python
model = Sequential()
model.add(TimeDistributed(Conv2D(64, (3, 3)),
input_shape=(10, 299, 299, 3)))
```
Arguments:
layer: a layer instance.
Call arguments:
inputs: Input tensor.
training: Python boolean indicating whether the layer should behave in
training mode or in inference mode. This argument is passed to the
wrapped layer (only if the layer supports this argument).
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
a given timestep should be masked. This argument is passed to the
wrapped layer (only if the layer supports this argument).
Raises:
ValueError: If not initialized with a `Layer` instance.
"""
def __init__(self, layer, **kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `TimeDistributed` layer with a '
'`Layer` instance. You passed: {input}'.format(input=layer))
super(TimeDistributed, self).__init__(layer, **kwargs)
self.supports_masking = True
self._supports_ragged_inputs = True
# It is safe to use the fast, reshape-based approach with all of our
# built-in Layers.
self._always_use_reshape = (
layer_utils.is_builtin_layer(layer) and
not getattr(layer, 'stateful', False))
def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None):
"""Finds non-specific dimensions in the static shapes.
The static shapes are replaced with the corresponding dynamic shapes of the
tensor.
Arguments:
init_tuple: a tuple, the first part of the output shape
tensor: the tensor from which to get the (static and dynamic) shapes
as the last part of the output shape
start_idx: int, which indicate the first dimension to take from
the static shape of the tensor
int_shape: an alternative static shape to take as the last part
of the output shape
Returns:
The new int_shape with the first part from init_tuple
and the last part from either `int_shape` (if provided)
or `tensor.shape`, where every `None` is replaced by
the corresponding dimension from `tf.shape(tensor)`.
"""
# replace all None in int_shape by K.shape
if int_shape is None:
int_shape = K.int_shape(tensor)[start_idx:]
if not any(not s for s in int_shape):
return init_tuple + tuple(int_shape)
shape = K.shape(tensor)
int_shape = list(int_shape)
for i, s in enumerate(int_shape):
if not s:
int_shape[i] = shape[start_idx + i]
return init_tuple + tuple(int_shape)
def build(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if len(input_shape) < 3:
raise ValueError(
'`TimeDistributed` Layer should be passed an `input_shape ` '
'with at least 3 dimensions, received: ' + str(input_shape))
# Don't enforce the batch or time dimension.
self.input_spec = InputSpec(shape=[None, None] + input_shape[2:])
child_input_shape = [input_shape[0]] + input_shape[2:]
super(TimeDistributed, self).build(tuple(child_input_shape))
self.built = True
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
child_input_shape = tensor_shape.TensorShape([input_shape[0]] +
input_shape[2:])
child_output_shape = self.layer.compute_output_shape(child_input_shape)
if not isinstance(child_output_shape, tensor_shape.TensorShape):
child_output_shape = tensor_shape.TensorShape(child_output_shape)
child_output_shape = child_output_shape.as_list()
timesteps = input_shape[1]
return tensor_shape.TensorShape([child_output_shape[0], timesteps] +
child_output_shape[1:])
def call(self, inputs, training=None, mask=None):
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
input_shape = K.int_shape(inputs)
if input_shape[0] and not self._always_use_reshape:
inputs, row_lengths = K.convert_inputs_if_ragged(inputs)
is_ragged_input = row_lengths is not None
# batch size matters, use rnn-based implementation
def step(x, _):
output = self.layer(x, **kwargs)
return output, []
_, outputs, _ = K.rnn(
step,
inputs,
initial_states=[],
input_length=row_lengths[0] if is_ragged_input else input_shape[1],
mask=mask,
unroll=False)
y = K.maybe_convert_to_ragged(is_ragged_input, outputs, row_lengths)
else:
