| # Copyright 2015 The TensorFlow Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # ============================================================================== |
| |
| """ProximalAdagrad for TensorFlow.""" |
| from tensorflow.python.framework import constant_op |
| from tensorflow.python.framework import ops |
| from tensorflow.python.ops import math_ops |
| from tensorflow.python.training import optimizer |
| from tensorflow.python.training import training_ops |
| from tensorflow.python.util.tf_export import tf_export |
| |
| |
| @tf_export(v1=["train.ProximalAdagradOptimizer"]) |
| class ProximalAdagradOptimizer(optimizer.Optimizer): |
| # pylint: disable=line-too-long |
| """Optimizer that implements the Proximal Adagrad algorithm. |
| |
| References: |
| Adaptive Subgradient Methods for Online Learning and Stochastic Optimization: |
| [Duchi et al., 2011](http://jmlr.org/papers/v12/duchi11a.html) |
| ([pdf](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)) |
| Efficient Learning using Forward-Backward Splitting: |
| [Duchi et al., 2009](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting) |
| ([pdf](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)) |
| """ |
| |
| def __init__(self, learning_rate, initial_accumulator_value=0.1, |
| l1_regularization_strength=0.0, l2_regularization_strength=0.0, |
| use_locking=False, name="ProximalAdagrad"): |
| """Construct a new ProximalAdagrad optimizer. |
| |
| Args: |
| learning_rate: A `Tensor` or a floating point value. The learning rate. |
| initial_accumulator_value: A floating point value. |
| Starting value for the accumulators, must be positive. |
| l1_regularization_strength: A float value, must be greater than or |
| equal to zero. |
| l2_regularization_strength: A float value, must be greater than or |
| equal to zero. |
| use_locking: If `True` use locks for update operations. |
| name: Optional name prefix for the operations created when applying |
| gradients. Defaults to "Adagrad". |
| |
| Raises: |
| ValueError: If the `initial_accumulator_value` is invalid. |
| """ |
| if initial_accumulator_value <= 0.0: |
| raise ValueError("initial_accumulator_value must be positive: %s" % |
| initial_accumulator_value) |
| super(ProximalAdagradOptimizer, self).__init__(use_locking, name) |
| self._learning_rate = learning_rate |
| self._initial_accumulator_value = initial_accumulator_value |
| self._l1_regularization_strength = l1_regularization_strength |
| self._l2_regularization_strength = l2_regularization_strength |
| # Created in Initialize. |
| self._l1_regularization_strength_tensor = None |
| self._l2_regularization_strength_tensor = None |
| self._learning_rate_tensor = None |
| |
| def _create_slots(self, var_list): |
| for v in var_list: |
| with ops.colocate_with(v): |
| val = constant_op.constant(self._initial_accumulator_value, |
| shape=v.get_shape(), |
| dtype=v.dtype.base_dtype) |
| self._get_or_make_slot(v, val, "accumulator", self._name) |
| |
| def _prepare(self): |
| self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate, |
| name="learning_rate") |
| self._l1_regularization_strength_tensor = ops.convert_to_tensor( |
| self._l1_regularization_strength, |
| name="l1_regularization_strength") |
| self._l2_regularization_strength_tensor = ops.convert_to_tensor( |
| self._l2_regularization_strength, |
| name="l2_regularization_strength") |
| |
| def _apply_dense(self, grad, var): |
| acc = self.get_slot(var, "accumulator") |
| return training_ops.apply_proximal_adagrad( |
| var, acc, self._learning_rate_tensor, |
| self._l1_regularization_strength_tensor, |
| self._l2_regularization_strength_tensor, |
| grad, use_locking=self._use_locking) |
| |
| def _resource_apply_dense(self, grad, var): |
| acc = self.get_slot(var, "accumulator") |
| return training_ops.resource_apply_proximal_adagrad( |
| var.handle, acc.handle, self._learning_rate_tensor, |
| self._l1_regularization_strength_tensor, |
| self._l2_regularization_strength_tensor, |
| grad, use_locking=self._use_locking) |
| |
| def _apply_sparse(self, grad, var): |
| acc = self.get_slot(var, "accumulator") |
| return training_ops.sparse_apply_proximal_adagrad( |
| var, acc, self._learning_rate_tensor, |
| self._l1_regularization_strength_tensor, |
| self._l2_regularization_strength_tensor, |
| grad.values, grad.indices, |
| use_locking=self._use_locking) |
| |
| def _resource_apply_sparse(self, grad, var, indices): |
| acc = self.get_slot(var, "accumulator") |
| return training_ops.resource_sparse_apply_proximal_adagrad( |
| var.handle, acc.handle, |
| math_ops.cast(self._learning_rate_tensor, grad.dtype), |
| math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype), |
| math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype), |
| grad, indices, |
| use_locking=self._use_locking) |