blob: c735f71245e58be98bdd827377b408cbbcf1bf23 [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
"""Callbacks: utilities called at certain points during model training.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import csv
import io
import json
import os
import re
import tempfile
import time
import numpy as np
import six
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.distribute import multi_worker_util
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.distribute import multi_worker_training_state as training_state
from tensorflow.python.keras.utils.data_utils import Sequence
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.utils.mode_keys import ModeKeys
from tensorflow.python.lib.io import file_io
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_management
from tensorflow.python.util.tf_export import keras_export
try:
import requests
except ImportError:
requests = None
def configure_callbacks(callbacks,
model,
do_validation=False,
batch_size=None,
epochs=None,
steps_per_epoch=None,
samples=None,
verbose=1,
count_mode='steps',
mode=ModeKeys.TRAIN):
"""Configures callbacks for use in various training loops.
Arguments:
callbacks: List of Callbacks.
model: Model being trained.
do_validation: Whether or not validation loop will be run.
batch_size: Number of samples per batch.
epochs: Number of epoch to train.
steps_per_epoch: Number of batches to run per training epoch.
samples: Number of training samples.
verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger.
count_mode: One of 'steps' or 'samples'. Per-batch or per-sample count.
mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT.
Which loop mode to configure callbacks for.
Returns:
Instance of CallbackList used to control all Callbacks.
"""
# Check if callbacks have already been configured.
if isinstance(callbacks, CallbackList):
return callbacks
if not callbacks:
callbacks = []
# Add additional callbacks during training.
if mode == ModeKeys.TRAIN:
model.history = History()
callbacks = [BaseLogger()] + (callbacks or []) + [model.history]
if verbose:
callbacks.append(ProgbarLogger(count_mode))
callback_list = CallbackList(callbacks)
# Set callback model
callback_model = model._get_callback_model() # pylint: disable=protected-access
callback_list.set_model(callback_model)
set_callback_parameters(
callback_list,
model,
do_validation=do_validation,
batch_size=batch_size,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
samples=samples,
verbose=verbose,
mode=mode)
callback_list.model.stop_training = False
return callback_list
def set_callback_parameters(callback_list,
model,
do_validation=False,
batch_size=None,
epochs=None,
steps_per_epoch=None,
samples=None,
verbose=1,
mode=ModeKeys.TRAIN):
"""Sets callback parameters.
Arguments:
callback_list: CallbackList instance.
model: Model being trained.
do_validation: Whether or not validation loop will be run.
batch_size: Number of samples per batch.
epochs: Number of epoch to train.
steps_per_epoch: Number of batches to run per training epoch.
samples: Number of training samples.
verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger.
mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT.
Which loop mode to configure callbacks for.
"""
for cbk in callback_list:
if isinstance(cbk, (BaseLogger, ProgbarLogger)):
cbk.stateful_metrics = model.metrics_names[1:] # Exclude `loss`
# Set callback parameters
callback_metrics = []
# When we have deferred build scenario with iterator input, we will compile
# when we standardize first batch of data.
if mode != ModeKeys.PREDICT and hasattr(model, 'metrics_names'):
callback_metrics = copy.copy(model.metrics_names)
if do_validation:
callback_metrics += ['val_' + n for n in model.metrics_names]
callback_params = {
'batch_size': batch_size,
'epochs': epochs,
'steps': steps_per_epoch,
'samples': samples,
'verbose': verbose,
'do_validation': do_validation,
'metrics': callback_metrics,
}
callback_list.set_params(callback_params)
def _is_generator_like(data):
"""Checks if data is a generator, Sequence, or Iterator."""
return (hasattr(data, 'next') or hasattr(data, '__next__') or isinstance(
data, (Sequence, iterator_ops.Iterator, iterator_ops.IteratorV2)))
def make_logs(model, logs, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
if mode in {ModeKeys.TRAIN, ModeKeys.TEST}:
if hasattr(model, 'metrics_names'):
for label, output in zip(model.metrics_names, outputs):
logs[prefix + label] = output
else:
logs['outputs'] = outputs
return logs
class CallbackList(object):
"""Container abstracting a list of callbacks.
Arguments:
callbacks: List of `Callback` instances.
queue_length: Queue length for keeping
running statistics over callback execution time.
"""
def __init__(self, callbacks=None, queue_length=10):
callbacks = callbacks or []
self.callbacks = [c for c in callbacks]
self.queue_length = queue_length
self.params = {}
self.model = None
self._reset_batch_timing()
def _reset_batch_timing(self):
self._delta_t_batch = 0.
self._delta_ts = collections.defaultdict(
lambda: collections.deque([], maxlen=self.queue_length))
def append(self, callback):
self.callbacks.append(callback)
def set_params(self, params):
self.params = params
for callback in self.callbacks:
callback.set_params(params)
def set_model(self, model):
self.model = model
for callback in self.callbacks:
callback.set_model(model)
def _call_batch_hook(self, mode, hook, batch, logs=None):
"""Helper function for all batch_{begin | end} methods."""
if not self.callbacks:
return
hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook)
if hook == 'begin':
self._t_enter_batch = time.time()
if hook == 'end':
# Batch is ending, calculate batch time.
self._delta_t_batch = time.time() - self._t_enter_batch
logs = logs or {}
t_before_callbacks = time.time()
for callback in self.callbacks:
batch_hook = getattr(callback, hook_name)
batch_hook(batch, logs)
self._delta_ts[hook_name].append(time.time() - t_before_callbacks)
delta_t_median = np.median(self._delta_ts[hook_name])
if (self._delta_t_batch > 0. and
delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1):
logging.warning(
'Method (%s) is slow compared '
'to the batch update (%f). Check your callbacks.', hook_name,
delta_t_median)
def _call_begin_hook(self, mode):
"""Helper function for on_{train|test|predict}_begin methods."""
if mode == ModeKeys.TRAIN:
self.on_train_begin()
elif mode == ModeKeys.TEST:
self.on_test_begin()
else:
self.on_predict_begin()
def _call_end_hook(self, mode):
"""Helper function for on_{train|test|predict}_end methods."""
if mode == ModeKeys.TRAIN:
self.on_train_end()
elif mode == ModeKeys.TEST:
self.on_test_end()
else:
self.on_predict_end()
def on_batch_begin(self, batch, logs=None):
self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs)
def on_batch_end(self, batch, logs=None):
self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs)
def on_epoch_begin(self, epoch, logs=None):
"""Calls the `on_epoch_begin` methods of its callbacks.