# No batch size specified, therefore the layer will be able
# to process batches of any size.
# We can go with reshape-based implementation for performance.
if isinstance(inputs, ragged_tensor.RaggedTensor):
y = self.layer(inputs.values, **kwargs)
y = ragged_tensor.RaggedTensor.from_row_lengths(
y,
inputs.nested_row_lengths()[0])
else:
input_length = input_shape[1]
if not input_length:
input_length = array_ops.shape(inputs)[1]
inner_input_shape = self._get_shape_tuple((-1,), inputs, 2)
# Shape: (num_samples * timesteps, ...). And track the
# transformation in self._input_map.
input_uid = generic_utils.object_list_uid(inputs)
inputs = array_ops.reshape(inputs, inner_input_shape)
self._input_map[input_uid] = inputs
# (num_samples * timesteps, ...)
if generic_utils.has_arg(self.layer.call, 'mask') and mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
kwargs['mask'] = K.reshape(mask, inner_mask_shape)
y = self.layer(inputs, **kwargs)
# Shape: (num_samples, timesteps, ...)
output_shape = self.compute_output_shape(input_shape).as_list()
output_shape = self._get_shape_tuple((-1, input_length), y, 1,
output_shape[2:])
y = array_ops.reshape(y, output_shape)
return y
def compute_mask(self, inputs, mask=None):
"""Computes an output mask tensor for Embedding layer.
This is based on the inputs, mask, and the inner layer.
If batch size is specified:
Simply return the input `mask`. (An rnn-based implementation with
more than one rnn inputs is required but not supported in tf.keras yet.)
Otherwise we call `compute_mask` of the inner layer at each time step.
If the output mask at each time step is not `None`:
(E.g., inner layer is Masking or RNN)
Concatenate all of them and return the concatenation.
If the output mask at each time step is `None` and the input mask is not
`None`:(E.g., inner layer is Dense)
Reduce the input_mask to 2 dimensions and return it.
Otherwise (both the output mask and the input mask are `None`):
(E.g., `mask` is not used at all)
Return `None`.
Arguments:
inputs: Tensor with shape [batch size, timesteps, ...] indicating the
input to TimeDistributed. If static shape information is available for
"batch size", `mask` is returned unmodified.
mask: Either None (indicating no masking) or a Tensor indicating the
input mask for TimeDistributed. The shape can be static or dynamic.
Returns:
Either None (no masking), or a [batch size, timesteps, ...] Tensor with
an output mask for the TimeDistributed layer with the shape beyond the
second dimension being the value of the input mask shape(if the computed
output mask is none), an output mask with the shape beyond the first
dimension being the value of the mask shape(if mask is not None) or
output mask with the shape beyond the first dimension being the
value of the computed output shape.
"""
# cases need to call the layer.compute_mask when input_mask is None:
# Masking layer and Embedding layer with mask_zero
input_shape = K.int_shape(inputs)
if input_shape[0]:
# batch size matters, we currently do not handle mask explicitly
return mask
inner_mask = mask
if inner_mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
inner_mask = K.reshape(inner_mask, inner_mask_shape)
input_uid = generic_utils.object_list_uid(inputs)
inner_inputs = self._input_map.get(input_uid, inputs)
output_mask = self.layer.compute_mask(inner_inputs, inner_mask)
if output_mask is None:
if mask is None:
return None
# input_mask is not None, and output_mask is None:
# we should return a not-None mask
output_mask = mask
for _ in range(2, len(K.int_shape(mask))):
output_mask = K.any(output_mask, axis=-1)
else:
# output_mask is not None. We need to reshape it
input_length = input_shape[1]
if not input_length:
input_length = K.shape(inputs)[1]
output_mask_int_shape = K.int_shape(output_mask)
if output_mask_int_shape is None:
# if the output_mask does not have a static shape,
# its shape must be the same as mask's
if mask is not None:
output_mask_int_shape = K.int_shape(mask)
else:
output_mask_int_shape = K.compute_output_shape(input_shape)[:-1]
output_mask_shape = self._get_shape_tuple(
(-1, input_length), output_mask, 1, output_mask_int_shape[1:])
output_mask = K.reshape(output_mask, output_mask_shape)
return output_mask
@keras_export('keras.layers.Bidirectional')
class Bidirectional(Wrapper):
"""Bidirectional wrapper for RNNs.
Arguments:
layer: `Recurrent` instance.
merge_mode: Mode by which outputs of the
forward and backward RNNs will be combined.
One of {'sum', 'mul', 'concat', 'ave', None}.
If None, the outputs will not be combined,
they will be returned as a list.
backward_layer: Optional `Recurrent` instance to be used to handle
backwards input processing. If `backward_layer` is not provided,
the layer instance passed as the `layer` argument will be used to
generate the backward layer automatically.
