blob: 06b246839de3982ef05f4cfbcee6aaa817b9c1af [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for slice op."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import test
from tensorflow.python.ops import random_ops
class SliceTest(test.TestCase):
def testEmpty(self):
inp = np.random.rand(4, 4).astype("f")
for k in xrange(4):
with self.cached_session(use_gpu=True):
a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.float32)
slice_t = a[2, k:k]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(slice_val, inp[2, k:k])
def testInt32(self):
inp = np.random.rand(4, 4).astype("i")
for k in xrange(4):
with self.cached_session(use_gpu=True):
a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.int32)
slice_t = a[2, k:k]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(slice_val, inp[2, k:k])
def testSlicingWithInt64Index(self):
with self.cached_session(force_gpu=test.is_gpu_available()):
a = constant_op.constant([0, 1, 2], dtype=dtypes.int32)
# Slice using int64 Tensor.
i = constant_op.constant(1, dtype=dtypes.int64)
slice_t = a[i]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(1, slice_val)
slice_t = a[i:i+1]
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1], slice_val)
# Slice using int64 integer.
i = np.asarray(1).astype(np.int64)
slice_t = a[i]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(1, slice_val)
slice_t = a[i:i+1]
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1], slice_val)
a_int32 = constant_op.constant([0, 1, 2], dtype=dtypes.int32)
slice_t = array_ops.slice(a_int32,
np.asarray([1]).astype(np.int64),
np.asarray([2]).astype(np.int64))
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1, 2], slice_val)
a_float32 = constant_op.constant([0, 1, 2], dtype=dtypes.float32)
slice_t = array_ops.slice(a_float32,
np.asarray([1]).astype(np.int64),
np.asarray([2]).astype(np.int64))
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1, 2], slice_val)
def testSlicingInt64Tensor(self):
with self.cached_session(force_gpu=test.is_gpu_available()):
a = constant_op.constant([0, 1, 2], dtype=dtypes.int64)
# Slice using int32 Tensor.
i = constant_op.constant(1, dtype=dtypes.int32)
slice_t = a[i]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(1, slice_val)
slice_t = a[i:i + 1]
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1], slice_val)
# Slice using int32 integer.
i = np.asarray(1).astype(np.int32)
slice_t = a[i]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(1, slice_val)
slice_t = a[i:i + 1]
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1], slice_val)
slice_t = array_ops.slice(a, [1], [2])
slice_val = self.evaluate(slice_t)
self.assertAllEqual([1, 2], slice_val)
def testSelectAll(self):
for _ in range(10):
with self.cached_session(use_gpu=True):
inp = np.random.rand(4, 4, 4, 4).astype("f")
a = constant_op.constant(inp, shape=[4, 4, 4, 4], dtype=dtypes.float32)
slice_explicit_t = array_ops.slice(a, [0, 0, 0, 0], [-1, -1, -1, -1])
slice_implicit_t = a[:, :, :, :]
self.assertAllEqual(inp, self.evaluate(slice_explicit_t))
self.assertAllEqual(inp, self.evaluate(slice_implicit_t))
self.assertEqual(inp.shape, slice_explicit_t.get_shape())
self.assertEqual(inp.shape, slice_implicit_t.get_shape())
def testSingleDimension(self):
for _ in range(10):
with self.cached_session(use_gpu=True):
inp = np.random.rand(10).astype("f")
a = constant_op.constant(inp, shape=[10], dtype=dtypes.float32)
hi = np.random.randint(0, 9)
scalar_t = a[hi]
scalar_val = self.evaluate(scalar_t)
self.assertAllEqual(scalar_val, inp[hi])
if hi > 0:
lo = np.random.randint(0, hi)
else:
lo = 0
slice_t = a[lo:hi]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(slice_val, inp[lo:hi])
def test3Dimension(self):
with self.session() as sess:
input_shape = [8, 16, 16, 16, 8]
inputs = random_ops.random_normal(input_shape,
dtype=dtypes.float32,
seed=0)
filter_shape = [1, 1, 1, 8, 8]
filters = random_ops.random_normal(filter_shape,
dtype=dtypes.float32,
seed=0)
conv_t = nn_ops.conv3d(inputs,
filter=filters,
strides=[1, 1, 1, 1, 1],
padding="VALID")
slice_t = array_ops.slice(conv_t, [0, 1, 1, 1, 0], [1, 1, 1, 1, 8])
result = self.evaluate(slice_t)
expected = [6.047066, 1.1073351, -1.4765838, -4.126741,
7.0414743, 4.248739, 0.9407949, -3.58128]
self.assertAllClose(expected, result.flatten(), rtol=1e-6)
@test_util.run_deprecated_v1
def testScalarInput(self):
input_val = 0
with self.cached_session() as sess:
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
constant_op.constant(input_val)[:].get_shape()