This function should only be called during TRAIN mode.
Arguments:
epoch: integer, index of epoch.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_begin(epoch, logs)
self._reset_batch_timing()
def on_epoch_end(self, epoch, logs=None):
"""Calls the `on_epoch_end` methods of its callbacks.
This function should only be called during TRAIN mode.
Arguments:
epoch: integer, index of epoch.
logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_end(epoch, logs)
def on_train_batch_begin(self, batch, logs=None):
"""Calls the `on_train_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs)
def on_train_batch_end(self, batch, logs=None):
"""Calls the `on_train_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs)
def on_test_batch_begin(self, batch, logs=None):
"""Calls the `on_test_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(ModeKeys.TEST, 'begin', batch, logs=logs)
def on_test_batch_end(self, batch, logs=None):
"""Calls the `on_test_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(ModeKeys.TEST, 'end', batch, logs=logs)
def on_predict_batch_begin(self, batch, logs=None):
"""Calls the `on_predict_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(ModeKeys.PREDICT, 'begin', batch, logs=logs)
def on_predict_batch_end(self, batch, logs=None):
"""Calls the `on_predict_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(ModeKeys.PREDICT, 'end', batch, logs=logs)
def on_train_begin(self, logs=None):
"""Calls the `on_train_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_train_begin(logs)
def on_train_end(self, logs=None):
"""Calls the `on_train_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_train_end(logs)
def on_test_begin(self, logs=None):
"""Calls the `on_test_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_begin(logs)
def on_test_end(self, logs=None):
"""Calls the `on_test_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_end(logs)
def on_predict_begin(self, logs=None):
"""Calls the 'on_predict_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_begin(logs)
def on_predict_end(self, logs=None):
"""Calls the `on_predict_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_end(logs)
def __iter__(self):
return iter(self.callbacks)
@keras_export('keras.callbacks.Callback')
class Callback(object):
"""Abstract base class used to build new callbacks.
Attributes:
params: dict. Training parameters
(eg. verbosity, batch size, number of epochs...).
model: instance of `keras.models.Model`.
Reference of the model being trained.
validation_data: Deprecated. Do not use.
The `logs` dictionary that callback methods
take as argument will contain keys for quantities relevant to
the current batch or epoch.
Currently, the `.fit()` method of the `Model` class
will include the following quantities in the `logs` that
it passes to its callbacks:
on_epoch_end: logs include `acc` and `loss`, and
optionally include `val_loss`
(if validation is enabled in `fit`), and `val_acc`
(if validation and accuracy monitoring are enabled).
on_batch_begin: logs include `size`,
the number of samples in the current batch.
on_batch_end: logs include `loss`, and optionally `acc`
(if accuracy monitoring is enabled).
"""
def __init__(self):
self.validation_data = None
self.model = None
# Whether this Callback should only run on the chief worker in a
# Multi-Worker setting.
# TODO(omalleyt): Make this attr public once solution is stable.
self._chief_worker_only = None
def set_params(self, params):
self.params = params
def set_model(self, model):
self.model = model
def on_batch_begin(self, batch, logs=None):
"""A backwards compatibility alias for `on_train_batch_begin`."""
def on_batch_end(self, batch, logs=None):
"""A backwards compatibility alias for `on_train_batch_end`."""
def on_epoch_begin(self, epoch, logs=None):
"""Called at the start of an epoch.
Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.
Arguments:
epoch: integer, index of epoch.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_epoch_end(self, epoch, logs=None):
"""Called at the end of an epoch.
Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.
Arguments:
epoch: integer, index of epoch.
logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
"""
def on_train_batch_begin(self, batch, logs=None):
"""Called at the beginning of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
# For backwards compatibility.
self.on_batch_begin(batch, logs=logs)
def on_train_batch_end(self, batch, logs=None):
"""Called at the end of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
# For backwards compatibility.
self.on_batch_end(batch, logs=logs)
def on_test_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `evaluate` methods.
Also called at the beginning of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_test_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `evaluate` methods.
Also called at the end of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_predict_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_predict_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_train_begin(self, logs=None):
"""Called at the beginning of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_train_end(self, logs=None):
"""Called at the end of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_begin(self, logs=None):
"""Called at the beginning of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_end(self, logs=None):
"""Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_begin(self, logs=None):
"""Called at the beginning of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_end(self, logs=None):
"""Called at the end of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@keras_export('keras.callbacks.BaseLogger')
class BaseLogger(Callback):
"""Callback that accumulates epoch averages of metrics.
This callback is automatically applied to every Keras model.
Arguments:
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is in `on_epoch_end`.
All others will be averaged in `on_epoch_end`.
"""
def __init__(self, stateful_metrics=None):
super(BaseLogger, self).__init__()
self.stateful_metrics = set(stateful_metrics or [])
def on_epoch_begin(self, epoch, logs=None):
self.seen = 0
self.totals = {}
def on_batch_end(self, batch, logs=None):
logs = logs or {}
batch_size = logs.get('size', 0)
# In case of distribution strategy we can potentially run multiple steps
# at the same time, we should account for that in the `seen` calculation.
num_steps = logs.get('num_steps', 1)
self.seen += batch_size * num_steps
for k, v in logs.items():
if k in self.stateful_metrics:
self.totals[k] = v
else:
if k in self.totals:
self.totals[k] += v * batch_size
else:
self.totals[k] = v * batch_size
def on_epoch_end(self, epoch, logs=None):
if logs is not None:
for k in self.params['metrics']:
if k in self.totals:
# Make value available to next callbacks.
if k in self.stateful_metrics:
logs[k] = self.totals[k]
else:
logs[k] = self.totals[k] / self.seen
@keras_export('keras.callbacks.TerminateOnNaN')
class TerminateOnNaN(Callback):
"""Callback that terminates training when a NaN loss is encountered.