Note that the provided `backward_layer` layer should have properties
matching those of the `layer` argument, in particular it should have the
same values for `stateful`, `return_states`, `return_sequence`, etc.
In addition, `backward_layer` and `layer` should have
different `go_backwards` argument values.
A `ValueError` will be raised if these requirements are not met.
Call arguments:
The call arguments for this layer are the same as those of the wrapped RNN
layer.
Raises:
ValueError:
1. If `layer` or `backward_layer` is not a `Layer` instance.
2. In case of invalid `merge_mode` argument.
3. If `backward_layer` has mismatched properties compared to `layer`.
Examples:
```python
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# With custom backward layer
model = Sequential()
forward_layer = LSTM(10, return_sequences=True)
backward_layer = LSTM(10, activation='relu', return_sequences=True,
go_backwards=True)
model.add(Bidirectional(forward_layer, backward_layer=backward_layer,
input_shape=(5, 10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```
"""
def __init__(self,
layer,
merge_mode='concat',
weights=None,
backward_layer=None,
**kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `Bidirectional` layer with a '
'`Layer` instance. You passed: {input}'.format(input=layer))
if backward_layer is not None and not isinstance(backward_layer, Layer):
raise ValueError('`backward_layer` need to be a `Layer` instance. '
'You passed: {input}'.format(input=backward_layer))
if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]:
raise ValueError('Invalid merge mode. '
'Merge mode should be one of '
'{"sum", "mul", "ave", "concat", None}')
# Recreate the forward layer from the original layer config, so that it will
# not carry over any state from the layer.
self.forward_layer = self._recreate_layer_from_config(layer)
if backward_layer is None:
self.backward_layer = self._recreate_layer_from_config(
layer, go_backwards=True)
else:
self.backward_layer = backward_layer
# Keep the custom backward layer config, so that we can save it later. The
# layer's name might be updated below with prefix 'backward_', and we want
# to preserve the original config.
self._backward_layer_config = backward_layer.get_config()
self.forward_layer._name = 'forward_' + self.forward_layer.name
self.backward_layer._name = 'backward_' + self.backward_layer.name
self._verify_layer_config()
def force_zero_output_for_mask(layer):
# Force the zero_output_for_mask to be True if returning sequences.
if getattr(layer, 'zero_output_for_mask', None) is not None:
layer.zero_output_for_mask = layer.return_sequences
force_zero_output_for_mask(self.forward_layer)
force_zero_output_for_mask(self.backward_layer)
self.merge_mode = merge_mode
if weights:
nw = len(weights)
self.forward_layer.initial_weights = weights[:nw // 2]
self.backward_layer.initial_weights = weights[nw // 2:]
self.stateful = layer.stateful
self.return_sequences = layer.return_sequences
self.return_state = layer.return_state
self.supports_masking = True
self._trainable = True
self._num_constants = 0
# We don't want to track `layer` since we're already tracking the two copies
# of it we actually run.
self._setattr_tracking = False
super(Bidirectional, self).__init__(layer, **kwargs)
self._setattr_tracking = True
self.input_spec = layer.input_spec
self._supports_ragged_inputs = True
def _verify_layer_config(self):
"""Ensure the forward and backward layers have valid common property."""
if self.forward_layer.go_backwards == self.backward_layer.go_backwards:
raise ValueError('Forward layer and backward layer should have different '
'`go_backwards` value.')
common_attributes = ('stateful', 'return_sequences', 'return_state')
for a in common_attributes:
forward_value = getattr(self.forward_layer, a)
backward_value = getattr(self.backward_layer, a)
if forward_value != backward_value:
raise ValueError(
'Forward layer and backward layer are expected to have the same '
'value for attribute {attr}, got {forward} and {backward}'.format(
attr=a, forward=forward_value, backward=backward_value))
def _recreate_layer_from_config(self, layer, go_backwards=False):