# Test evaluating with non-constant input; kernel execution fails.
input_t = array_ops.placeholder(dtypes.int32)
slice_t = input_t[:]
with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
"out of range"):
sess.run([slice_t], feed_dict={input_t: input_val})
@test_util.run_deprecated_v1
def testInvalidIndex(self):
input_val = [1, 2]
with self.cached_session() as sess:
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
constant_op.constant(input_val)[1:, 1:].get_shape()
# Test evaluating with non-constant input; kernel execution fails.
input_t = array_ops.placeholder(dtypes.int32)
slice_t = input_t[1:, 1:]
with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
"out of range"):
sess.run([slice_t], feed_dict={input_t: input_val})
def _testSliceMatrixDim0(self, x, begin, size):
with self.cached_session(use_gpu=True):
tf_ans = array_ops.slice(x, [begin, 0], [size, x.shape[1]]).eval()
np_ans = x[begin:begin + size, :]
self.assertAllEqual(tf_ans, np_ans)
@test_util.run_deprecated_v1
def testSliceMatrixDim0(self):
x = np.random.rand(8, 4).astype("f")
self._testSliceMatrixDim0(x, 1, 2)
self._testSliceMatrixDim0(x, 3, 3)
y = np.random.rand(8, 7).astype("f") # 7 * sizeof(float) is not aligned
self._testSliceMatrixDim0(y, 1, 2)
self._testSliceMatrixDim0(y, 3, 3)
def testSingleElementAll(self):
for _ in range(10):
with self.cached_session(use_gpu=True):
inp = np.random.rand(4, 4).astype("f")
a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.float32)
x, y = np.random.randint(0, 3, size=2).tolist()
slice_t = a[x, 0:y]
slice_val = self.evaluate(slice_t)
self.assertAllEqual(slice_val, inp[x, 0:y])
def testSimple(self):
with self.session(use_gpu=True) as sess:
inp = np.random.rand(4, 4).astype("f")
a = constant_op.constant(
[float(x) for x in inp.ravel(order="C")],
shape=[4, 4],
dtype=dtypes.float32)
slice_t = array_ops.slice(a, [0, 0], [2, 2])
slice2_t = a[:2, :2]
slice_val, slice2_val = self.evaluate([slice_t, slice2_t])
self.assertAllEqual(slice_val, inp[:2, :2])
self.assertAllEqual(slice2_val, inp[:2, :2])
self.assertEqual(slice_val.shape, slice_t.get_shape())
self.assertEqual(slice2_val.shape, slice2_t.get_shape())
@test_util.run_deprecated_v1
def testComplex(self):
with self.session(use_gpu=True):
inp = np.random.rand(4, 10, 10, 4).astype("f")
a = constant_op.constant(inp, dtype=dtypes.float32)
x = np.random.randint(0, 9)
z = np.random.randint(0, 9)
if z > 0:
y = np.random.randint(0, z)
else:
y = 0
slice_t = a[:, x, y:z, :]
self.assertAllEqual(slice_t.eval(), inp[:, x, y:z, :])
def testRandom(self):
# Random dims of rank 6
input_shape = np.random.randint(0, 20, size=6)
inp = np.random.rand(*input_shape).astype("f")
with self.session(use_gpu=True) as sess:
a = constant_op.constant(
[float(x) for x in inp.ravel(order="C")],
shape=input_shape,
dtype=dtypes.float32)
indices = [0 if x == 0 else np.random.randint(x) for x in input_shape]
sizes = [
np.random.randint(0, input_shape[i] - indices[i] + 1)
for i in range(6)
]
slice_t = array_ops.slice(a, indices, sizes)
slice2_t = a[indices[0]:indices[0] + sizes[0], indices[1]:indices[
1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[3]
+ sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:
indices[5] + sizes[5]]
slice_val, slice2_val = self.evaluate([slice_t, slice2_t])
expected_val = inp[indices[0]:indices[0] + sizes[0], indices[1]:indices[
1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[
3] + sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:indices[
5] + sizes[5]]
self.assertAllEqual(slice_val, expected_val)
self.assertAllEqual(slice2_val, expected_val)
self.assertEqual(expected_val.shape, slice_t.get_shape())
self.assertEqual(expected_val.shape, slice2_t.get_shape())
def testPartialShapeInference(self):
z = array_ops.zeros((1, 2, 3))
self.assertAllEqual(z.get_shape().as_list(), [1, 2, 3])
m1 = array_ops.slice(z, [0, 0, 0], [-1, -1, -1])
self.assertAllEqual(m1.get_shape().as_list(), [1, 2, 3])
m2 = array_ops.slice(z, [0, 0, 0], [constant_op.constant(1) + 0, 2, -1])
self.assertAllEqual(m2.get_shape().as_list(), [1, 2, 3])
def _testGradientSlice(self, input_shape, slice_begin, slice_size):
with self.cached_session(use_gpu=True):
num_inputs = np.prod(input_shape)
num_grads = np.prod(slice_size)
inp = np.random.rand(num_inputs).astype("f").reshape(input_shape)
a = constant_op.constant(
[float(x) for x in inp.ravel(order="C")],
shape=input_shape,
dtype=dtypes.float32)
slice_t = array_ops.slice(a, slice_begin, slice_size)
grads = np.random.rand(num_grads).astype("f").reshape(slice_size)
grad_tensor = constant_op.constant(grads)
grad = gradients_impl.gradients(slice_t, [a], grad_tensor)[0]
result = self.evaluate(grad)