"""
def on_batch_end(self, batch, logs=None):
logs = logs or {}
loss = logs.get('loss')
if loss is not None:
if np.isnan(loss) or np.isinf(loss):
print('Batch %d: Invalid loss, terminating training' % (batch))
self.model.stop_training = True
@keras_export('keras.callbacks.ProgbarLogger')
class ProgbarLogger(Callback):
"""Callback that prints metrics to stdout.
Arguments:
count_mode: One of "steps" or "samples".
Whether the progress bar should
count samples seen or steps (batches) seen.
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is.
All others will be averaged over time (e.g. loss, etc).
Raises:
ValueError: In case of invalid `count_mode`.
"""
def __init__(self, count_mode='samples', stateful_metrics=None):
super(ProgbarLogger, self).__init__()
if count_mode == 'samples':
self.use_steps = False
elif count_mode == 'steps':
self.use_steps = True
else:
raise ValueError('Unknown `count_mode`: ' + str(count_mode))
self.stateful_metrics = set(stateful_metrics or [])
def on_train_begin(self, logs=None):
self.verbose = self.params['verbose']
self.epochs = self.params['epochs']
def on_epoch_begin(self, epoch, logs=None):
self.seen = 0
if self.use_steps:
self.target = self.params['steps']
else:
self.target = self.params['samples']
if self.verbose:
if self.epochs > 1:
print('Epoch %d/%d' % (epoch + 1, self.epochs))
self.progbar = Progbar(
target=self.target,
verbose=self.verbose,
stateful_metrics=self.stateful_metrics,
unit_name='step' if self.use_steps else 'sample')
def on_batch_begin(self, batch, logs=None):
self.log_values = []
def on_batch_end(self, batch, logs=None):
logs = logs or {}
batch_size = logs.get('size', 0)
# In case of distribution strategy we can potentially run multiple steps
# at the same time, we should account for that in the `seen` calculation.
num_steps = logs.get('num_steps', 1)
if self.use_steps:
self.seen += num_steps
else:
self.seen += batch_size * num_steps
for k in self.params['metrics']:
if k in logs:
self.log_values.append((k, logs[k]))
# Skip progbar update for the last batch;
# will be handled by on_epoch_end.
if self.verbose and (self.target is None or self.seen < self.target):
self.progbar.update(self.seen, self.log_values)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
for k in self.params['metrics']:
if k in logs:
self.log_values.append((k, logs[k]))
if self.verbose:
self.progbar.update(self.seen, self.log_values)
@keras_export('keras.callbacks.History')
class History(Callback):
"""Callback that records events into a `History` object.
This callback is automatically applied to
every Keras model. The `History` object
gets returned by the `fit` method of models.
"""
def on_train_begin(self, logs=None):
self.epoch = []
self.history = {}
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epoch.append(epoch)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
@keras_export('keras.callbacks.ModelCheckpoint')
class ModelCheckpoint(Callback):
"""Save the model after every epoch.
`filepath` can contain named formatting options,
which will be filled the value of `epoch` and
keys in `logs` (passed in `on_epoch_end`).
For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
then the model checkpoints will be saved with the epoch number and
the validation loss in the filename.
Arguments:
filepath: string, path to save the model file.
monitor: quantity to monitor.
verbose: verbosity mode, 0 or 1.
save_best_only: if `save_best_only=True`, the latest best model according
to the quantity monitored will not be overwritten.
mode: one of {auto, min, max}. If `save_best_only=True`, the decision to
overwrite the current save file is made based on either the maximization
or the minimization of the monitored quantity. For `val_acc`, this
should be `max`, for `val_loss` this should be `min`, etc. In `auto`
mode, the direction is automatically inferred from the name of the
monitored quantity.
save_weights_only: if True, then only the model's weights will be saved
(`model.save_weights(filepath)`), else the full model is saved
(`model.save(filepath)`).
save_freq: `'epoch'` or integer. When using `'epoch'`, the callback saves
the model after each epoch. When using integer, the callback saves the
model at end of a batch at which this many samples have been seen since
last saving. Note that if the saving isn't aligned to epochs, the
monitored metric may potentially be less reliable (it could reflect as
little as 1 batch, since the metrics get reset every epoch). Defaults to
`'epoch'`
**kwargs: Additional arguments for backwards compatibility. Possible key
is `period`.
"""
def __init__(self,
filepath,
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
save_freq='epoch',
**kwargs):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.save_freq = save_freq
self.epochs_since_last_save = 0
self._samples_seen_since_last_saving = 0
# Deprecated field `load_weights_on_restart` is for loading the checkpoint
# file from `filepath` at the start of `model.fit()`
# TODO(rchao): Remove the arg during next breaking release.
if 'load_weights_on_restart' in kwargs:
self.load_weights_on_restart = kwargs['load_weights_on_restart']
logging.warning('`load_weights_on_restart` argument is deprecated. '
'Please use `model.load_weights()` for loading weights '
'before the start of `model.fit()`.')
else:
self.load_weights_on_restart = False
# Deprecated field `period` is for the number of epochs between which
# the model is saved.
if 'period' in kwargs:
self.period = kwargs['period']
logging.warning('`period` argument is deprecated. Please use `save_freq` '
'to specify the frequency in number of samples seen.')
else:
self.period = 1
if mode not in ['auto', 'min', 'max']:
logging.warning('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
if self.save_freq != 'epoch' and not isinstance(self.save_freq, int):
raise ValueError('Unrecognized save_freq: {}'.format(self.save_freq))
# Only the chief worker writes model checkpoints, but all workers
# restore checkpoint at on_train_begin().
self._chief_worker_only = False
def set_model(self, model):
self.model = model
# Use name matching rather than `isinstance` to avoid circular dependencies.
if (not self.save_weights_only and
not model._is_graph_network and # pylint: disable=protected-access
model.__class__.__name__ != 'Sequential'):
self.save_weights_only = True
def on_train_begin(self, logs=None):
if multi_worker_util.in_multi_worker_mode():
# pylint: disable=protected-access
# MultiWorkerTrainingState is used to manage the training state needed
# for preemption-recovery of a worker in multi-worker training.
self.model._training_state = (
training_state.MultiWorkerTrainingState(self.model, self.filepath))
self._training_state = self.model._training_state
if self._training_state.restore():