# When recreating the layer from its config, it is possible that the layer
# is a RNN layer that contains custom cells. In this case we inspect the
# layer and pass the custom cell class as part of the `custom_objects`
# argument when calling `from_config`.
# See https://github.com/tensorflow/tensorflow/issues/26581 for more detail.
config = layer.get_config()
if go_backwards:
config['go_backwards'] = not config['go_backwards']
if 'custom_objects' in tf_inspect.getfullargspec(
layer.__class__.from_config).args:
custom_objects = {}
cell = getattr(layer, 'cell', None)
if cell is not None:
custom_objects[cell.__class__.__name__] = cell.__class__
# For StackedRNNCells
stacked_cells = getattr(cell, 'cells', [])
for c in stacked_cells:
custom_objects[c.__class__.__name__] = c.__class__
return layer.__class__.from_config(config, custom_objects=custom_objects)
else:
return layer.__class__.from_config(config)
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
output_shape = self.forward_layer.compute_output_shape(input_shape)
if not isinstance(output_shape, tensor_shape.TensorShape):
output_shape = tensor_shape.TensorShape(output_shape)
output_shape = tuple(output_shape.as_list())
if self.return_state:
state_shape = output_shape[1:]
output_shape = output_shape[0]
if self.merge_mode == 'concat':
output_shape = list(output_shape)
output_shape[-1] *= 2
output_shape = tuple(output_shape)
elif self.merge_mode is None:
output_shape = [output_shape, copy.copy(output_shape)]
if self.return_state:
if self.merge_mode is None:
return output_shape + state_shape + copy.copy(state_shape)
return [output_shape] + state_shape + copy.copy(state_shape)
return output_shape
def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
"""`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
inputs, initial_state, constants = _standardize_args(
inputs, initial_state, constants, self._num_constants)
if isinstance(inputs, list):
if len(inputs) > 1:
initial_state = inputs[1:]
inputs = inputs[0]
if initial_state is None and constants is None:
return super(Bidirectional, self).__call__(inputs, **kwargs)
# Applies the same workaround as in `RNN.__call__`
additional_inputs = []
additional_specs = []
if initial_state is not None:
# Check if `initial_state` can be splitted into half
num_states = len(initial_state)
if num_states % 2 > 0:
raise ValueError(
'When passing `initial_state` to a Bidirectional RNN, '
'the state should be a list containing the states of '
'the underlying RNNs. '
'Found: ' + str(initial_state))
kwargs['initial_state'] = initial_state
additional_inputs += initial_state
state_specs = [InputSpec(shape=K.int_shape(state))
for state in initial_state]
self.forward_layer.state_spec = state_specs[:num_states // 2]
self.backward_layer.state_spec = state_specs[num_states // 2:]
additional_specs += state_specs
if constants is not None:
kwargs['constants'] = constants
additional_inputs += constants
constants_spec = [InputSpec(shape=K.int_shape(constant))
for constant in constants]
self.forward_layer.constants_spec = constants_spec
self.backward_layer.constants_spec = constants_spec
additional_specs += constants_spec
self._num_constants = len(constants)
self.forward_layer._num_constants = self._num_constants
self.backward_layer._num_constants = self._num_constants
is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
for tensor in additional_inputs:
if K.is_keras_tensor(tensor) != is_keras_tensor:
raise ValueError('The initial state of a Bidirectional'
' layer cannot be specified with a mix of'
' Keras tensors and non-Keras tensors'
' (a "Keras tensor" is a tensor that was'
' returned by a Keras layer, or by `Input`)')
if is_keras_tensor:
# Compute the full input spec, including state
full_input = [inputs] + additional_inputs
# The original input_spec is None since there could be a nested tensor
# input. Update the input_spec to match the inputs.
full_input_spec = [None for _ in range(len(nest.flatten(inputs)))
] + additional_specs
# Removing kwargs since the value are passed with input list.
kwargs['initial_state'] = None
kwargs['constants'] = None
# Perform the call with temporarily replaced input_spec
original_input_spec = self.input_spec
self.input_spec = full_input_spec
output = super(Bidirectional, self).__call__(full_input, **kwargs)
self.input_spec = original_input_spec
return output
else:
return super(Bidirectional, self).__call__(inputs, **kwargs)
def call(self,
inputs,
training=None,
mask=None,
initial_state=None,
constants=None):
"""`Bidirectional.call` implements the same API as the wrapped `RNN`."""