# Create a zero tensor of the input shape ane place
# the grads into the right location to compare against TensorFlow.
np_ans = np.zeros(input_shape)
slices = []
for i in xrange(len(input_shape)):
slices.append(slice(slice_begin[i], slice_begin[i] + slice_size[i]))
np_ans[slices] = grads
self.assertAllClose(np_ans, result)
def _testGradientVariableSize(self):
with self.cached_session(use_gpu=True):
inp = constant_op.constant([1.0, 2.0, 3.0], name="in")
out = array_ops.slice(inp, [1], [-1])
grad_actual = gradients_impl.gradients(out, inp)[0].eval()
self.assertAllClose([0., 1., 1.], grad_actual)
def _testGradientVariableSize2D(self):
# Regression test for bug in slice. A low-level bug in Eigen was causing
# incorrect results for negative indices in multi-dimensional tensors.
# See b/114318298.
with self.cached_session(use_gpu=True) as sess:
x = constant_op.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 7]])
loss1 = math_ops.reduce_sum(x[:-1, :-1] * 1.0)
loss2 = math_ops.reduce_sum(x[:-1][:, :-1])
g1 = gradients_impl.gradients(loss1, x)[0]
g2 = gradients_impl.gradients(loss2, x)[0]
g1_val, g2_val = self.evaluate([g1, g2])
self.assertAllEqual(g1_val, g2_val)
@test_util.run_deprecated_v1
def testGradientsAll(self):
# Slice the middle square out of a 4x4 input
self._testGradientSlice([4, 4], [1, 1], [2, 2])
# Slice the upper left square out of a 4x4 input
self._testGradientSlice([4, 4], [0, 0], [2, 2])
# Slice a non-square input starting from (2,1)
self._testGradientSlice([4, 4], [2, 1], [1, 2])
# Slice a 3D tensor
self._testGradientSlice([3, 3, 3], [0, 1, 0], [2, 1, 1])
# Use -1 as a slice dimension.
self._testGradientVariableSize()
# Use -1 as a slice dimension on a 2D tensor.
self._testGradientVariableSize2D()
@test_util.run_deprecated_v1
def testNotIterable(self):
# NOTE(mrry): If we register __getitem__ as an overloaded
# operator, Python will valiantly attempt to iterate over the
# Tensor from 0 to infinity. This test ensures that this
# unintended behavior is prevented.
c = constant_op.constant(5.0)
with self.assertRaisesRegex(errors_impl.OperatorNotAllowedInGraphError,
"iterating over `tf.Tensor`"):
for _ in c:
pass
@test_util.run_deprecated_v1
def testComputedShape(self):
# NOTE(mrry): We cannot currently handle partially-known values,
# because `tf.slice()` uses -1 to specify a wildcard size, and
# this can't be handled using the
# `tensor_util.constant_value_as_shape()` trick.
a = constant_op.constant([[1, 2, 3], [4, 5, 6]])
begin = constant_op.constant(0)
size = constant_op.constant(1)
b = array_ops.slice(a, [begin, 0], [size, 2])
self.assertEqual([1, 2], b.get_shape())
begin = array_ops.placeholder(dtypes.int32, shape=())
c = array_ops.slice(a, [begin, 0], [-1, 2])
self.assertEqual([None, 2], c.get_shape().as_list())
def testSliceOfSlice(self):
with self.session(use_gpu=True):
a = constant_op.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
b = a[1:, :]
c = b[:-1, :]
d = c[1, :]
res = 2 * d - c[1, :] + a[2, :] - 2 * b[-2, :]
self.assertAllEqual([0, 0, 0], self.evaluate(res))
if __name__ == "__main__":
test.main()