# If the training state needs to be and is successfully restored,
# it is recovering from a previous failure (or preemption). In such
# case, do not load the weights from user specified file path.
return
# If this is not multi worker training, restoring is not needed, or
# restoring failed, check if it should load weights on restart.
if self.load_weights_on_restart:
if (not multi_worker_util.in_multi_worker_mode()
or multi_worker_util.should_load_checkpoint()):
filepath_to_load = (
self._get_most_recently_modified_file_matching_pattern(
self.filepath))
if (filepath_to_load is not None and
training_state.checkpoint_exists(filepath_to_load)):
try:
# `filepath` may contain placeholders such as `{epoch:02d}`, and
# thus it attempts to load the most recently modified file with file
# name matching the pattern.
self.model.load_weights(filepath_to_load)
except (IOError, ValueError) as e:
raise ValueError('Error loading file from {}. Reason: {}'.format(
filepath_to_load, e))
def on_train_end(self, logs=None):
if multi_worker_util.in_multi_worker_mode():
# In multi-worker training, on successful exit of training, delete the
# training state backup file that was saved for the purpose of worker
# recovery.
self._training_state.delete_backup()
# Restore the training state so the model is ready for next (possible)
# multi worker training.
del self._training_state
del self.model._training_state
def on_batch_end(self, batch, logs=None):
logs = logs or {}
if isinstance(self.save_freq, int):
self._samples_seen_since_last_saving += logs.get('size', 1)
if self._samples_seen_since_last_saving >= self.save_freq:
self._save_model(epoch=self._current_epoch, logs=logs)
self._samples_seen_since_last_saving = 0
def on_epoch_begin(self, epoch, logs=None):
self._current_epoch = epoch
def on_epoch_end(self, epoch, logs=None):
self.epochs_since_last_save += 1
if self.save_freq == 'epoch':
if multi_worker_util.in_multi_worker_mode():
# Exclude training state variables in user-requested checkpoint file.
with self._training_state.untrack_vars():
self._save_model(epoch=epoch, logs=logs)
else:
self._save_model(epoch=epoch, logs=logs)
if multi_worker_util.in_multi_worker_mode():
# For multi-worker training, back up the weights and current training
# state for possible future recovery.
# TODO(rchao): Call `back_up` at finer period such as N steps.
self._training_state.back_up(epoch)
def _save_model(self, epoch, logs):
"""Saves the model.
Arguments:
epoch: the epoch this iteration is in.
logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.
"""
logs = logs or {}
if isinstance(self.save_freq,
int) or self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
filepath = self._get_file_path(epoch, logs)
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
logging.warning('Can save best model only with %s available, '
'skipping.', self.monitor)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s' % (epoch + 1, self.monitor, self.best,
current, filepath))
self.best = current
if self.save_weights_only:
self.model.save_weights(filepath, overwrite=True)
else:
self.model.save(filepath, overwrite=True)
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve from %0.5f' %
(epoch + 1, self.monitor, self.best))
else:
if self.verbose > 0:
print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
if self.save_weights_only:
self.model.save_weights(filepath, overwrite=True)
else:
self.model.save(filepath, overwrite=True)
self._maybe_remove_file()
def _get_file_path(self, epoch, logs):
"""Returns the file path for checkpoint."""
if not multi_worker_util.in_multi_worker_mode(
) or multi_worker_util.should_save_checkpoint():
return self.filepath.format(epoch=epoch + 1, **logs)
else:
# If this is multi-worker training, and this worker should not
# save checkpoint, we use a temp filepath to store a dummy checkpoint, so
# it writes to a file that will be removed at the end of `_save_model()`
# call. This is because the SyncOnReadVariable needs to be synced across
# all the workers in order to be read, and all workers need to initiate
# that.
self._temp_file_dir = tempfile.mkdtemp()
extension = os.path.splitext(self.filepath)[1]
return os.path.join(self._temp_file_dir, 'temp' + extension)
def _maybe_remove_file(self):
# Remove the checkpoint directory in multi-worker training where this worker
# should not checkpoint. It is a dummy directory previously saved for sync
# distributed training.
if multi_worker_util.in_multi_worker_mode(
) and not multi_worker_util.should_save_checkpoint():
file_io.delete_recursively(self._temp_file_dir)
del self._temp_file_dir
def _get_most_recently_modified_file_matching_pattern(self, pattern):
"""Returns the most recently modified filepath matching pattern.
Pattern may contain python formatting placeholder. If
`tf.train.latest_checkpoint()` does not return None, use that; otherwise,
check for most recently modified one that matches the pattern.
In the rare case where there are more than one pattern-matching file having
the same modified time that is most recent among all, return the filepath
that is largest (by `>` operator, lexicographically using the numeric
equivalents). This provides a tie-breaker when multiple files are most
recent. Note that a larger `filepath` can sometimes indicate a later time of
modification (for instance, when epoch/batch is used as formatting option),
but not necessarily (when accuracy or loss is used). The tie-breaker is
put in the logic as best effort to return the most recent, and to avoid
undeterministic result.
Modified time of a file is obtained with `os.path.getmtime()`.
This utility function is best demonstrated via an example:
```python
file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5'
test_dir = self.get_temp_dir()
path_pattern = os.path.join(test_dir, file_pattern)
file_paths = [
os.path.join(test_dir, file_name) for file_name in
['f.batch03epoch02.h5', 'f.batch02epoch02.h5', 'f.batch01epoch01.h5']
]
for file_path in file_paths:
# Write something to each of the files
self.assertEqual(
_get_most_recently_modified_file_matching_pattern(path_pattern),
file_paths[-1])
```
Arguments:
pattern: The file pattern that may optionally contain python placeholder
such as `{epoch:02d}`.
Returns:
The most recently modified file's full filepath matching `pattern`. If
`pattern` does not contain any placeholder, this returns the filepath
that
exactly matches `pattern`. Returns `None` if no match is found.