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
if generic_utils.has_arg(self.layer.call, 'mask'):
kwargs['mask'] = mask
if generic_utils.has_arg(self.layer.call, 'constants'):
kwargs['constants'] = constants
if generic_utils.has_arg(self.layer.call, 'initial_state'):
if isinstance(inputs, list) and len(inputs) > 1:
# initial_states are keras tensors, which means they are passed in
# together with inputs as list. The initial_states need to be split into
# forward and backward section, and be feed to layers accordingly.
forward_inputs = [inputs[0]]
backward_inputs = [inputs[0]]
pivot = (len(inputs) - self._num_constants) // 2 + 1
# add forward initial state
forward_inputs += inputs[1:pivot]
if not self._num_constants:
# add backward initial state
backward_inputs += inputs[pivot:]
else:
# add backward initial state
backward_inputs += inputs[pivot:-self._num_constants]
# add constants for forward and backward layers
forward_inputs += inputs[-self._num_constants:]
backward_inputs += inputs[-self._num_constants:]
forward_state, backward_state = None, None
if 'constants' in kwargs:
kwargs['constants'] = None
elif initial_state is not None:
# initial_states are not keras tensors, eg eager tensor from np array.
# They are only passed in from kwarg initial_state, and should be passed
# to forward/backward layer via kwarg initial_state as well.
forward_inputs, backward_inputs = inputs, inputs
half = len(initial_state) // 2
forward_state = initial_state[:half]
backward_state = initial_state[half:]
else:
forward_inputs, backward_inputs = inputs, inputs
forward_state, backward_state = None, None
y = self.forward_layer(forward_inputs,
initial_state=forward_state, **kwargs)
y_rev = self.backward_layer(backward_inputs,
initial_state=backward_state, **kwargs)
else:
y = self.forward_layer(inputs, **kwargs)
y_rev = self.backward_layer(inputs, **kwargs)
if self.return_state:
states = y[1:] + y_rev[1:]
y = y[0]
y_rev = y_rev[0]
if self.return_sequences:
y_rev = K.reverse(y_rev, 1)
if self.merge_mode == 'concat':
output = K.concatenate([y, y_rev])
elif self.merge_mode == 'sum':
output = y + y_rev
elif self.merge_mode == 'ave':
output = (y + y_rev) / 2
elif self.merge_mode == 'mul':
output = y * y_rev
elif self.merge_mode is None:
output = [y, y_rev]
else:
raise ValueError(
'Unrecognized value for `merge_mode`: %s' % (self.merge_mode))
if self.return_state:
if self.merge_mode is None:
return output + states
return [output] + states
return output
def reset_states(self):
self.forward_layer.reset_states()
self.backward_layer.reset_states()
def build(self, input_shape):
with K.name_scope(self.forward_layer.name):
self.forward_layer.build(input_shape)
with K.name_scope(self.backward_layer.name):
self.backward_layer.build(input_shape)
self.built = True
def compute_mask(self, inputs, mask):
if isinstance(mask, list):
mask = mask[0]
if self.return_sequences:
if not self.merge_mode:
output_mask = [mask, mask]
else:
output_mask = mask
else:
output_mask = [None, None] if not self.merge_mode else None
if self.return_state:
states = self.forward_layer.states
state_mask = [None for _ in states]
if isinstance(output_mask, list):
return output_mask + state_mask * 2
return [output_mask] + state_mask * 2
return output_mask
@property
def constraints(self):
constraints = {}
if hasattr(self.forward_layer, 'constraints'):
constraints.update(self.forward_layer.constraints)
constraints.update(self.backward_layer.constraints)
return constraints
def get_config(self):
config = {'merge_mode': self.merge_mode}
if self._num_constants:
config['num_constants'] = self._num_constants
if hasattr(self, '_backward_layer_config'):
config['backward_layer'] = {
'class_name': self.backward_layer.__class__.__name__,
'config': self._backward_layer_config,
}
base_config = super(Bidirectional, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
# Instead of updating the input, create a copy and use that.
config = config.copy()
num_constants = config.pop('num_constants', 0)
backward_layer_config = config.pop('backward_layer', None)
if backward_layer_config is not None:
from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
backward_layer = deserialize_layer(
backward_layer_config, custom_objects=custom_objects)
config['backward_layer'] = backward_layer
layer = super(Bidirectional, cls).from_config(config,
custom_objects=custom_objects)
layer._num_constants = num_constants
return layer