"""
dir_name = os.path.dirname(pattern)
base_name = os.path.basename(pattern)
base_name_regex = '^' + re.sub(r'{.*}', r'.*', base_name) + '$'
# If tf.train.latest_checkpoint tells us there exists a latest checkpoint,
# use that as it is more robust than `os.path.getmtime()`.
latest_tf_checkpoint = checkpoint_management.latest_checkpoint(dir_name)
if latest_tf_checkpoint is not None and re.match(
base_name_regex, os.path.basename(latest_tf_checkpoint)):
return latest_tf_checkpoint
latest_mod_time = 0
file_path_with_latest_mod_time = None
n_file_with_latest_mod_time = 0
file_path_with_largest_file_name = None
if file_io.file_exists(dir_name):
for file_name in os.listdir(dir_name):
# Only consider if `file_name` matches the pattern.
if re.match(base_name_regex, file_name):
file_path = os.path.join(dir_name, file_name)
mod_time = os.path.getmtime(file_path)
if (file_path_with_largest_file_name is None or
file_path > file_path_with_largest_file_name):
file_path_with_largest_file_name = file_path
if mod_time > latest_mod_time:
latest_mod_time = mod_time
file_path_with_latest_mod_time = file_path
# In the case a file with later modified time is found, reset
# the counter for the number of files with latest modified time.
n_file_with_latest_mod_time = 1
elif mod_time == latest_mod_time:
# In the case a file has modified time tied with the most recent,
# increment the counter for the number of files with latest modified
# time by 1.
n_file_with_latest_mod_time += 1
if n_file_with_latest_mod_time == 1:
# Return the sole file that has most recent modified time.
return file_path_with_latest_mod_time
else:
# If there are more than one file having latest modified time, return
# the file path with the largest file name.
return file_path_with_largest_file_name
@keras_export('keras.callbacks.EarlyStopping')
class EarlyStopping(Callback):
"""Stop training when a monitored quantity has stopped improving.
Arguments:
monitor: Quantity to be monitored.
min_delta: Minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience: Number of epochs with no improvement
after which training will be stopped.
verbose: verbosity mode.
mode: One of `{"auto", "min", "max"}`. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
baseline: Baseline value for the monitored quantity.
Training will stop if the model doesn't show improvement over the
baseline.
restore_best_weights: Whether to restore model weights from
the epoch with the best value of the monitored quantity.
If False, the model weights obtained at the last step of
training are used.
Example:
```python
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
# This callback will stop the training when there is no improvement in
# the validation loss for three consecutive epochs.
model.fit(data, labels, epochs=100, callbacks=[callback],
validation_data=(val_data, val_labels))
```
"""
def __init__(self,
monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.baseline = baseline
self.min_delta = abs(min_delta)
self.wait = 0
self.stopped_epoch = 0
self.restore_best_weights = restore_best_weights
self.best_weights = None
if mode not in ['auto', 'min', 'max']:
logging.warning('EarlyStopping mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
if self.baseline is not None:
self.best = self.baseline
else:
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def on_epoch_end(self, epoch, logs=None):
current = self.get_monitor_value(logs)
if current is None:
return
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
if self.restore_best_weights:
self.best_weights = self.model.get_weights()
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
self.model.stop_training = True
if self.restore_best_weights:
if self.verbose > 0:
print('Restoring model weights from the end of the best epoch.')
self.model.set_weights(self.best_weights)
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))
def get_monitor_value(self, logs):
logs = logs or {}
monitor_value = logs.get(self.monitor)
if monitor_value is None:
logging.warning('Early stopping conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
return monitor_value
@keras_export('keras.callbacks.RemoteMonitor')
class RemoteMonitor(Callback):
"""Callback used to stream events to a server.
Requires the `requests` library.
Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
HTTP POST, with a `data` argument which is a
JSON-encoded dictionary of event data.
If send_as_json is set to True, the content type of the request will be
application/json. Otherwise the serialized JSON will be sent within a form.
Arguments:
root: String; root url of the target server.
path: String; path relative to `root` to which the events will be sent.
field: String; JSON field under which the data will be stored.
The field is used only if the payload is sent within a form
(i.e. send_as_json is set to False).
headers: Dictionary; optional custom HTTP headers.
send_as_json: Boolean; whether the request should be
sent as application/json.
"""
def __init__(self,
root='http://localhost:9000',
path='/publish/epoch/end/',
field='data',
headers=None,
send_as_json=False):
super(RemoteMonitor, self).__init__()
self.root = root
self.path = path
self.field = field
self.headers = headers
self.send_as_json = send_as_json
def on_epoch_end(self, epoch, logs=None):
if requests is None:
raise ImportError('RemoteMonitor requires the `requests` library.')
logs = logs or {}
send = {}
send['epoch'] = epoch
for k, v in logs.items():
send[k] = v
try:
if self.send_as_json:
requests.post(self.root + self.path, json=send, headers=self.headers)
else:
requests.post(
self.root + self.path, {self.field: json.dumps(send)},
headers=self.headers)
except requests.exceptions.RequestException:
logging.warning('Warning: could not reach RemoteMonitor '
'root server at ' + str(self.root))
@keras_export('keras.callbacks.LearningRateScheduler')
class LearningRateScheduler(Callback):
"""Learning rate scheduler.
Arguments:
schedule: a function that takes an epoch index as input
(integer, indexed from 0) and returns a new
learning rate as output (float).
verbose: int. 0: quiet, 1: update messages.
```python
# This function keeps the learning rate at 0.001 for the first ten epochs
# and decreases it exponentially after that.
def scheduler(epoch):
if epoch < 10:
return 0.001
else:
return 0.001 * tf.math.exp(0.1 * (10 - epoch))
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
model.fit(data, labels, epochs=100, callbacks=[callback],
validation_data=(val_data, val_labels))
```
"""
def __init__(self, schedule, verbose=0):
super(LearningRateScheduler, self).__init__()
self.schedule = schedule
self.verbose = verbose
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'lr'):
raise ValueError('Optimizer must have a "lr" attribute.')
try: # new API
lr = float(K.get_value(self.model.optimizer.lr))
lr = self.schedule(epoch, lr)
except TypeError: # Support for old API for backward compatibility
lr = self.schedule(epoch)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nEpoch %05d: LearningRateScheduler reducing learning '
'rate to %s.' % (epoch + 1, lr))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
@keras_export('keras.callbacks.TensorBoard', v1=[])
class TensorBoard(Callback):
# pylint: disable=line-too-long
"""Enable visualizations for TensorBoard.
TensorBoard is a visualization tool provided with TensorFlow.
This callback logs events for TensorBoard, including:
* Metrics summary plots
* Training graph visualization
* Activation histograms
* Sampled profiling
If you have installed TensorFlow with pip, you should be able
to launch TensorBoard from the command line:
```sh
tensorboard --logdir=path_to_your_logs
```
You can find more information about TensorBoard
[here](https://www.tensorflow.org/get_started/summaries_and_tensorboard).
Arguments:
log_dir: the path of the directory where to save the log files to be
parsed by TensorBoard.
histogram_freq: frequency (in epochs) at which to compute activation and
weight histograms for the layers of the model. If set to 0, histograms
won't be computed. Validation data (or split) must be specified for
histogram visualizations.
write_graph: whether to visualize the graph in TensorBoard. The log file
can become quite large when write_graph is set to True.
write_images: whether to write model weights to visualize as image in
TensorBoard.
update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`,
writes the losses and metrics to TensorBoard after each batch. The same
applies for `'epoch'`. If using an integer, let's say `1000`, the
callback will write the metrics and losses to TensorBoard every 1000
samples. Note that writing too frequently to TensorBoard can slow down
your training.
profile_batch: Profile the batch to sample compute characteristics. By
default, it will profile the second batch. Set profile_batch=0 to
disable profiling. Must run in TensorFlow eager mode.
embeddings_freq: frequency (in epochs) at which embedding layers will
be visualized. If set to 0, embeddings won't be visualized.
embeddings_metadata: a dictionary which maps layer name to a file name in
which metadata for this embedding layer is saved. See the
[details](
https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
about metadata files format. In case if the same metadata file is
used for all embedding layers, string can be passed.
Raises:
ValueError: If histogram_freq is set and no validation data is provided.
"""
# pylint: enable=line-too-long
def __init__(self,
log_dir='logs',
histogram_freq=0,
write_graph=True,
write_images=False,
update_freq='epoch',
profile_batch=2,
embeddings_freq=0,
embeddings_metadata=None,
**kwargs):
super(TensorBoard, self).__init__()
self._validate_kwargs(kwargs)
self.log_dir = log_dir
self.histogram_freq = histogram_freq
self.write_graph = write_graph
self.write_images = write_images
if update_freq == 'batch':
self.update_freq = 1
else:
self.update_freq = update_freq
self.embeddings_freq = embeddings_freq
self.embeddings_metadata = embeddings_metadata
self._samples_seen = 0
self._samples_seen_at_last_write = 0
self._current_batch = 0
self._total_batches_seen = 0
self._total_val_batches_seen = 0
# A collection of file writers currently in use, to be closed when
# training ends for this callback. Writers are keyed by the
# directory name under the root logdir: e.g., "train" or
# "validation".
self._writers = {}
self._train_run_name = 'train'
self._validation_run_name = 'validation'
self._profile_batch = profile_batch
# True when a trace is running.
self._is_tracing = False
# TensorBoard should only write summaries on the chief when in a
# Multi-Worker setting.
self._chief_worker_only = True
def _validate_kwargs(self, kwargs):
"""Handle arguments were supported in V1."""
if kwargs.get('write_grads', False):
logging.warning('`write_grads` will be ignored in TensorFlow 2.0 '
'for the `TensorBoard` Callback.')
if kwargs.get('batch_size', False):
logging.warning('`batch_size` is no longer needed in the '
'`TensorBoard` Callback and will be ignored '
'in TensorFlow 2.0.')
if kwargs.get('embeddings_layer_names', False):
logging.warning('`embeddings_layer_names` is not supported in '
'TensorFlow 2.0. Instead, all `Embedding` layers '
'will be visualized.')
if kwargs.get('embeddings_data', False):
logging.warning('`embeddings_data` is not supported in TensorFlow '
'2.0. Instead, all `Embedding` variables will be '
'visualized.')
unrecognized_kwargs = set(kwargs.keys()) - {
'write_grads', 'embeddings_layer_names', 'embeddings_data', 'batch_size'
}
# Only allow kwargs that were supported in V1.
if unrecognized_kwargs:
raise ValueError('Unrecognized arguments in `TensorBoard` '
'Callback: ' + str(unrecognized_kwargs))
def set_model(self, model):
"""Sets Keras model and writes graph if specified."""
self.model = model
with context.eager_mode():
self._close_writers()
if self.write_graph:
with self._get_writer(self._train_run_name).as_default():
with summary_ops_v2.always_record_summaries():
if not model.run_eagerly:
summary_ops_v2.graph(K.get_graph(), step=0)
summary_writable = (
self.model._is_graph_network or # pylint: disable=protected-access
self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access
if summary_writable:
summary_ops_v2.keras_model('keras', self.model, step=0)
if self.embeddings_freq:
self._configure_embeddings()
def _configure_embeddings(self):
"""Configure the Projector for embeddings."""
# TODO(omalleyt): Add integration tests.
from tensorflow.python.keras.layers import embeddings
try:
from tensorboard.plugins import projector
except ImportError:
raise ImportError('Failed to import TensorBoard. Please make sure that '
'TensorBoard integration is complete."')
config = projector.ProjectorConfig()
for layer in self.model.layers:
if isinstance(layer, embeddings.Embedding):
embedding = config.embeddings.add()
embedding.tensor_name = layer.embeddings.name
if self.embeddings_metadata is not None:
if isinstance(self.embeddings_metadata, str):
embedding.metadata_path = self.embeddings_metadata
else:
if layer.name in embedding.metadata_path:
embedding.metadata_path = self.embeddings_metadata.pop(layer.name)
if self.embeddings_metadata:
raise ValueError('Unrecognized `Embedding` layer names passed to '
'`keras.callbacks.TensorBoard` `embeddings_metadata` '
'argument: ' + str(self.embeddings_metadata.keys()))
class DummyWriter(object):
"""Dummy writer to conform to `Projector` API."""
def __init__(self, logdir):
self.logdir = logdir
def get_logdir(self):
return self.logdir
writer = DummyWriter(self.log_dir)
projector.visualize_embeddings(writer, config)
def _close_writers(self):
"""Close all remaining open file writers owned by this callback.
If there are no such file writers, this is a no-op.
"""
with context.eager_mode():
for writer in six.itervalues(self._writers):
writer.close()
self._writers.clear()
def _get_writer(self, writer_name):
"""Get a summary writer for the given subdirectory under the logdir.
A writer will be created if it does not yet exist.
Arguments:
writer_name: The name of the directory for which to create or
retrieve a writer. Should be either `self._train_run_name` or
`self._validation_run_name`.
Returns:
A `SummaryWriter` object.
"""
if writer_name not in self._writers:
path = os.path.join(self.log_dir, writer_name)
writer = summary_ops_v2.create_file_writer_v2(path)
self._writers[writer_name] = writer
return self._writers[writer_name]
def on_train_begin(self, logs=None):
if self._profile_batch == 1:
summary_ops_v2.trace_on(graph=True, profiler=True)
self._is_tracing = True
def on_batch_end(self, batch, logs=None):
"""Writes scalar summaries for metrics on every training batch.
Performs profiling if current batch is in profiler_batches.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Metric results for this batch.
"""
# Don't output batch_size and batch number as TensorBoard summaries
logs = logs or {}
self._samples_seen += logs.get('size', 1)
samples_seen_since = self._samples_seen - self._samples_seen_at_last_write
if self.update_freq != 'epoch' and samples_seen_since >= self.update_freq:
self._log_metrics(logs, prefix='batch_', step=self._total_batches_seen)
self._samples_seen_at_last_write = self._samples_seen
self._total_batches_seen += 1
if self._is_tracing:
self._log_trace()
elif (not self._is_tracing and
self._total_batches_seen == self._profile_batch - 1):
self._enable_trace()
def on_epoch_end(self, epoch, logs=None):
"""Runs metrics and histogram summaries at epoch end."""
step = epoch if self.update_freq == 'epoch' else self._samples_seen
self._log_metrics(logs, prefix='epoch_', step=step)
if self.histogram_freq and epoch % self.histogram_freq == 0:
self._log_weights(epoch)
if self.embeddings_freq and epoch % self.embeddings_freq == 0:
self._log_embeddings(epoch)
def on_train_end(self, logs=None):
if self._is_tracing:
self._log_trace()
self._close_writers()
def _enable_trace(self):
if context.executing_eagerly():
summary_ops_v2.trace_on(graph=True, profiler=True)
self._is_tracing = True
def _log_trace(self):
if context.executing_eagerly():
with self._get_writer(self._train_run_name).as_default(), \
summary_ops_v2.always_record_summaries():
# TODO(b/126388999): Remove step info in the summary name.
summary_ops_v2.trace_export(
name='batch_%d' % self._total_batches_seen,
step=self._total_batches_seen,
profiler_outdir=os.path.join(self.log_dir, 'train'))
self._is_tracing = False
def _log_metrics(self, logs, prefix, step):
"""Writes metrics out as custom scalar summaries.
Arguments:
logs: Dict. Keys are scalar summary names, values are NumPy scalars.
prefix: String. The prefix to apply to the scalar summary names.
step: Int. The global step to use for TensorBoard.
"""
if logs is None:
logs = {}
# Group metrics by the name of their associated file writer. Values
# are lists of metrics, as (name, scalar_value) pairs.
logs_by_writer = {
self._train_run_name: [],
self._validation_run_name: [],
}
validation_prefix = 'val_'
for (name, value) in logs.items():
if name in ('batch', 'size', 'num_steps'):
# Scrub non-metric items.
continue
if name.startswith(validation_prefix):
name = name[len(validation_prefix):]
writer_name = self._validation_run_name
else:
writer_name = self._train_run_name
name = prefix + name # assign batch or epoch prefix
logs_by_writer[writer_name].append((name, value))
with context.eager_mode():
with summary_ops_v2.always_record_summaries():
for writer_name in logs_by_writer:
these_logs = logs_by_writer[writer_name]
if not these_logs:
# Don't create a "validation" events file if we don't
# actually have any validation data.
continue
writer = self._get_writer(writer_name)
with writer.as_default():
for (name, value) in these_logs:
summary_ops_v2.scalar(name, value, step=step)
def _log_weights(self, epoch):
"""Logs the weights of the Model to TensorBoard."""
writer = self._get_writer(self._train_run_name)
with context.eager_mode(), \
writer.as_default(), \
summary_ops_v2.always_record_summaries():
for layer in self.model.layers:
for weight in layer.weights:
weight_name = weight.name.replace(':', '_')
with ops.init_scope():
weight = K.get_value(weight)
summary_ops_v2.histogram(weight_name, weight, step=epoch)
if self.write_images:
self._log_weight_as_image(weight, weight_name, epoch)
writer.flush()
def _log_weight_as_image(self, weight, weight_name, epoch):
"""Logs a weight as a TensorBoard image."""
w_img = array_ops.squeeze(weight)
shape = K.int_shape(w_img)
if len(shape) == 1: # Bias case
w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
elif len(shape) == 2: # Dense layer kernel case
if shape[0] > shape[1]:
w_img = array_ops.transpose(w_img)
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
elif len(shape) == 3: # ConvNet case
if K.image_data_format() == 'channels_last':
# Switch to channels_first to display every kernel as a separate
# image.
w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img, [shape[0], shape[1], shape[2], 1])
shape = K.int_shape(w_img)
# Not possible to handle 3D convnets etc.
if len(shape) == 4 and shape[-1] in [1, 3, 4]:
summary_ops_v2.image(weight_name, w_img, step=epoch)
def _log_embeddings(self, epoch):
embeddings_ckpt = os.path.join(self.log_dir, 'train',
'keras_embedding.ckpt-{}'.format(epoch))
self.model.save_weights(embeddings_ckpt)
@keras_export('keras.callbacks.ReduceLROnPlateau')
class ReduceLROnPlateau(Callback):
"""Reduce learning rate when a metric has stopped improving.
Models often benefit from reducing the learning rate by a factor
of 2-10 once learning stagnates. This callback monitors a
quantity and if no improvement is seen for a 'patience' number
of epochs, the learning rate is reduced.
Example:
```python
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])
```
Arguments:
monitor: quantity to be monitored.
factor: factor by which the learning rate will be reduced. new_lr = lr *
factor
patience: number of epochs with no improvement after which learning rate
will be reduced.
verbose: int. 0: quiet, 1: update messages.
mode: one of {auto, min, max}. In `min` mode, lr will be reduced when the
quantity monitored has stopped decreasing; in `max` mode it will be
reduced when the quantity monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred from the name of the
monitored quantity.
min_delta: threshold for measuring the new optimum, to only focus on
significant changes.
cooldown: number of epochs to wait before resuming normal operation after
lr has been reduced.
min_lr: lower bound on the learning rate.
"""
def __init__(self,
monitor='val_loss',
factor=0.1,
patience=10,
verbose=0,
mode='auto',
min_delta=1e-4,
cooldown=0,
min_lr=0,
**kwargs):
super(ReduceLROnPlateau, self).__init__()
self.monitor = monitor
if factor >= 1.0:
raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.')
if 'epsilon' in kwargs:
min_delta = kwargs.pop('epsilon')
logging.warning('`epsilon` argument is deprecated and '
'will be removed, use `min_delta` instead.')
self.factor = factor
self.min_lr = min_lr
self.min_delta = min_delta
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.cooldown_counter = 0 # Cooldown counter.
self.wait = 0
self.best = 0
self.mode = mode
self.monitor_op = None
self._reset()
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.', self.mode)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
def on_train_begin(self, logs=None):
self._reset()
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
current = logs.get(self.monitor)
if current is None:
logging.warning('Reduce LR on plateau conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
else:
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
self.wait += 1
if self.wait >= self.patience:
old_lr = float(K.get_value(self.model.optimizer.lr))
if old_lr > self.min_lr:
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose > 0:
print('\nEpoch %05d: ReduceLROnPlateau reducing learning '
'rate to %s.' % (epoch + 1, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
def in_cooldown(self):
return self.cooldown_counter > 0
@keras_export('keras.callbacks.CSVLogger')
class CSVLogger(Callback):
"""Callback that streams epoch results to a csv file.
Supports all values that can be represented as a string,
including 1D iterables such as np.ndarray.
Example:
```python
csv_logger = CSVLogger('training.log')
model.fit(X_train, Y_train, callbacks=[csv_logger])
```
Arguments:
filename: filename of the csv file, e.g. 'run/log.csv'.
separator: string used to separate elements in the csv file.
append: True: append if file exists (useful for continuing
training). False: overwrite existing file,
"""
def __init__(self, filename, separator=',', append=False):
self.sep = separator
self.filename = filename
self.append = append
self.writer = None
self.keys = None
self.append_header = True
if six.PY2:
self.file_flags = 'b'
self._open_args = {}
else:
self.file_flags = ''
self._open_args = {'newline': '\n'}
super(CSVLogger, self).__init__()
def on_train_begin(self, logs=None):
if self.append:
if file_io.file_exists(self.filename):
with open(self.filename, 'r' + self.file_flags) as f:
self.append_header = not bool(len(f.readline()))
mode = 'a'
else:
mode = 'w'
self.csv_file = io.open(self.filename,
mode + self.file_flags,
**self._open_args)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
def handle_value(k):
is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
if isinstance(k, six.string_types):
return k
elif isinstance(k, collections.Iterable) and not is_zero_dim_ndarray:
return '"[%s]"' % (', '.join(map(str, k)))
else:
return k
if self.keys is None:
self.keys = sorted(logs.keys())
if self.model.stop_training:
# We set NA so that csv parsers do not fail for this last epoch.
logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys])
if not self.writer:
class CustomDialect(csv.excel):
delimiter = self.sep
fieldnames = ['epoch'] + self.keys
if six.PY2:
fieldnames = [unicode(x) for x in fieldnames]
self.writer = csv.DictWriter(
self.csv_file,
fieldnames=fieldnames,
dialect=CustomDialect)
if self.append_header:
self.writer.writeheader()
row_dict = collections.OrderedDict({'epoch': epoch})
row_dict.update((key, handle_value(logs[key])) for key in self.keys)
self.writer.writerow(row_dict)
self.csv_file.flush()
def on_train_end(self, logs=None):
self.csv_file.close()
self.writer = None
@keras_export('keras.callbacks.LambdaCallback')
class LambdaCallback(Callback):
r"""Callback for creating simple, custom callbacks on-the-fly.
This callback is constructed with anonymous functions that will be called
at the appropriate time. Note that the callbacks expects positional
arguments, as:
- `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
`epoch`, `logs`
- `on_batch_begin` and `on_batch_end` expect two positional arguments:
`batch`, `logs`
- `on_train_begin` and `on_train_end` expect one positional argument:
`logs`
Arguments:
on_epoch_begin: called at the beginning of every epoch.
on_epoch_end: called at the end of every epoch.
on_batch_begin: called at the beginning of every batch.
on_batch_end: called at the end of every batch.
on_train_begin: called at the beginning of model training.
on_train_end: called at the end of model training.
Example:
```python
# Print the batch number at the beginning of every batch.
batch_print_callback = LambdaCallback(
on_batch_begin=lambda batch,logs: print(batch))
# Stream the epoch loss to a file in JSON format. The file content
# is not well-formed JSON but rather has a JSON object per line.
import json
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
# Terminate some processes after having finished model training.
processes = ...
cleanup_callback = LambdaCallback(
on_train_end=lambda logs: [
p.terminate() for p in processes if p.is_alive()])
model.fit(...,
callbacks=[batch_print_callback,
json_logging_callback,
cleanup_callback])
```
"""
def __init__(self,
on_epoch_begin=None,
on_epoch_end=None,
on_batch_begin=None,
on_batch_end=None,
on_train_begin=None,
on_train_end=None,
**kwargs):
super(LambdaCallback, self).__init__()
self.__dict__.update(kwargs)
if on_epoch_begin is not None:
self.on_epoch_begin = on_epoch_begin
else:
self.on_epoch_begin = lambda epoch, logs: None
if on_epoch_end is not None:
self.on_epoch_end = on_epoch_end
else:
self.on_epoch_end = lambda epoch, logs: None
if on_batch_begin is not None:
self.on_batch_begin = on_batch_begin
else:
self.on_batch_begin = lambda batch, logs: None
if on_batch_end is not None:
self.on_batch_end = on_batch_end
else:
self.on_batch_end = lambda batch, logs: None
if on_train_begin is not None:
self.on_train_begin = on_train_begin
else:
self.on_train_begin = lambda logs: None
if on_train_end is not None:
self.on_train_end = on_train_end
else:
self.on_train_end = lambda logs: None